Parameter Estimation in a
Percolation model

with coloring

=
&

MASTER’S THESIS

Albert-Ludwigs-University of Freiburg

Instisute of Mathematics

Author:
Felix Beck

Supervisor: Dr. Prof. Peter Pfaffelhuber
Advisor: Dr. Bence Mélykiti

Place, date Signature

Acknowledgments

I would like to express my gratitude to Dr. Bence Mélykiti, who assisted
me and supported the implementation of parts of the MATLAB code.
Furthermore, I would like to thank Maja Temerinac-Ott, who also supported
the implementation of parts of the MATLAB code.

Statement of Authorship

I hereby certify that this thesis has been composed by me and is based on my
own work, unless stated otherwise. No other person’s work has been used
without due acknowledgement in this thesis. This dissertation has not been
submitted elsewhere in any other form for the fulfilment of any other degree

or qualification.

Place, date Signature

ABsTRACT. In this thesis we create a statistical method to estimate the
contamination rate and the true concentration of DNA in a digital poly-
merase chain reaction. We give a brief introduction to percolation theory
and explain the algorithms of the method of moments, the generalized
method of moments and the method of simulated moments (MSM), wich
are statistical methods for parameter estimation. Besides, we define a
mathematical model to apply the MSM for our specific setup. We use
MATLAB for the implementation of the model and to receive our MSM
estimators. We test our program on synthetic and real laboratory ex-

periments and evaluate our MSM estimators.

ABSTRACT. In dieser Arbeit erstellen wir eine statistische Methode zur
Schitzung der Kontaminationsrate und der wahren DNA-Konzentration
in einer digitalen Polymerase-Kettenreaktion. Wir geben eine kurze
Einfiihrung in Perkolationstheorie und erklaren die Algorithmen fiir die
method of moments, die generalized method of moments und die method
of simulated moments (MSM), welche statistische Methoden zur Param-
eterschitzung sind. Des Weiteren definieren wir ein mathematisches
Modell, um die MSM an unsere Bediirfnisse anzupassen. Wir benutzen
MATLAB fiir die Implementierung des Modells und um unsere MSM
Schétzer zu erhalten. Wir testen unser Programm an synthetischen und

echten Laborexperimenten und bewerten unsere MSM Schétzer.

Contents

Chapter 1. Introduction
1. Motivation and biochemical background

2. Experimental setup and contamination problem

Chapter 2. Percolation Theory
1. Introduction to Percolation

2. Bond Percolation

Chapter 3. The Method of Simulated Moments
1. Method of Moments
2. Generalized Method of Moments
3. Method of Simulated Moments

Chapter 4. Applying the MSM

Chapter 5. MATLAB algorithms

1. Algorithm for the recognition of the grid and colors

2. Implementation of the MSM
Chapter 6. Results

Chapter 7. Summary and outlook

Appendix

Appendix A. MATLAB Code I: Recognition of the grid and spots

Appendix B. MATLAB Code II: Estimation by MSM

Bibliography

Page

11
11
12
14

20

28
28
38

49

59

60
61
81

109

CHAPTER 1

Introduction

1. Motivation and biochemical background

The aim of this thesis is to create a statistical, analytical method for the
estimation of the contamination rate and the true concentration of DNA in
a digital polymerase chain reaction (digital PCR).

A PCR is a common technique used in genetic laboratories to generate mil-
lions of copies of a DNA sequence. For this to happen, an enzyme called
DNA-Polymerase is needed. The PCR is a chain reaction in the sense that
the result of one cycle is directly used for the next cycle, leading to ex-
ponential growth. There are many areas of application of PCR, including
identification of genetic disorders and viral diseases, DNA fingerprinting,
parental testing and even forensics.

Currently the most accurate method to quantify individual DNA sequences
is the digital PCR: diluted DNA is distributed over thousands of separated
cavities so that most cavities receive either zero or one DNA molecule (digi-
tal). During the PCR, the DNA molecules get replicated (amplified) in each
cavity. By counting the cavities with amplification, one could theoretically
measure the intial concentration of DNA. However, there is a problem with
this determination of DNA concentration: During the PCR, it can happen
that some cavities are not insulated perfectly. In this case, their content
could contaminate neighboring cavities. This means that even if some cavi-
ties did not receive a DNA molecule initially, they might have a content after
the PCR caused by contamination.

Based on the method of simulated moments (MSM, Section 3.3), we will cal-
culate estimators for the contamination rate in a digital PCR and the true

concentration of DNA.

This thesis is organized as follows:

In Section 1.2, we describe the experimental setup for the digital PCR and
explain the problem of contamination that arises during the laboratory ex-
periments. Chapter 2 gives a short introduction to percolation theory. In

Chapter 3 we describe the method of moments and the generalized method

2. EXPERIMENTAL SETUP AND CONTAMINATION PROBLEM 2

of moments. Based on those two estimation methods, we introduce the
method of simulated moments, which we use to estimate the DNA concen-
trations and the contamination rate. Furthermore, some asymptotic proper-
ties of the MSM are stated and proven. A mathematical model to apply the
method of simulated moments to our experimental setup and contamination
problem is defined in Chapter 4. Chapter 5 is a brief description of how we
implement our model in MATLAB to receive our MSM estimators. It also
gives instructions on how to work with our MATLAB program as a user.
In Chapter 6, we test our program on synthetic and laboratory experiments
and evaluate our estimators. A summary and some suggestions for possible

improvement are stated in Chapter 7.

2. Experimental setup and contamination problem

In this section we briefly describe the laboratory experiments conducted by
the group of Dr. Giinter Roth (Center for Biological Systems Analysis, Uni-
versity of Freiburg) that form the basis for our estimations and we state the
contamination problem.

[Hof-+12a] provides a setup and protocol for amplification of DNA molecules
with a starting concentration of < 1 molecule (digital PCR). Via a technique
explained in [Hof+12b] it is possible to graft PCR primers onto various lab-
on-a-chip substrates like glass or PDMS. Combining those two protocols, we
will focus on the following experimental setup:

A picowell array consists of multiple thousands of wells arranged according
to hexagonal tiling. Three different DNA samples (DNA1, DNA2, DNA3)
are given into a picowell array, diluted so that most wells will receive either
zero or one DNA molecule, i.e. we have a binary state (typically called digital
state). In the next step, the DNA samples are amplified with a PCR and
grafted onto a (e.g. glass) slide. By using three different fluorescent probes
and scanning the slides with each probe, we can create an image of the wells

where each well has a distinct color (Figure 1):

2. EXPERIMENTAL SETUP AND CONTAMINATION PROBLEM 3

black well is empty

red well contains DNA1
green well contains DNA2
blue well contains DNA3

yellow well contains DNA1 and DNA2
magenta well contains DNA1 and DNA3
cyan well contains DNA2 and DNA3
white well contains DNA1, DNA2 and DNA3

As stated in Section 1, one main goal is to find the true DNA concentrations.
However, a problem appears if we want to determine these concentrations
by counting the colored wells: Some wells are not insulated perfectly and
during the experiment, their content can contaminate neighboring wells. In
the pictures we get from the experiments, it is not known if e.g. two neigh-
boring wells with the same color were seeded with the same DNA samples
or if one of them was initially empty and later contaminated by the other
well (Figure 1).

According to Dr. Roth, no literature exists that deals with the estimation
of contamination rates.

By implementing the method of simulated moments (Section 3.3) in MAT-
LAB, we find estimators 5\1,5\2, A3 for the three true DNA concentrations
as well as an estimator f for the probability of contamination between two
neighboring wells. The MSM is applied to images we get from the laboratory
experiments and to synthetic experiments with known true values to test the
accuracy of the estimators.

To get a better understanding of the contamination model, we will have a

short introduction to percolation theory in Chapter 2.

2. EXPERIMENTAL SETUP AND CONTAMINATION PROBLEM 4

(a) Almost no clusters observable, meaning (b) Many clusters of e.g. green and blue

there is little sign of contamination. wells. It is very likely that clusters occured

due to contamination.

Figure 1
Two pictures of digital copied DNA: three different DNA-sequences (red, green,
blue) copied onto a slide. Wells with mixed colors arise from overlapping

DNA-sequences.

CHAPTER 2

Percolation Theory

This chapter is based on [Gri99, Chapter 1].

1. Introduction to Percolation

In 1957, Broadbent and Hammersley presented the first 'percolation model’,
which was intended to investigate questions of the following type:

We immerse a porous stone into water. What is the probability that the
centre of the stone is wetted?

Let us consider their model in two dimensions:

Let Z? be the plane square lattice and € R with 0 < p < 1. We investigate
all the edges of neighboring vertices in Z2?. Each edge is to be open with
probability p and closed with probability 1 — u, independently of all other
edges. Applying the model to the above example, the passageways inside
the stone are represented by the edges in Z? and a passageway is broad
enough for water to flow through if an edge is open. Thus pu is the expected
proportion of passageways that allow water to pass. The stone itself can be
seen as a large, finite subsection of Z2. Let i € I be a vertex inside the stone.
i is wetted if and only if there exists a connection of open edges (called open
path) that connects i to a vertex on the boundary of the stone.

Omne main objective of percolation theory is to investigate the existence and
size of ’open paths’.

Figure 2 shows a visualization of the stone model where the closed edges are
deleted, i.e. we have a random subgraph of Z2.

For large stone sizes, the probability that the centre ¢ of the stone is wetted
behaves similarly to the probability of the existence of an infinite open path
in Z?, which ¢ is part of. This means that the large-scale penetration of a
stone by water is connected to the existence of paths consisting of infinitely
many open edges.

Of course, the occurrence of such infinite open clusters depends on the value
of . For small p, the different clusters are rather small and isolated. The
sizes of the different clusters increase with the value of p and for p large

enough every vertex is connected to any other vertex by a series of open

5

1. INTRODUCTION TO PERCOLATION 6

Figure 2

Possible structure of a two-dimensional porous stone where closed edges were
deleted. The open edges are represented by the lines, the vertices by the spots.
In this case, vertex x is connected to the outside of the stone by open edges.
Therefore x would be wetted whereas vertex y remains dry.

Image source: [Gri99, p. 2].

edges. Figure 3 shows three triangular lattices with © = 0.05, 4 = 0.2 and
u=0.5.

If one could see the whole lattice of Z?, we would be able to observe that
for small p all clusters remain finite whereas for large values of p an infinite
cluster of open edges appears. One goal of percolation theory is the search
for a critical value u. for the edge-density, so that: for u < p. all clusters are

finite but for u > p. an infinite open cluster will occur, holds almost surely.

To demonstrate the importance of the critical value ., we will have a look at
the Epidemics and fires in orchards-model proposed in [FH63|, which deals
with the spread of blight in a large orchard.

Consider a square lattice and imagine that on each vertex a tree is grown.
Let u be a known function of the distance between neighboring trees, rep-
resenting the probability of a healthy tree being infected by a neighboring
blighted tree. The aim is to prevent a single blighted tree from endangering
a large proportion of the whole orchard. This is possible by adjusting the

space between the planted trees so that u is smaller than the critical value p..

In the above model we concentrated on two-dimensional problems. To be

more general, one could consider some periodic lattice in d > 1 dimensions

1. INTRODUCTION TO PERCOLATION 7

ANER AN
Gy
- S IR AL
S S i /62K

NGB

[
\/
\VARV, A'A
(c) p=05
Figure 3

Three visualizations of bond percolations on a 20 x 23 triangular lattice with
different 1 values (created with MATLAB). Since the same sequence of
pseudorandom numbers was used to create each percolation, (a) is a subgraph of
(b) and (b) is a subgraph of (¢). Whereas for u = 0.05 only a few small open
clusters occur, we can observe that for i = 0.5 almost all vertices are connected

by a series of open edges.

2. BOND PERCOLATION 8

and the probability u for any edge to be open (and closed otherwise) with
0 < p < 1. This process is called bond percolation since p determines the
probability for a random edge to be open. For our estimations and the ex-
periments described in Chapter 1 the two-dimensional bond percolation is
the relevant part of percolation theory. We will focus on bond percolation
in Section 2 of this chapter.

Another percolation model is the so called site percolation. Here, one focuses
on the vertices rather than the edges in the lattice (all edges are assumed to
be open). A random vertex is open with probability p and closed otherwise.
In the stone example above, we could imagine the closed vertices as junctions
that prevent water from passing.

Every bond model can be reformulated as a site model on a different lattice.
Since this does not hold the other way around, site percolation is more gen-
eral than bond percolation.

Of course there are more models to think of, such as those where both
edges and vertices may be closed ('mixed models’) or those where different
probabilities apply for different edges to be open ("inhomogeneous models’).
However, we do not use those models for our estimations which is why we
only mention them here.

Since it is the most significant model for us, we will now focus on bond

percolation.

2. Bond Percolation

In this section we will give a short introduction to bond percolation and
state some mathematical definitions using basic graph theory. Let d > 1
be the dimension of the process and Z = {...,—1,0,1,...} the set of all
integers. Let Z¢ denote the set of all vectors i = (i',42,...,i%) with integer
coordinates. i° is the s-th coordinate of i € Z.

For the distance (i, 7) from vertex i to vertex j, we define

d
8(i,5) =Y _Ii* = 5°.
s=1

For i € Z* and j € Z? we can add edges between all pairs (i,j) with
§(i,j) = 1. This way, we can turn Z? into a graph (d-dimensional cubic
lattice) which we denote by L. We write L¢ = (Z4 EY) | where Z% is the
set of vertices and E? is the set of edges of Z?. It is reasonable to think of
L% as a graph in R?, where the end vertices are connected by straight line

segments, the edges.

2. BOND PERCOLATION 9

Definition 2.1 (Adjacent/neighboring vertices)

If two vertices i and j are connected by an edge, i.e. if §(i,7) = 1, we call
i and j adjacent/neighboring and write ¢ ~ j. The corresponding edge is
denoted by &;;. If the vertex i is an end vertex of the edge &;;, &; is called

incident to 1.

We now consider the probability p that we already mentioned in Section 1
of this chapter. Let u € R with 0 < p < 1. Each edge is to be open with
probability p and closed with probability 1 — u, independently of all other
edges.

Definition 2.2 (Path)

An alternating sequence o, &piy, 015 Eivigs - - - » Eipy_1in» in Of distinct vertices i,
and edges &;,;,, is called a path of L%, The path is said to connect ig t0 iy,.
The length of such path is n.

Definition 2.3 (Circuit)
An alternating sequence o, &igiy, 015 ivigs - - - s Sin1ins s Sinigs %0 such that
105 Eigiy s 015 Einigs - - - Eipy_1ins in 15 @ path is called a circuit. The length of

such a circuit is n + 1.

A path or circuit with all edges open/closed is called open/closed path or
open/closed circuit. In Figures 2 and 3, only open paths/circuits are visible.
One important aspect in bond percolation are the components of open paths

or circuits, called open clusters.

Definition 2.4 (Open cluster)

The connected components in a random subgraph of L¢ that contains only
7% and the open edges, are called open clusters. C (i) denotes the open cluster
containing the vertex i and is called the open cluster at i. The vertices in
C'(7) are all the vertices of the open cluster that are connected to i by a series
of open edges. The set of edges in C(i) consists of all open edges in L? that

connect neighboring vertices in the open cluster.

2. BOND PERCOLATION 10

Even though C(i) contains both vertices and edges, we will use the term to

represent the set of vertices only (see Section 5.2).

Although it is not the most efficient method for our MATLAB algorithm
in Section 5.2, the following setting can be helpful to create bond model
percolation processes:

Let (U(€) : € € EY) be a family of independent random variables such that
each U() is uniformly distributed on [0, 1].

For 0 < p <1, define 7, by

1 iU < p,

(6 = -
i 0 IUE) > p

The edge £ is said to be p-open if 1,(§) = 1. It holds

P(nu(§) =0) =1—p, P(nu(§) =1) = p.

7 can be interpreted as the random outcome of the bond percolation process
on L% with p being the probability for an edge to be open.

Obviously 7, < nu, for p1 < pe (and U(§) fixed), which means that the
open edges of the percolation process with edge-probability u; are a subset
of the open edges of the percolation process with py (which you can observe
in Figure 3). In other words, if we let u run increasingly over the interval
[0,1], n, will represent different typical configurations of percolation pro-

cesses with all possible edge-probabilities.

In practice, percolation is one of the simplest models for a disordered medium.
It is easy to formulate and yet delivers good qualitative predictions for ran-
dom media.
We already mentioned that one important aspect in percolation theory is
the existence of infinite open clusters that appear almost surely for p > p..
However, there are many other interesting questions that percolation theory
examines:

e What is the mean size of an open cluster?

e How many infinite open clusters will exist almost surely for p > p.?

e Is there an infinite open cluster for u = p.?

CHAPTER 3

The Method of Simulated Moments

To get a good understanding of what the method of simulated moments is
and how it works, we will first give a short introduction to the method of

moments and the generalized method of moments.

1. Method of Moments

The method of moments is one of the oldest methods to estimate the un-
known components of a parameter vector 6§ = (61,60s,...,0,,).
Let Y be a random variable and let Vi,..., Yy, be 1.i.d. sampling variables
with the distribution of). The method of moments is based on the com-
parison of the theoretical moments and the empirical moments.
For each r = 1,...,ny,, the r-th (theoretical) moment of the random variable

Y is denoted by
M, = Eg[Y"].
The r-th empirical moment for each r € {1,...,n,,} is defined as

1 &
mT:—g %
nr “

=1

By equating the theoretical with the empirical moments we get a system of

equations
My = my,
My = mg,
My, =my,,.
The solutions (1,...,0,,)T = 0 of this system are the moment estimators
for 6.

11

2. GENERALIZED METHOD OF MOMENTS 12

Example 3.1 (Normal distribution)
Let Y ~ N(u,0?), with unknown mean p € R and variance o2 > 0, i.e. we
have 0 = (u,0%)T and n,, = 2.

For the normal distribution we have

and
ol =V = EY’] - EDY)
= My — M7}
& My = o? + M7

Now we equate the theoretical with the empirical moments to get

1 &
My=m = M:Ezyi
i=1

1
My =moy = 024-/12:”*[23)12.
=1

Solving this system of equations yields the moment estimators

-1

M_m;y’_y
and

I Py

—m;(yl))

The method of moments is a very basic and simple estimation method for
which the number of unknown parameters equals the number of calculated
moments. However, the estimators are often biased. Another disadvantage
of the method of moments is that sometimes the moment estimators do not
exist, e.g. for a Cauchy-distributed variable) it holds E[Y] = oo which
means the first theoretical moment does not exist [GB06, pp.107-112].

2. Generalized Method of Moments

As the name suggests, the generalized method of moments (GMM) is a gen-
eralized version of the method of moments. It allows us to find an estimator
by defining so called moment conditions, i.e. functions that depend on the
model parameters and the given data. The main purpose is to estimate the
parameter vector by minimizing the sum of squares of the differences be-

tween the theoretical moments and the emiprical moments.

2. GENERALIZED METHOD OF MOMENTS 13

Note that in Section 1 of this chapter, we saw that when using the method
of moments, we need to have the same number of moments as unknown
parameters. The GMM can deal with cases where we have more moment
conditions than parameters (i.e. the system of equations is overidentified)

by introducing a weight matrix Q.

The methods and proofs described in the remainder of this chapter are in-
spired by |[GM97, Chapters 1 and 2| and [GM90, Properties 1 and 8§].

Let K();) be an n,,-dimensional function of i.i.d observable variables)
with ¢ = 1,...,n; and let us assume that its expectation under the n.-

dimensional parameter vector 6 is

k(0) = Ep[K (V)]

i.e. the entries of k are the generalized moments of the distribution of };.
Ejy denotes the expectation under the true distribution of) with parameter
0 and 6y is the true parameter value.

We introduce some multidimensional function g (the distances between the
observed moments and the moments of the model with given parameter

values) representing estimating constraints:

(3.1) 9(Vi,0) = K(i) — k(0)
with
(3.2) Ey[g(Vi,0)] = 0 <= 6 = 0.

Definition 3.1
Let Q be a (ny,n,) symmetric positive semi-definite matrix. The GMM
estimator A(9) is then defined as

nr T nr
(3.3) () = arg min (Z g(Vi, 9)) Q (Z gV, e)) .
i=1 =1

3. METHOD OF SIMULATED MOMENTS 14

Proposition 3.1
Under some regularity conditions (see [Han82]), 6(Q2)

i) is a consistent estimator of .

ii) is asymptotically normal.

The generalized method of moments requires that the moment conditions
used have an analytical expression. When an analytical form is not available,

it is possible to approximate the moments based on simulations.

3. Method of Simulated Moments

The method of simulated moments (MSM) is a simulation based estimation
method that can be applied when the moments needed for the GMM do not
have an explicit form.

Recalling equation(3.1) and keeping the notations of Section 2 of this chapter,
the MSM can be used to approximate k£ and g by unbiased estimators k and

g.

Definition 3.2
Let k(U$,6) with i € I (and n; := |I|) be an unbiased simulator of k(6),
where U7 has a known distribution and s € {1,...,n} are the different, in-

dependent simulations/copies. Similar to equation (3.3), the MSM estimator
07175 () is defined as

g™ (Q) =arg mgin {Z [K(yl) - ni 2 k(UZ,0)

i=1

Ns

(3.4) x {i K(Y;) — ni > kU, 0) }
i=1 S s=1

=:arg mein U (0).

Note that in order to find the MSM estimator, it is important to use the
same U® = (U})ier seq1,..n,} for different values of 6.
The estimator depends on the moments K, the weight matrix €2, the choice
of the simulator k and the number ng of independent simulations.
Ns o ~
It holds n% Zlk(US,G) — Eylk(U®,0)] = k() for ng — oo, where Ey is
S=

the conditional expectation with respect to the distribution of U® given).

3. METHOD OF SIMULATED MOMENTS 15

Before we apply the MSM to the laboratory experiments described in Sec-
tion 1.2, we will state and prove two asymptotic properties of the MSM (see
[GM97, p.29)).

Proposition 3.2
Let 8 € © be an n.-dimensional vector where © is compact. If the number
of observable variables n; tends to infinity and the number of simulations ng
is fixed, then:

i) the MSM estimator ™1™ () is strongly consistent,

i.e. 6717 (Q) — 6 almost surely for n; — co.
ii) if g and § = K — k are differentiable with respect to 6:
d

N [enn (Q) — 90] =5 N[0,Qu(9), where

1 5 . _
Qs(Q) = " 2eBy + 2 DY, [Vulg(V, U, 60))] @DE

with:
dg
_D — E00 |:89:| 3
¥, = DTQD,

2y = DTQVp [K — k]QD = DTQV,, [g10D

PROOF OF). Let Q € R™ X" he symmetric and positive semi-definite.
Define

B(Vis0) = K(Vi) — o
a(n) =n"Qn

and recall U,4(0) from (3.4) and three properties that we already mentioned:

* k(0) = Eg[K()3)]
o Eulk(U},0)] = k(9)
o By[K (V) — k(0)] =0 <= 0 = 6.

By the strong law of large numbers, we get the almost sure convergence

2 nr Ns
(!) Vy(0) =a (1 > 8 (y EN Z%(Ufﬂ)))
M N s i

et (o [[(v kw0)

3. METHOD OF SIMULATED MOMENTS 16

which we assume to be a uniform convergence. (is by definition linear in

the second variable, so

o (B [t (3107 0)]) = (50 [(0 o701

which proves the strong consistency since

(2) 0.0) o (5 [<)D
EEGO[1>

= (k(6o) — k(6))" @ (k(60) — k(9)) ,

=«

and 0 = 6y is the unique minimum (see equation (3.2)). O

PROOF OF ii). The MMS estimator 0™"s(Q) = (§7'™,...,00m)7T is
the minimizer of ¥4(6) in equation (3.4).
Let §();, U, 0) = K();) — k(U?,6). For v =1,...,n,, the first order condi-

tions of the minimization are:

1 1 = 9" X
0=— 3 LS %y pp 4

where we already multiplied with m so that we will have a good setting

for applying the central limit theorem later.

3. METHOD OF SIMULATED MOMENTS 17

Taking Taylor approximations for each r around 6 yields

TL]ZTLSSZ
Xizn Zgyu
i=1 % s=1

1 1 &= 05"
* o 2, 2 g, U 00

3.5 G RN -
B gg 85(34,118)@ —)

60)Q2

Xiz Zgy“
Ssl

+ higher order terms

forr e {1,...,n.}.
With Eg, [K()i)] = Ey[k(U?,60)] we can derive that the last term converges

to zero because

iiii~(3} Us,0p) = iiii (K(y.)_]};(Uﬁ 9)) neo

ny 4 N g\Ji, Z’O_n[, e) 70 :
i=1 s=1 i=1 s=1

For r = 1,...,n. we can combine the remaining terms of (3.5) to an n.-

dimensional approximation

znsz 0000
Zns Zg Vi, U

i=1 =1
(3.6) L n o
g
+ - — y7 Q
I ; s s=1 (Z)
ny

S LS By vz, o) b0).

3. METHOD OF SIMULATED MOMENTS

Now we define D with
1
=1l i U
ok

5]

Ep, [%%,Uiﬂeo)] , since oK) _

=Ly, | Eu U?,6p)

Equation (3.6) turns into

(3.7) 0=~ DTQ— Z o Z g, U + DTQD\/n (6™ — ;).

s=1
Using the central limit theorem for ny — oo, we have

3.8 i 9 N(0,%
() Z_;ns;gy 0 —> ()
where
1 X .
Eg =V TT g(y,U 790)
S s=1

+ Eg, | VU

1 .
—Y GV, U, 6)
s s=1

=V, [9(I, 60)] + niEeo Vo [g(Y,U®,6p)]] .

1 &
il pt 50
ns;g(y)Ua 0)

|

Note that we apply the law of total variance for the second equality.
Using (3.8) and transforming (3.7) into

g — 6y) ~ —(DTQD) “ipro L ;
Vi 0) ~ ;nSZgy,

s=1

18

we get that /n7(0™™ — @) converges in distribution to N (0, Q4(f2)), where:

Qs(Q) =(pTap)'DTax,0D(DTQD) !

~(0"D) D7 (i, 0. 00 + - o, s 50007, 0]

x QD(DTOD)™!

1

=yt 4 nle—lDTQan Vulg(V,U?, 60)])] QD!

3. METHOD OF SIMULATED MOMENTS 19

with:
dg
D =Ey | =
6o |:(90:| ;
¥, = DTQD,

Yo = DTQV, [g]QD.
0

The first term 21—12221—1 is the asymptotic covariance matrix of the GMM
estimator and the second term is the loss of efficiency we have due to our
simulations. For ng — oo, the MSM and the GMM estimator are equivalent.
Further information about {2 and its optimal choice can be found in [GM97,
pp-31-33|.

The asymptotic normality of the MSM estimator is an important property
which can e.g. be used to define confidence intervals for 8g. However, as we
will see in the next chapter, the asymptotic normality will not hold in our
case. This is caused by the choice of our moments: they are not differentiable
with respect to 6 since our variables for the DNA seeding and the edges only
take the values 0 and 1.

CHAPTER 4
Applying the MSM

In this chapter we define a mathematical model to apply the MSM to the
experimental setup and contamination problem described in Section 1.2.

Let us recall the problem: We have a hexagonal tiling whith n; cavities/wells.
For each well we can observe if it contains DNA (up to three different DNA
samples) or if the well is empty. However, once two neighboring wells are
filled with the same DNA sample(s), we do not know whether DNA was
actually seeded into those wells or whether one well was initially empty and

got contaminated by its neighbor during the PCR (see Figure 4).

There are different model options to consider:

Contamination between wells can be either (i) unidirectional (i.e. the edges
are directed and we have independent §;_.; and {;_,; instead of §;; as seen
in Section 2.2) or (ii) symmetric (i.e. undirected edges &;). The edges

can be represented by (1) independent Bernoulli variables (see Section 2.2,

Figure 4

Outcome of a laboratory experiment. For some wells we do not know if they got
contaminated by neighboring wells. E.g. the blue cluster at the bottom left could

be caused by contamination.

20

4. APPLYING THE MSM 21

(a) The (usually unknown) state before con- (b) The state after contamination. We can

tamination. The white lines represent open observe that some colors get mixed, e.g.
edges (i.e. where contamination will ap- green and blue become cyan (top left) and

pear). green and red become yellow (top center).

Figure 5
Synthetic MATLAB experiment for model (ii,1,B) before and after
contamination. The open edges and the state before contamination are usually

unknown.

definition of n,(£)) or by (2) locally correlated random variables. The con-
tamination between wells could be (A) limited to direct neighbors or we can
allow it to (B) spread via a series of open edges.

For our study, we choose the model (ii,1,B) with symmetric contamination
that can pass a series of open edges and we let those edges be independent
Bernoulli variables. Since the main source for contamination is imperfect
sealing by the glass cover this seems to be a reasonable choice (another in-

teresting combination would be (ii,2,B)).

Figure 5, which was created by the MATLAB algorithm for simulations
that will be described in Section 5.2, helps to understand the contamination
problem for the (ii,1,B) model. It shows a synthetic experiment before and
after contamination. Open edges are represented by the white lines. Recall
that the color for DNA1 is red, DNA2 is green, DNA3 is blue and mixed
colors can occur. In Figure 5(a) only the wells that were initially seeded
with DNA are colored. In this case, we could easily calculate the true DNA
concentrations by counting the different colors and dividing by the total
number of wells. In the real laboratory experiments, Figure 5(a) is unknown
and we only see Figure 5(b) (obviously without the white lines). Our goal is
to find the best possible estimators for the true concentrations of DNA and

for the contamination rate (i.e. the probability that a random edge is open).

4. APPLYING THE MSM 22

The reason why we simulate the moments and apply the MSM is the follow-
ing: Whether a random well contains a color or remains empty depends on
the DNA seeding process as well as on the contamination. Since the con-
tamination in our model is not restricted to direct neighbors, the expected
color for each well depends not only on the initial color in the well itself and
the neighboring wells but it also depends on neighbors of neighbors and so
on (theoretically it depends on all the wells in the grid, even if this usually
includes negligible terms). This makes it too complicated to calculate mo-
ments (e.g. the expected value for red color of well i € T) and we will try to

circumvent this problem using simulations of the moments.

Mathematical model for the experiment and simulations

Let the wells in the hexagonal tiling be denoted by i € I (with n;y = |I]).
We have three different DNA samples whose seeding parameters are X,
¢ € {1,2,3} and the parameter of percolation/contamination is p. Using
this setting, the unknown parameter in the MSM is 0y = (A}, A3, A, o) -
Let us define some variables for the dataset from the laboratory experiment:
The (unknown) state after DNA seeding and before contamination (i.e. if
well ¢ contains red, green or blue color before contamination, compare Fig-
ure 5(a)) is defined as X! (i € I,£ € {1,2,3}) and we say X} = 1 if DNA
sample £ was seeded into well ¢ and 0 otherwise. Likewise, the state after
contamination (see Figure 5(b)) is V¥, where); = (yf>g€{17273} (i € I). Due
to simplicity reasons we assume that for fixed ¢, the J! are identically dis-
tributed, i.e. we ignore boundary effects. Obviously we have Xf < yf.

Now we define the variables for the simulations:

For simulation s € {1,2,...,ns}, well i € I and DNA sample ¢ € {1,2,3}
we define accordingly: Let Xf’s be the state before and Yf’s the state af-
ter contamination. Moreover we define Y;® = (Y£78)g€{1’2’3} (1t els e

7
{1,2,...,ns}) and Y; = (Yf’s)46{172,3}756{1,_._7%} (i € I). Let the edge be-
tween wells ¢ and j be denoted by & and I = {(i,j)eIxT|i~ji<j}
is the set of pairs of adjacent/neighboring wells. n,, = |I| is the total num-

ber of such pairs.

Applying the method of simulated moments

Let K be some n,, dimensional function of individual observations yf and
let k be its expectation under parameter 0: k(0) = Ep[K();)], so that the
entries of k are generalised moments of the distribution of);. Let g rep-

resent the distances between observed moments and moments of the model

4. APPLYING THE MSM 23

with given parameter values (which we will approximate via simulations):

9(Vi,0) = K(;) — k(0).

As it follows from equation (3.2), Eg,[g(Vs,60)] = 0.
We try to approximate k and g by unbiased (and as we will see in Section 5.2,
also biased) estimators k and §(;, U7, 0) = K(;) — k(U?,0). U® represents
the source of randomness for our simulations. In Section 5.2 we will introduce
two different options for U7 (uniform random variables on [0, 1] and uniform
random permutations).
To apply the MSM, we need at least 4 generalized moment conditions since
0 is 4-dimensional. We choose the following 9 generalized moments for our
estimations with ¢ ~ j and £1 # £s:
e E[Y!] = P(Y} = 1), the probability that a random well is colored
with red (¢ = 1), green (¢ = 2) or blue (£ = 3).
o E[Y'Y2] = P(Y;"Y;2 = 1), the probability that a random well is
labeled with two colors ((red,green),(red,blue),(green,blue)).
o E[YKYJZ] = P(Yfo = 1), the probability that two random neigh-

boring wells both are red, green or blue.

Recall that Yf’s = 1 if well ¢ of simulation s is labeled with the correspond-
ing color of DNA sample ¢ and Yf’s = 0 otherwise. We simulate the above

moments with

1 = 1 Y
DI S A
n n
s o1 i

nr

11 01,5y rb
1,8v02,s
D D) DRl v
Ns nr-
i=1

s=1

iii Z ylsybs

ns S M o2 LA
for ¢ € {1,2,3}. The first simulator sums up all the wells that contain
DNA ¢. This is done for each simulation, i.e. ng times. The result is
divided by the total number of wells in each simulation and by the number
of simulations. The other two simulators work the same way, except that for
the third simulator, we have to substitute the number of wells by the number

of possible edges since these moments focus on the number of neighbors.

4. APPLYING THE MSM 24

For the ease of notation, we define:
1 &
V= =))t

_ 1 X
(L1l2) . 014,02
Y . mZyz Vi,

Z_f P Z yfy@
(7])612
and
1 nr 1 Ns
YZ’S = — YZ’S’ Yf = — Ye787
1 nr 1 Ns
ybte)s . 2 Zy;'el,SYnyS, yle) . L Zy(el,@),s’
ny 4 ns
- 1 _ 1 &
s .~ l,sx L, 0. l,s
Z._nZY;Yj, Z._nZZ.
" (i,j)ela 5 s=1

We recall equation (3.4) for the MSM estimator:

grins(Q) =arg min {Z [K(yi) - ni Z k(U?,0)

i=1 S s=1

-

Note that for the last 3 moments Z needs to be replaced by Z because
=1
the moments focus on the number of neighbors (not on the number of total

X {ZI: [K(yz) - ;Zs:if(Uisae) } :
i=1 s=1

wells). Therefore it is appropriate to divide by the total number of wells (for
the first 6 moments) or edges (for the last 3 moments) for weighting reasons.

Le. for the first 6 moments we get

nr N T
617 (Q) :argngn {nllz [K(y,) — %Z%(Uﬁﬂ@) } Q
i=1 5 s=1
5o e

=:arg m@ln I's(0),

while for the last 3 moments, where the sum is over the total number of

4. APPLYING THE MSM 25
edges n,, we get:
1 & 1 & !
gm1ms (Q) = in{ — KQ)—— kU6 Q
@ argmgm{nnZ[O = = D k(U3.0) }

=1 s=1

X {nl i[ff(%)—;i%wf,e) }
" oi=1 S s=1

To make it easier, we first show how I'5() looks for our first 3 moments and

Ns nr

their simulators 1 >~ - v,
s R B

nr s T
(o2

=1 s=1
1 & 1 ex -
X S EQ) - = k(U0
(L s
1 Ns T 1 Ns
N4 A, s 74 VA
= - — Y® Q - — Y*®
s el s
= 1€{1,2,3} s=1 1€{1,2,3}
_ Ns _ T _ 5 _
yl 1 Yl,s yl 1 Yl,s
s snzl " s=1
|y LS ypes| | y2o LS p2s
s s=1 s s=1
P38 _ L XS y3s P8 _ 1 SBEY
V' = ’ ~

w
Il
-
©
Il
-

where Q = diag ((1/)71)2 , (1/372)2 , (1/373)2). We also assume V¢ # 0, oth-
N
erwise our MATLAB algorithm will set the corresponding (ye—_yz) =0.

yl

Now we apply the MSM estimator to our 9 moments.
Let

Q = ding((1/5")%, (1/7%)%, (1P (1P, (1/919)2,
(1/PEDNR, (12", (1) 222, (1/2%)?)

4. APPLYING THE MSM 26

and W = {(1,2), (1,3), (2,3)}.

We define the MSM estimator for our model as the minimizer of:

<ye —1 %: Y“) ’
s=1 0e{1,2,3}
<y(el,z2) ~ 1 3 Y(el,@),s5 Q
Sil (01,62)EW
Z0_ 1 NN gls
< e 0e{1,2,3}

<371z " f }7@,5>
*s=1 0e{1,2,3}

“ <5;(el,ez> _ LS Pl

s

(£1,£2)eW

=1
(Ze_ 1 i Ze,s)
Ns
s=1 0c{1,2,3}

=1
1 & ? 1 \?2
+ 3 (y(el,zz) L Zy(h,b),s) <”>
(b1.62)EW s o yhut2)
3 - I
zl _ = 70,5 L

())
B oyt - NI

=1 Y z (01,02)eW y(1f2)

In other words, the MSM estimator §™1" () is

3 0 e 2 =0 SN 2
AN Ms . y[- Ye Ze — Zé
0" (Q) =arg min E ((ﬂ) + (2—75>)

(4.1) B V(t1,62) (£1,62)
y 1,£2 _Y 1,£2
(01,62)EW yit)

Again, we assume Y’ # 0 as well as Y(1%2) £ 0 and Z¢ # 0, otherwise the
corresponding term will be set to zero in our MATLAB algorithm.

This is the estimator we will try to find in Chapter 5.

However, there are some differences between our estimator and the estimator
we described in Section 3.3. In contrast to the assumptions in Proposition
3.2, our random variables Y;® are not independent due to contamination.

For the strong consistency in Proposition 3.2 i) to hold, we need the strong

4. APPLYING THE MSM 27

law of numbers to apply for these weakly dependent variables. We do not
state a proof for this here. Dr. Bence Mélykuti is currently working on
the proof and will possibly publish it in the near future. Another problem
concerning the consistency could be the uniqueness of 6y which is not al-
ways given. If all wells are white (i.e. red, green and blue), it is obvious
that (A%, A2, A3, 1)T = (1,1,1,-)T as well as any combination of u = 1 and
arbitrary positive (X% ¢e{1,2,3) yield the right result and we have an infinite
number of possible estimators. Nevertheless, if we look at the tests of our
algorithm in Chapter 6, the estimators seem to be strongly consistent (we
expect 0y to be unique for n; — oo when p # 1 or ()\E)ge{mﬁ} ¢ {0,1}).
Also, the asymptotic normality property in Proposition 3.2 ii) is not applica-
ble in our case since the moments we use are not differentiable with respect
to 0 (we use so called frequency simulators, for more information see [GM97,
p.96]). Thus we cannot calculate the first order conditions needed in the

proof.

Now that we stated the theoretical background of our simulation model, the

next chapter will explain how the implemented MATLAB algorithm works.

CHAPTER 5

MATLAB algorithms

Our MATLAB Code is divided into two parts. The first part extracts infor-
mation from the picture of the laboratory experiment. We try to calculate
the triangular grid and to find out which color(s) belong(s) to each grid
point. The information is saved in matrices where the entries represent the
grid points. The second part of our algorithm is the implementation of the
method of simulated moments. Given the matrices we created in the first
part (which represent the experiment picture), we will simulate ng synthetic
experiments and calculate the estimators that most likely led to our experi-
ment picture.

In both sections of this chapter, we will first give a short instruction on how
to use the program as a MATLAB user. Afterwards we will briefly explain
how the MATLAB algorithm works. If one wants to get more detailed infor-
mation about the algorithm, the whole MATLAB code including comments

for every function can be found in the appendix.

1. Algorithm for the recognition of the grid and colors

MATLAB instructions

To start the program, we have to open the MATLAB command window,
type ‘automatic grid_ fitting perspective click;” and press return. We are
asked to enter the filename of our experiment picture. Let us assume the
picture 'test.jpg’ is saved in the subfolder 'images’ of our MATLAB files. In
that case, we type 'images/test.jpg’ (see Figure 6). Once we confirmed the
filename we can choose a name for the output file (i.e. the variables that
will represent the experiment and that will be needed for the MSM). We can

either choose a new name or press return to use the default name.

Command Window

>» automatic_grid fitting perspective_click
Enter filename: images/test.jpg
f{ Enter filename for output (or press Return for the default images/test.mat):

Figure 6
MATLAB command to run the grid and color recognition.

28

1. ALGORITHM FOR THE RECOGNITION OF THE GRID AND COLORS 29

HIDE
i i "t'f the centers of two neighboring spots (zoom in if necessary). Press Return when finished.
o poin

) The user is asked to click on the centers of two neighboring

wells.

HIDE
Clirk tha rantare nf two neighboring spots (zoom in if necessary). Press Return when finished.
1: 136.375, 388,438

2: 230.500, 388.438

(b) To be more accurate, it is possible to zoom in.
Figure 7

A new window showing the input image opens and we are asked to click on
the centers of two neighboring spots. Even if it will not affect the results of
the MSM, it is recommended to choose two horizontal neighbors if possible.
Since these two clicks are used to calculate some initial values for the grid,
it is important to be accurate. If needed, we can zoom in before clicking the
centers. This process is shown in Figure 7.

Note that for demonstration reasons most of the figures in this section show
a synthetic experiment that was created with MATLAB. This is because the
hexagonal tiling in laboratory experiments is usually not perfect and our

algorithm might have problems recognizing it correctly (as we will see later).

1. ALGORITHM FOR THE RECOGNITION OF THE GRID AND COLORS 30

‘You can add any missing blue, magenta, cyan and white spots by marking their centers. Press Return when done.

Figure 8

The user is asked to add any missing spots with blue color (i.e. blue, magenta,
cyan or white). Since the figure shows a synthetic experiment with perfectly
arranged wells, all spots were already recognized by our algorithm. This is

usually not the case for laboratory images as we will see later in this section.

Another window pops up showing the recognized spots with red color (i.e.
red, yellow, magenta and white). We are asked to add missing spots manually
by clicking on their centers and to press enter when done. This step repeats
for green and blue color (see figure 8). The centers provide extra information
for the fitting of the triangular grid.

Our algorithm now fits the grid and visualizes the result in two ways. One
window shows the calculated grid points (Figure 9) and the second one (Fig-
ure 10) shows the input image as well as the recognized image (i.e. the image
whose information will be saved in the matrices as an output). We are now
asked to investigate the grid and the recognized spots to decide whether the
results are good enough. If this is the case, a .mat file is saved. This file will
be the input parameter for the MSM algorithm in Section 5.2. If the results
are not good enough, the user can choose to either start again or quit the

program.

1. ALGORITHM FOR THE RECOGNITION OF THE GRID AND COLORS 31

Calculated grid after automatic fitting

800

1000

1200
200 400 600 800 1000 1200 1400

Figure 9
The calculated grid points (white) are visualized on the original image. As we
can see, the grid fitting worked perfectly. For an example where the fitting is not

optimal, see Figure 13

Original image The location of recognized spots

(a) The original image. (b) The image as it was recognized by the

algorithm.

Figure 10
We can see that the two images match. This usually means that the spot
recognition worked perfectly. An example where some spots are missing or are at

the wrong place can be seen in Figure 14

1. ALGORITHM FOR THE RECOGNITION OF THE GRID AND COLORS 32

Explanation of the algorithm

The box below shows the code structure of the MATLAB algorithm, i.e. the

functions in the order they are used in the code.

Code structure:

automatic grid fitting perspective click.m
ginputc.m
detect centroids.m (3x)
ginputc.m
errorFunctionProjectiveNew.m
kdtree.m
compute transformed grid points perspective.m
compute transformed grid points perspective.m
grid _cropping.m

color to matrix.m

Notes:
e ginputc.m behaves similarly to the built-in MATLAB function gin-

put, except you can customize the cursor color, line width, and line
style.
Source and description: [Dok12]

e fditree.m implements a kdtree for nearest neighbor and range search-
ing. Using MATLAB 2012b and 2013a, the function kdtree.m does
not work under Windows7 without further adjustments. Instruc-
tions on how to use it in Windows can be found in the comment
section of [Mic08]. However, using MATLAB R2015b under Linux,
kdtree.m works without any adjustments.

Source and description: [Mic0§]

Without going into great detail, we will briefly explain the most important
functions to get an idea about how the algorithm works. Many variables
that are important for the algorithm to work will not be mentioned in this
section. Details about all variables and functions can be found in the MAT-

LAB code in the appendix.

The algorithm is split up into 3 main parts:

(1) The Recognition of the centroids of the colored wells.

1. ALGORITHM FOR THE RECOGNITION OF THE GRID AND COLORS 33

(2) Based on two clicks by the user, a triangular grid is created. This
grid is deformed by a perspective map and the parameters are op-
timized until the sum of squared distances between the centroids
detected in (1) and the nearest grid point is minimal.

(3) The color of the experiment image at each optimized grid point is
scanned to decide whether the corresponding well contains DNA or

is empty.

automatic_ grid_ fitting _perspective_ click.m is the main function for the recog-
nition of the grid and the colors. It calls the input image chosen by the user
and creates a perspective mapping of the grid with 8 parameters (this way
we allow the usually parallel lines to converge to a vantage point). For
this perspective mapping, automatic_grid_ fitting perspective click.m cal-
culates some initial values for the optimization of the triangular grid based
on the first two clicks by the user (i.e. the distance between two neighboring
centers and the angle for the rotation of the grid around a reference point).
To get a good fitting of the true grid, it is important to know the location
of as many well-centers as possible. detect centroids.m detects the coordi-
nates of the centers of the wells that contain red, green or blue color. The
coordinates are saved in a vector and visualized. The user can add centroids
that were not detected to improve the grid fitting (see Figure 12).

Since the shape of the triangular grid in the laboratory experiments is usu-

ally not perfect, we use 8 parameters to optimize the grid:

e The X and Y coordinates of the first point the user clicked on form
the reference point (zgo, ygo). We expect one grid point to be close
to the reference point.

e The distances r € R?, i.e. the distance from the reference point to
a neighboring well in the same row and the vertical distance from
the reference point to a neighbor in the row above (or below), both
initialized as the euclidean distance between the first and the second
click by the user.

e A vector a € (—m/2,m/2)? representing the rotation of the grid,
where the initial values are determined by the angle between the
first two clicks.

e A normalization vector ¢ € R? with initial value (0,0), where c¢;

and co are independent variables that are needed for the perspective

mapping.

1. ALGORITHM FOR THE RECOGNITION OF THE GRID AND COLORS 34

With these initial values, compute_transformed_ grid_points perspective.m
computes a first grid. Using this grid, errorFunctionProjectiveNew.m finds
the closest grid points for all detected centroids by calling the function
kdtree.m. The distance between these centroids and the grid points is then
minimized by changing the 8 parameter values to find the optimal grid.
Once we created our fitted grid, the function grid cropping.m deletes rows
and columns whose coordinates are completely outside of the image bound-
aries. What remains is a grid of size (nrows,ncols) where some grid points
might still lie outside the image boundaries (see Figure 11(b)). For cases
like this, we introduce an ’area of interest matrix’ of size (nrows,ncols). The
purpose of this matrix is to decide whether a grid point should be part of
our calculations or not. In the area of interest matrix, all grid points inside
the image boundaries are 1 whilst grid points outside the boundaries are 0,
i.e. they will be ignored for further calculations. This way, the amount of
ones in the area of interest matrix equals the number of grid points in the
image from the laboratory experiment.

Note that if we want some specific wells not to be part of our calculations,
we can manually set the corresponding entries in the area of interest matrix

to 0 and they will be ignored in further calculations.

Another important output of grid_cropping.m is the variable ’shape’; that
tells us the shape of the triangular grid, i.e. whether all even or odd num-
bered rows are shifted to the right.

One of the most important variables in both parts of our program is the so
called ’experiment matrix’. It is a matrix of size (nrowsncols,4), i.e. four
matrices of size (nrows,ncols). The first of those matrices is the area of inter-
est matrix. The second matrix represents the red wells: if well (4, j) contains
red color, experiment matrix(i,7,2) = 1 and 0 otherwise. Accordingly the
third matrix represents the green and the fourth matrix the blue wells.

The function color to matriz.m creates the matrices for the three colors
in the following way: We take the coordinates of all optimized grid points
that lie inside the area of interest and check the color of the experiment
image at those coordinates. E.g. take the coordinates of grid point (i,)
and check the corresponding color channel in our experiment image. If
the grayscale value of the red channel exceeds a specified threshold, we set
experiment matrix(i, j,2) = 1. If there is no sign of red color, it remains 0.
The same happens for green and blue color,i.e. for experiment matrix(i, j, 3)
and experiment matrix(i, j,4).

Finally, automatic_ grid_ fitting perspective_ click.m visualizes the recognized

1. ALGORITHM FOR THE RECOGNITION OF THE GRID AND COLORS 35

(b) The blue spots show the fitted grid after cropping. The black
frame represents the boundaries of our experiment image. The grid
points outside the image boundaries are set to zero in the so called
‘area of interest matrix’ and will be ignored for further calculations.
E.g. entry (1,1) is O whilst entry (3,1) is 1.

Figure 11
Since we optimize the grid with our 8 parameters, the algorithm can deal with
tilted grids like this.

1. ALGORITHM FOR THE RECOGNITION OF THE GRID AND COLORS 36

You can add any missing blue, magenta, cyan and white spots by marking their centers. Press Return when done

Figure 12

Many blue spots could not be recognized automatically, e.g. the cluster

consisting of five blue wells at the bottom left.

grid and a comparison between the original experiment image and the rec-
ognized image (see Figures 9, 10, 13 and 14).

The variable ’experiment matrix’ containing the area of interest and infor-
mation about the wells and their colors can be seen as a representation of the
original experiment image. ’experiment matrix’ and 'shape’ hold the data
we need for the MSM in the second part of the program. They are saved in
a .mat file which can be used as an input to the MSM.

The recognition of the grid and colors is not optimal yet and we will now
state some shortcomings.

In Figure 8 we saw that the recognition of blue spots worked perfectly and
every spot was recognized by our algorithm. However, Figure 12 shows an-
other example (of a laboratory experiment) where some spots in the image
were not recognized and the user can manually add missing centers. This
problem is caused by bad resolution and the fact that the colors of some

neighboring wells merge and there is no space in between.

The images we get from the laboratory experiments are usually not based on
a perfect triangular grid wich leads to problems concerning the recognition
of the grid and colors.

Figure 14(a) shows a laboratory experiment image. We can observe that

1. ALGORITHM FOR THE RECOGNITION OF THE GRID AND COLORS 37

Calculated grid after automatic fitting

Figure 13
Grid recognition of an experiment image. Due to the lack of symmetry of the

spots and the partly curved grid, the fitting is not optimal.

many wells do not have a symmetric form which makes it hard to compute the
true centers. In addition, the grid seems to be curved at some places. Those
two properties lead to an imprecise grid recognition as seen in Figure 13.
Figure 14 shows the resulting comparison between the original experiment

image and the recognized image.

We have seen that the grid and color recognition works for perfectly shaped
triangular grids. Our algorithm only starts to have some difficulties if the

quality of the experiment image is not good enough.

2. IMPLEMENTATION OF THE MSM 38

Original image The location of recognized spots

(a) The original image. (b) The image as it was recognized by the

program.

Figure 14
We can see that some colors are located in the wrong place whilst some other

colored wells were not even detected.

2. Implementation of the MSM

MATLAB instructions
To start the program we need to call the function msm.m which needs the

following 3 input variables:

e the number of simulations (n, in Chapter 4),
e the number of optimizations n,, with different initial values for
(AL A2 03,)T,
e an upper limit piy,q, for the initial value of the contamination rate
w (note that this is just an initial value, it is not a constraint for
the estimator of).
In the evaluation of our tests in Chapter 6 we show some examples of how
to possibly choose the 3 variables.
In general, the estimators get better as the number of simulations ng in-
creases.
tmaz should be chosen intuitively by the user depending on the experiment
image. E.g. fmaz = 0.1 means that the we do not expect more than 10% of

all possible edges to be open.

The initial values for the different optimizations r € {1,...,nyy} are de-

termined as follows:

2. IMPLEMENTATION OF THE MSM 39

ny
1 ¢
= EZ; Vi for ¢ € {1,2,3}. Note that the true DNA
. . V4
concentration is < Ay, ... since it represents the concentration for p = 0, i.e.

We calculate A

max

when there is no contamination. We define the initial values for the first

optimization as

P A—

iniy max>’

Wini, =0

for £ € {1,2,3}. If ngp > 1, the initial values for optimization r are

)\é

J4 _ max
)‘inir -)‘inir_l -)
nopt
Hmax

Winip = Wingp_q + ———=
Nopt — 1

for ¢ € {1,2,3} and r € {2,...,nop}, i.e. the initial values for the DNA
concentrations decrease linearly (note that they are always positive) as the

initial values for the contamination increase linearly until Minin,,, = Hmaz-

E.g. if we have (AL ,0s A2 0es A2 uws maz) T = (0.06,0.12,0.09,0.06)7 and we

choose nyy = 3, i.e. we get 3 simulations, the initial values would be

(Niniys Ay s Ny s i)T = (0.06,0.12, 0.09, 0)7,

ni1 “Mniy o Tiniy Y

(Ninigs Ay s Ny s Himiz) = (0.04,0.08,0.06,0.03)",

inior NMinigr M
(Niniss A s Nimigs i) = (0.02,0.04, 0.03,0.06)"".

For the number of optimizations we suggest nopt < 1004mqz. Tests showed
that the estimators do not show significant improvement for more optimiza-
tions but the algorithm takes longer to calculate as nqy; increases. In general

it holds: The bigger the grid, the less optimizations are needed.

For demonstration reasons we let the number of simulations be 20, the num-
ber of optimizations 6 and pme, = 0.1. In this case we would open the
MATLAB command window and type 'msm(20,6,0.1);".

We are asked to enter the filename for the .mat file that was created in the

2. IMPLEMENTATION OF THE MSM 40

first part of the program. E.g. if our file is "test.mat’ and it is located in the
subfolder ’images’ of our MATLAB files, we have to type ’images/test.mat’
(see yellow box in Figure 15). Once we confirmed the filename, we can choose
a name for the output file which will contain our estimators and some other
variables. We can either choose a new name or press return to use the default
name.

MATLAB now starts the simulations and calculates the best estimator of all
optimization processes. Figure 15 displays the command window after the
best estimator has been found. The green box shows our estimator gnins.
The column ’optim number’ simply shows the number of the current opti-
mization (recall that we chose to have 6 optimizations with different initial
values), i.e. each row represents one optimization process. Columns 2,3,4,5
show the different initial values for (A', A2, A3,)T and columns 7, 8,9, 10 list
the corresponding values after each optimization. Columns 6 and 11 concern
the objective function of the MSM that is to be minimized. Column 6 shows
its value with the given initial estimators while column 11 represents the
value of the objective function for the optimized estimators.

As we can see, our minimal value for the objective function is 0.1085 (row
3, column 11).

Accordingly our estimator is 8" = (0.0095,0.0746,0.0358, 0.0531)" .

Note that the variable ’abst’ in Figure 15 shows the normalized squared
distances between the empirical moments and the simulated moments for
each of our 9 moments. In our program, we set the moments 4,5 and 6 to
zero (the moments that concentrate on the probability that a random well
is labeled with two colors), because we suspect that they do not lead to any
improvement of the estimators. Those moments can be easily set to be non-
zero by removing the two ’0*’ in lines 104 and 106 of optim.m. The sum of
the 9 entries in abst equals the minimul objective function value of 0.1085

(up to a rounding error of 0.0001).

2. IMPLEMENTATION OF THE MSM 41

Command Window

>> msm(20,6,0.1):
Filename for data set: images/test.mat
Enter filename for output (or press Return for the default irr.ages/test._estirrators.rr.at):
optimizations =
Columns 1 through 6
'optim number" "lambda_1_ini' "lambda_2_ini® 'lambda 3_ini' 'ma_ini' ‘error_ini'
I 1] I 0.0138] I 0.0917] I 0.0642] I 0] [0.6447]
I 2] I 0.0115] I 0.0765] I 0.0535) [0.0200] [0©0.3445]
I 3] I 0.0082] I 0.0612] I 0.0428] [0.0400] [0.3671]
I 4] I 0.0069] I 0.0459] I 0.0321] [0.0600] [©0.3985)
[51 I 0.0046] [0.0306] [0.0214] [0.0800] [0.6945]
[€] [0.0023] [0.0153] [0.0107] [0.1000] [1.5246]
Column= 7 through 11
'lambda_1° 'lambda_2° 'lambda_ 3' "mu ' 'error'
[0.0138] [0.0917] [0.0642] I 0] [0.6447]
[0.00%&8] [0.0826] [0.0435] [0.0440] [0.1198]
[0.0095] [0.0746] [0.0358] [0.0531] [0.1085]
[0.0083] [0.0574] [0.0278] [0.0630] [0.1576]
[0.0041] [©0.0438] [©0.0215] [0.0841] [0.4442]
[0.0038] [0.0265] [0.0072] [0.1210] [0.5944]
abst =
0.01386 0.0085 0.0522
0 o o
0.0000 0.0154 0.0177
result =
'estimators’'
[0.00595]
[0.0746]
[0.0358]
[0.0531]
The file imagES/tEst._EstirﬁataIs.rﬁat was created successfully.
i

Figure 15
MATLAB command window for the method of simulated moments. The values

in the green box are our estimators (A\', A2, A3, i)

Apart from the command window, another window (see Figure 16) opens
that visualizes the first out of n, simulations before and after contamination
and the contamination clusters. It is displayed as a typical realization of the

process, generated with our MSM estimator grins.

2. IMPLEMENTATION OF THE MSM 42

First simulation after contamination
12

First simulation before contamination

(a) State of the first simulation before con- (b) State of the first simulation after con-

tamination. tamination.

Figure 16
Visualization of the first simulation with values (0.0095,0.0746,0.0358,00531)%".

The white lines show where contamination takes place.

In this example, we can observe that the different values of the objective
function are not very close to zero (see Figure 15). This is due to the fact
that our test-grid of size (15,15) is rather small. In Chapter 6 we will see

that those values will get closer to zero as the grid size increases.

In the final step of the algorithm, the already mentioned .mat file that con-
tains the MSM estimator and some other variables (see appendix for more
information) is saved.
The output variables are:

e errors: the values of the objective function for a trivial estimator

nr ns l,s
(p=0,\X=% Ens for ¢ € {1,2,3}) and for the MSM estima-

i=1s=1

tor n1ns.

e estimators: the MSM estimator §™™s = (5\1, A2, 5\3,[1)T

e input_wvariables: the number of simulations, number of optimiza-
tions and fmq,. chosen by the user.

e max_edges: (nrows,ncols,3) matrix containing information about if
an edge can possibly be open.

e time: the elapsed time.

e wells: (nrows,ncols,4) matrix with information about the area of
interest and the colors in each well of the visualized simulation af-

ter contamination.

2. IMPLEMENTATION OF THE MSM 43

Explanation of the algorithm

The box below shows the code structure of the MATLAB algorithm, i.e. the

functions in the order they are used in the code.

Code structure:

msm.m
simcalcs.m
optim_output.m
simulation.m
contamination.m
simcalcs.m
fminsearchbnd.m
optim.m
simulation.m
contamination.m
simcalcs.m
optim_output.m
simulation.m
contamination.m

hexa.m

simcalcs.m

Note:
fminsearchbnd.m behaves similarly to the built-in MATLAB function fmin-

search, except you can add bound constraints. Source and description:
[D’E12]

Just like in Section 1 of this chapter, we will briefly explain how the MAT-
LAB algorithm works. For more detailed information, the whole MATLAB
code including comments on every function and variable can be found in the

appendix.

msm.m is the main function for the parameter estimation by the method
of simulated moments.
It calls the variables ’experiment matrix’ and ’shape’ that represent the

data set of the experiment (these variables are stored in the .mat file that

2. IMPLEMENTATION OF THE MSM 44

was created by automatic_grid_ fitting _perspective_ click.m).

Before we continue to explain the algorithm itself, we will explain how we
handle the edges in our grid.

It is important to have a method that lets us access all edges in the grid
uniquely. The triangular shape suggests the following method: For each
vertex/well ¢ € I we have three edges that can lead to possible contamination:
One edge connecting ¢ and its right neighbor, one edge connecting ¢ and its
down-right neighbor and one edge connecting ¢ and its down-left neighbor
(see Figure 17). The boundary wells form a special case. E.g. the last well
in each row does not have a right neighbor i.e. a contamination to the right
cannot exist. Our algorithm deletes those extra edges and they are not part
of any calculations.

We define three sets for our edges:
I, ={(i,5) € I x I'|j is right neighbor of i}
Iir = {(i,5) € I x I'| j is down-right neighbor of i}
Iy ={(i,j) € I x I|j is down-left neighbor of i}

To be able to simulate the seeding process of DNA and the open edges, we
will create some random variables U?. As mentioned in Chapter 4, we can

do this in two different ways:

Method 1):

We let U;”® be independent uniform random variables on [0, 1] where i €

{1,...,n7}, v e {l,...,6} and s € {1,...,ns}. Uil’s,UiQ’s and Uf’s repre-

sent the source of randomness for the seeding of the three DNA samples.
S

Uj‘ . U>* and UZ-6 * form the source of randomness for the edges: Ui4 * con-

cerns the edge from well ¢ in simulation s to the right, Ui5 * concerns the

2. IMPLEMENTATION OF THE MSM 45

LA NN
VIVIVIVIV IV TV

X
“.v“’v‘v‘v‘v“v.‘"‘v.
A AL
v“v" <7

LA L
 XDXDRDE R RR

Vi

Triangular grid with the corresponding edges (red). Every vertex (except the
ones on the boundaries) has three edges leading to the right, down-right and
down-left. We connect those edges and take away the unnecessary edges for

boundary vertices to get the set of all edges.

down-right edge and UZ-G’S the down-left edge. Similarly to 7,(£) in Sec-
tion 2.2, we define for s € {1,...,ns}:

if U5 < A
xbe=) T for € € {1,2,3),
L . l,s ¢
0 if UM >)
1 UM <p o
nu(&) = Ry for (i,7) € I,
0 ifU”" >p
. it U < p o
Mu(&ij) = s for (¢,7) € Iay,
0 ifU”">p
. 1 iU < p o
(&) = B for (i,7) € La
0 iU >

for given parameters (A}, A2, A3, u)T. We recall that (Xf’s)ge{l,gﬁ} represents
the state of well i before contamination (e.g. if red color/DNA1 was seeded

into well ¢ of simulation s, we have Xil’s = 1 and 0 otherwise) and that edge

2. IMPLEMENTATION OF THE MSM 46

7 is open for 1, (&;) = 1 and closed for 7,,(£7;) = 0.

One feature of this method is that it generates binomially distributed random
numbers for the amount of colored wells and open edges, i.e. we have rather
high standard deviations. E.g. let us assume the probabilty for an edge to be
open is 4 = 0.1 and the number of total edges is n, = 50000. The binomial
variable has standard deviation \/m = 67.08 and the mean is 5000.
This means that due to random fluctuations it would not be surprising to
get anywhere around 5000 £ 67 open edges in a simulation. However, e.g.
5067 open edges would go along with g = 5067/50000 = 0.1013 instead of
0.1.

We try to circumvent this problem by introducing another method that is
biased on the one hand but reduces variance and delivers the ’right amount’
of open edges and colored wells (i.e. 5000 in the example above) on the other
hand.

Method 2):

In this method, we use random permutations to generate the number of seeds
and open edges. Note that this method to create simulators is biased, as we
will see later. For each simulation and color, we permute the indices of all
wells and all edges and save those permutations in a variable (it is important
for the MSM that the same permutations are used for different values of 6,
see Definition 3.2 in Section 3.3).

We define a vector w = (1,...,ny) that contains the indices of all wells.
Using uniform random permutations o(-) € Sy, (where S, is the symmetric

group on ny elements) for each color and simulation, we get new vectors
(IDZ’S)EE{I,ZZ&},SG{L.‘.,ns} = (U&S(l)ﬂ R UZ’S(nI))66{1,2,3},86{1,...,115}'
Let {(-) be a function that rounds to the nearest integer. We define
Uﬂ,s _ l,s 1 l,s)\Z
(U™)eeq1,23),5{1,ma) = (077 (D)5, 07 (CAMI))) pe(1,2,3) s {1, ma}

with)Uvé’s = ((\'np).

Since ((Xny) is the closest integer to the expected number of cavities seeded

with DNA sample ¢, we choose

2. IMPLEMENTATION OF THE MSM 47

1 ifgeUbs
Xé"s: g for £ € {1,2,3} and s € {1,...ns}.
0 otherwise

This method achieves that the difference between seeded wells and the ex-
pected number of seeded wells is at most 0.5 for each simulation.

The same technique is applied for the edges:

For all simulations, we create a vector with all elements of {I, U I4. U Iy},
i.e. with all edges that can possibly be open: z = (§1,...,&,,). Again, we

use uniform random permutations v(-) € Sy, to get new vectors
(gs)se{l,...,ns} = (5'?(1)7 cee 75:‘;(”71))36{1,...,115}‘
We take the first ((un,) elements to define

[rds — {&a) - Ecunoyt Torsef{l,... ng}

with ‘f]s = ((pny,), which is the closest integer to the expected value of
open edges for given y and n,. We choose
1 ifheUts
n(&r) = for s € {1,...,ns}.

0 otherwise

and choose the number of open edges in our simulation by this definition.
As mentioned earlier, this simulation of the open edges and the seeding pro-
cess is biased since it generates (weakly) dependent variables. E.g. if we
know for all except one edge whether it is open or closed, we can infer the
state of the last edge.

Using this method can be interpreted as a trick. We get a trade-off between
bias and decreased variance. Indeed, tests in Chapter 6 show that method 2)
seems to deliver more accurate estimators, which is why we choose to work
with this method.

Once we created the matrices for the seeding and the open edges, the function
simecalcs.m calculates the observed moments K (Y;) for the data set (using
the variables ’experiment matrix’ and ’shape’ that represent the experiment
image).

Via the above method 2), the function simulation.m provides matrices for

2. IMPLEMENTATION OF THE MSM 48

the seeding and open edges for given values 0. Using those matrices, con-
tamination.m generates the contamination clusters and saves the vertices
of each cluster in a vector (compare to C(i) in Chapter 2.2). The process
of contamination with the calculated paths is implemented in simulation.m.
The resulting matrices form our synthetic experiments, i.e. our simulations.
They contain the information about the state yf * of each well after contam-
ination.

In the next step, simcalcs.m calculates the simulated moments k. The func-
tion optim.m computes the value of the objective function. By using fmin-
searchbnd.m the objective function gets minimized and we obtain an opti-
mized estimator for our initial values.

In case the user decides to choose more than one optimization process, the
whole procedure starts again. The difference between the various optimiza-
tion processes lies in the different initial values for each optimization. It is
likely that different optimizations deliver different estimators.

The algorithm now compares the objective function values of each estima-
tor. The estimator with the lowest objecive function value will finally be our
MSM estimator 817

CHAPTER 6

Results

In this chapter, we test our program using some synthetic experiments for
which we know the true parameter vector 6y. We also test the program on

a laboratory experiment and try to evaluate the MSM estimators.

For our tests, we created synthetic experiments of different sizes ny. Note
that we used method 1) in Section 5.2 to create these synthetic experiments.
We apply our program using different combinations of the input variables
(i.e. the number of simulations, the number of optimizations and fiy,q,). For
the evaluation we take into account the true values, our MSM estimators, the
absolute estimation errors in percentage and some other information that we
can only obtain from synthetic experiments but not from laboratory experi-
ments.

The variables in Table 1-4 are defined as follows:

e ny: the total number of wells

e n,: the total number of possible edges

e ng: the number of simulations (chosen by the user)

e oy the number of optimizations (chosen by the user)

® [imaz: the upper limit for the initial value of the contamination rate
u before optimization (chosen by the user)

e 0y = (A, A5, A, o) s the true values used to create the synthetic
experiment

° éXﬂl = (5\]1»“, 5\%\41, 5\%“, i)t the MSM estimator using method
1) in Section 5.2

e djs: the absolute deviations of é}\ljf“ from 6y in percentage:
_wooly B
dyn = 100|1 — %

° énM’gs = (X}Vm, 5\%\42, 5\%42, fiar2) T the MSM estimators using method
2) in Section 5.2
énfns

e djs2: the absolute deviations of 67, from 6y in percentage:
é"I”S

dare = 100 ‘1 — —“’0{5

e errnns: the value of the objective function for 6717,
0]%2 M2

49

6. RESULTS

50

ny =25 x 25 = 625, n, = 1776

Ns | Nopt | fmaz | 00 onie dan || Oyry® dar2 | errgrins
10 |10 0.1 0.1 | 0.1287 | 28.7% | 0.1223 | 22.3% 0.0126
0.05 || 0.0597 | 19.4% || 0.0605 21%
0.07 || 0.0614 | 12.29% || 0.0587 | 16.14%
0.06 || 0.0428 | 28.67% || 0.0436 | 27.33%
50 | 10 0.1 0.1 || 0.1248 | 24.8% || 0.1229 | 22.9% | 0.0107
0.05 || 0.0627 | 25.4% || 0.0626 | 25.2%
0.07 || 0.0595 15% || 0.0602 14%
0.06 || 0.0420 30% || 0.0403 | 32.83%
100 | 10 0.1 0.1 |0.1339 | 33.9% || 0.1271 | 27.1% | 0.0062
0.05 || 0.0629 | 25.8% || 0.0592 | 18.4%
0.07 || 0.0607 | 13.29% || 0.0606 | 13.43%
0.06 || 0.0396 34% || 0.0413 | 31.17%
Table 1
Three tests on a synthetic experiment with n; = 25 x 25 = 625
wells and 6y = (0.1,0.05,0.07,0.06).
ny = 100 x 100 = 10000, n,, = 29601
Ns | Nopt | Hmaz | Go onie dary || O3 dar2 | errgrins
20| 10 | 0.05 |0.07 || 0.0734 | 4.86% || 0.0728 4% | 0.00020
0.05 || 0.0508 1.6% || 0.0497 0.6%
0.04 || 0.0390 2.5% | 0.0393 | 1.75%
0.03 || 0.0259 | 13.67% || 0.0258 14%
40 | 10 | 0.05 | 0.07 || 0.0736 | 5.14% || 0.0738 | 5.43% | 0.00014
0.05 || 0.0504 0.8% || 0.0497 0.6%
0.04 || 0.0392 2% 1| 0.0391 | 2.25%
0.03 || 0.0254 | 15.33% || 0.0256 | 14.67%
Table 2

Two tests on a synthetic experiment with n;y = 100 x 100 = 10000

wells and 6 = (0.07, 0.05, 0.04, 0.03).

6. RESULTS 51

ny = 300 x 300 = 90000, n,, = 268801
Ns | Nopt | Pmaz | 6o égj?s da énMI;LS dro errynns
1 |6 0.03 | 0.05 || 0.0480 4% || 0.0460 8% 0.0056
0.06 || 0.0575 | 4.17% || 0.0573 | 4.5%
0.03 || 0.0298 | 0.67% || 0.0311 | 3.67%

0.02 || 0.0239 | 19.5% || 0.0225 | 12.5%

6 |3 0.03 | 0.05 || 0.0480 4% || 0.0479 | 4.2% | 0.0009
0.06 || 0.0580 | 3.33% || 0.0586 | 2.33%
0.03 || 0.0299 | 0.33% || 0.0301 | 0.33%

0.02 || 0.0244 22% 1| 0.0223 | 11.5%
Table 3
Two tests on a synthetic experiment with n; = 300 x 300 = 90000
wells and 6y = (0.05,0.06,0.03,0.02).

ny = 500 x 500 = 250000, n,, = 748001

Ns | Nopt | Pmaz | 6o éﬂ?s dy énMI;S dpr2 errgnns

2 13 0.04 |0.03 || 0.0295 | 1.67% || 0.0293 | 2.33% 0.0011

0.04 || 0.0402 | 0.5% || 0.0401 | 0.25%

0.05 || 0.0522 | 4.4% || 0.0520 4%

0.02 || 0.0192 4% {1 0.0195 | 2.5%
Table 4

Test on a synthetic experiment with n; = 500 x 500 = 250000

wells and 6y = (0.03,0.04, 0.05,0.02).

Let us first consider the columns é%fs,dMl,é%;“, and djse in Tables 1-4.
We can observe that the MSM estimators of the two methods are mostly
close together. However, it seems like (especially for large n;) method 2)
delivers the better estimators after all. The largest difference is found in the
second part of Table 3, where (ns, nopt, ftmaz) = (6,3,0.03). The deviation
to the true value pg is 22% for method 1) whilst we have only 11.5% for
method 2).

For sample size n;y = 250000 in table 4, we get similar results. The deviation
to po in method 1) is 4%. Method 2) only has a deviation of 2.5%. The
information in table 4 is especially important for us since ny = 250000 is our
largest sample size.

Due to those observations, we will consider method 2) in the remaining of

this chapter.

6. RESULTS 52

If our estimator f is much higher than the true value, we expect the es-
timators (5\6)66{1’273} to be lower than their true counterparts and vice versa
(e.g. if we have a higher contamination rate, we need less seeding to get an
amount of colored wells that is similar to the experiment).

In all tests of table 1, we can observe that the estimated fipso are much
smaller than the true value (at least 27.33%). At the same time, we see that
the different A3,, are also much smaller (up to 16.14%) than the true A}.
Intuitively, we would not expect estimators with such clearly wrong proper-
ties. However, an explanation for this incident could be the following:

In table 1 we have n; = 625 and 6y = (0.1,0.05,0.07,0.06)”. Given those

values, the expected number of seeded wells is

625

o > Ep,[X!] = 625)\} = 62.5 for DNAL,
i=1
625

o > Ep,[X?] = 625)\% = 31.25 for DNA2,
=1
625

o > Ep,[X?] = 625\3 = 43.75 for DNA3.
=1

However, our synthetic experiment with n; = 625 delivered slightly different

values:

625

e > X! =67 for DNAL,
=1
Z625

e > Xx? =33 for DNA2,
=1
%25)

e > X2 =40 for DNA3,
i=1

As we see, we have more seeded wells than expected for DNA1 and DNA2
and less for DNA3. This can lead to wrong estimations (especially for small

nr) in the sense that the estimator for A} is likely to be too low.

Looking at Tables 1-3, we can observe that, for fixed ny, the value erTgnrns
of the objective function decreases as the number of simulations ng increases
(even for a decreasing number of optimizations pep in Table 3), which sug-
gests that our program works the way it should and there is no sign for bugs
in our code. Nevertheless, we can see that our MSM estimators for e.g. uo
in Tables 1-3 still have an absolute deviation of at least 11.5%. This leads to
the conjecture that the corresponding sample sizes n; are not large enough

and we do not get better estimators due to random fluctuations.

6. RESULTS 53

ny N Ms | Topt | Hmag || €Tgrins | €TT4ri | €TTg
625 1776 10 10 0.1 0.0126 | 0.6196 | 0.6783
625 1776 50 10 0.1 0.0107 | 0.5833 | 0.9022
625 1776 100 | 10 0.1 0.0062 | 0.5901 | 0.9006
10000 | 29601 | 20 10 | 0.05 0.0002 | 0.5841 | 0.0508

10000 | 29601 | 40 10 | 0.05 0.0001 | 0.5970 | 0.0461

90000 | 268801 | 1 6| 0.03 0.0056 | 0.6317 | 0.0331

90000 | 268801 | 6 31 0.03 0.0009 | 0.6406 | 0.0099

250000 | 748001 | 2 31 0.04 0.0011 | 0.6443 | 0.0085
Table 5

Comparing the values of the objective function for the MSM
estimator, a trivial estimator and the true value 6y. The

synthetic experiments used are the same as in Tables 1-4.

One important observation in Tables 1-4 that supports this presumption is
that the estimators in our tests get closer to the true values as ny increases.
Tn Table 4, the largest deviation of 7/ from g is 2.5%, which means we

found an estimator that is very close to 6.

We introduce some new variables for Table 5:
e erry;: the value of the objective function for the trivial estimator

‘ nr ns YZ’S . .
p=0,X" =% > ;i-forle{l,23} ie weassume there is no
i=ls=1 ~ °

contamination.

e errg,: the value of the objective function given the true value 6y.

Note that this value has to be close to 0 to allow good estimations.

The MSM estimators éﬂg * and the true values 6 are the same as in Tables 1-
4, eg.

6o = (0.1,0.05,0.07,0.06)T for n; = 625,

6o = (0.07,0.05,0.04,0.03) for n; = 10000,

6o = (0.05,0.06,0.03,0.02) for n; = 90000,

6o = (0.03,0.04,0.05,0.02)" for n; = 250000.

Table 5 delivers more options to examine our estimators.
The values of the objective function for our trivial estimators (erry.;) are

always higher than the values for the MSM estimators. This is of course

6. RESULTS 54

nr Nn g erreg,
625 1776 10 || 0.6783
10000 | 29601 10 || 0.0505
90000 | 268801 | 10 [| 0.0115
250000 | 748001 | 10 || 0.0071

436921 | 1308120 | 10 || 0.0013
Table 6

Different sizes of synthetic experiments and their objective

function values given the true value . errg, clearly decreases as

n increases.

what we expect.

Nevertheless, we see that for n; = 625, erry,; is smaller than errg,, i.e.
than the objective value function given 6y. This can be explained looking
at the size of ny. For small ny, it is likely that our sample is not yet a
good representation of the underlyinig distribution and other estimators can
lead to a smaller objective function. In our case of ny = 625, the random
fluctuations are so large that even the trivial estimator has a smaller objective
function value.

For our MSM estimator é}j; °, a situation of overfitting occurs: If the sample
size is not large enough, our estimation method will 'overfit’ to insignificant
fluctuation in the data and create an estimator with a smaller objective func-

tion value than the true 6.

In our tests with n; = 10000 and n; = 90000, we can observe that erry,
is already a lot smaller than err;; and errg, seems to decrease with an
increasing number of simulations ngs. We expect the influence of random
fluctuation to decrease as nj increases, i.e. we expect our MSM estimators

to get better with increasing ny (which is what we can observe in Tables 1-4).

In all cases of Table 5, the MSM algorithm finds estimators whose objec-
tive function values are smaller than the ones for 6y. As stated before, the
reason for this is overfitting. However, we can observe that the larger the
sample size, the better our MSM estimator. This is not surprising since
the evolution of erry, in our tests suggests: The larger the sample size, the

smaller the objective function value for 6.

6. RESULTS 55

Table 6 shows the objective function values erry, for the true values 6y of the
four synthetic experiments in Tables 1-5 and one extra synthetic experiment
of size ny = 661 - 661 = 436921 (with 6y = (0.02,0.04,0.05,0.03)7). The
objective function values are all based on 10 simulations.

Again, we can clearly observe that errg, decreases when ny increases. This
leads to the presumption that errg, — 0 for n;y — oo and fixed n,. Looking
at the evolution of the MSM estimators in Tables 1-4 (especially the esti-
mator in Table 4), it also seems legitimate to assume that 6y is unique for
nry — oQ.

With these observations, we expect our estimator to be strongly consistent

(see Proposition 3.2) for n; — oo and fixed ng, i.e. é?j;s — 6y almost surely.

Unfortunately the program took ~ 30 hours to estimate érﬁg ¢ with the used
input values in Table 4, which is why we do not state a test with larger
input values for ng and ngy in this thesis (computations were carried out on
a laptop computer equipped with an Intel(R) Core(TM) i5-3210M CPU @
2.50 GHz processor and 8 GB RAM).

Note that using the above laptop, MATLAB managed to create a synthetic
experiment of size n;y = 661 x 661, while for n; = 662 x 662 a 'memory error’
occured and a synthetic experiment could not be created. Regardless of the

time, this restricts our testing possibilities.

Testing our program on a real laboratory experiment

We now want to test our program on a laboratory experiment. We let
Figure 1(b) of Section 1.2 be our experiment image. After running auto-
matic_ grid_ fitting perspective_ click.m, the recognized grid points and col-
ored wells are as seen in Figures 13 and 14 in Section 5.1 and the program
saves a .mat file. The recognized grid consists of ny = 2312 wells and we have
n, = 6744 possible edges. It is important to recall that the recognized grid
and the colors are not perfect due to the quality of the experiment image.
The difference between Figure 14 (a) and (b) influences our MSM estimator.
However, this effect will be ignored in the remaining of this chapter.

We run msm.m with 3 different combinations of input values to get the

estimators and objective function values shown in Table 7.

It is logical to assume that the best of the 3 estimators in Table 7 is the

one with the smallest objective function value, i.e. we expect that é}\lj;“‘ =

(0.0186, 0.0628, 0.0443,0.0458)7" is closest to the unknown 6y (note that it

6. RESULTS 56

ny = 2312, n, = 6744
Ns | Nopt | Mmaz éﬂg s errgnyns elapsed time
5 |5 0.1 0.0171 0.0446 225 sec
0.0661
0.0440
0.0463
20 | 20 0.1 0.0186 0.0164 4719 sec
0.0628
0.0443
0.0458
80 | 20 0.1 0.0182 0.0193 15938 sec
0.0638
0.0442

0.0442
Table 7

MSM estimators for a laboratory experiment with different

combinations of input values. The last column is the time that
the program needed for the estimations. This is just an
understanding of how much time different combinations of input

variables need.

is not very surprising that errgnins is smaller for ns = 20 than for ns, = 80
M2

since our sample size is relatively small).

Assuming that our estimator equals the true 6y and considering the expected

values, we get that

e 43 wells were initially seeded with DNAT1 (i.e. red color) since
2312
> Egnns [X] = 2312 0.0186 = 43.0,
im1 M2

e 145 wells were initially seeded with DNA2 (i.e. green color) since
2312
> Egnyns [X7] = 2312 0.0628 = 145.2,
i1 M2

e 102 wells were initially seeded with DNA3 (i.e. blue color) since

2312
> Egouns [X7] = 2312 - 0.0443 = 102.4,
im1 M2

6. RESULTS 57

e 309 edges were open for contamination since

S Byunen(&is)) = 6744 - 0.0458 = 308.9,
M2
(i,5)€l2

The standard deviations are
e 05, = /2312-0.0186(1 — 0.0186) = 6.5,
o 05, = /2312-0.0628(1 — 0.0628) = 11.7,
o 053 = /2312-0.0443(1 — 0.0443) = 9.9,
e 0, = /6744 -0.0458(1 — 0.458) = 17.2.

Combining expectation and standard deviation, we get an interval [308.9 —
17.2,308.9+17.2] =~ [292,326]. Let us assume that the number of open edges

> mu(&;j) =: € lies in this interval.
(6,) €12
Note that the maximum amount of wells that contain an open edge is

< min{2&,nr}. The maximum is reached when all open edges are isolated
from each other. In fact, this is only possible for a certain number of open
edges. There is a limit for which open clusters of size > 2 have to appear
(but < min{2&,n;} still holds).

Taking this information and the above interval, we expect the number of
contaminated wells to be < min{2-326, 2312} = 652, i.e. under the assump-
tion that our MSM estimator equals 0y, we expect not more than 28.2% of
the wells to be contaminated (this percentage concerns all contamination
clusters, even those where no component contains DNA or where all compo-
nents were already seeded with the same DNA, i.e. clusters, where the open

edges do not have a contamination effect).

As a final approach, we create another synthetic experiment with the val-
ues that were the result of the previous estimation, i.e. we choose ny =
2312, n,, = 6744, 6 = (0.0186,0.0628, 0.0443,0.0458)"".

We apply our program to estimate 8y using 200 simulations, 20 optimizations
and fimqee = 0.1. The result is shown in Table 8.

We can see that the absolute deviations of éﬁ/}; * to 6y take values up to
20.74% (we expect the estimator for the laboratory experiment to have sim-
ilar deviations).

The MSM estimator is much better than our trivial estimator (assuming
there is no contamination), which has a deviation of 100% from pug. For

laboratory experiments of e.g. size ny = 300 x 300 = 90000, we expect the

6. RESULTS 58

ny = 2312, n, = 6744
Ns | Nopt | Mmaz 0o || Oniye dnr2
200 | 20 0.1 0.0186 || 0.0171 | 8.06%
0.0628 || 0.0532 | 15.29%
0.0443 || 0.0463 | 4.51%

0.0458 || 0.0553 | 20.74%
Table 8

MSM estimators for a synthetic experiment that was created

based on the MSM estimator and the size of a laboratory

experiment.

maximum deviation to be around 12% (see Table 3) and to keep decreasing

as the experiment size increases.

CHAPTER 7

Summary and outlook

We created a MATLAB program for the method of simulated moments that
delivers estimators for the true DNA concentrations and the contamination
rate in a digital PCR experiment for triangular grids.

For small numbers of cavities ny, we saw that our MSM estimators have
absolute deviations of up to 33% from the (unknown) true values 6. Our
assumption is that due to random fluctuations and overfitting, we do not find
a better estimator for 6y for small n; (note that our estimator is still much
better than anything achievable with the naked eye or than the trivial esti-
mator with no contamination which has a deviation of 100% from g # 0).
However, as ny increases, our estimators get closer to 8y and for ny = 250000,
we saw that the relative deviations were < 2.5%.

We presume that our estimators are strongly consistent for ny — oo and a
fixed number of simulations ng, i.e. grins 0o almost surely.

The MATLAB program behaves as expected in every way which means it

does not seem to have any bugs.

Our implementation of the MSM finds good estimators for n;y — oo.

Yet, one could try to improve the estimators by modificating our algorithm.
The moments we choose for the MSM could be replaced by other moments
that might lead to more accurate estimators for large ny. The weight ma-
trix) could also be substituted for another symmetric positive semi-definite
matrix.

We have seen in Chapter 4 that there are different models to consider for
the contamination process. The reason for contamination during the PCR
(imperfect sealing by the glass cover) suggests that an implementation of
an algorithm where the edges are represented by locally correlated random
variables could also improve the estimators.

Apart from the MSM algorithm, we have seen that the algorithm for the
recognition of the grid and colors does not always work properly when the
experiment image shows an imperfect triangular grid or is of bad quality.
Note that if the recognition of the grid works perfectly, the assignment of

the colors is perfect, too. Therefore, another suggestion for improvement

59

7. SUMMARY AND OUTLOOK 60

is to find a better method to recognize the grid points that works even for

non-perfect triangular grids.

[

© W NS U s W

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

APPENDIX A

MATLAB Code I: Recognition of the grid and spots

The following functions are shown in the order they are called in the program

structure.

function automatic grid fitting perspective click(col threshold)

% AUTOMATIC_GRID_FITTING PERSPECTIVE_CLICK analyses the image chosen ...
by the

% user by calling the functions:

% detect centroids.m ,

% errorFunctionProjectiveNew.m ,

% compute transformed grid points perspective.m ,

% grid _cropping.m.

Yo

% From color to matrix.m it gets the variable experiment matrix, which

S

These deliver the shape, size and coordinates of the grid we work with.

% stores information about the area of interest (ie which grid points will
% be part of our calculations) and tells us whether a well is empty or

% filled with either R, G or B.

% The results are vizualized and the user has to choose if the calculated
% grid is good enough. If so, the function saves these variables in

% filename.mat: experiment matrix, shape. These can be called from

% msm.m to start the simulations and estimations.

C
%

% EXPLANATION OF VARIABLES

%

% col threshold Threshold for recognition of colors (only used in
% color to matrix)

% filename Name of the data set image

% outputsuggestion Default name of the output file

% outputname Name of the output chosen by user

% 1 _original Three matrices containing RGB data with the

% corresponding coordinates in the image. The first
% entry of Image(l original) gives the value of the
% Y-axis, the second value gives the X-value.

% Therefore, we switch X and Y in Image(I original)
% => RGB value for us = (Y,X,:)

% Xmax Maximum pixel value of X-axis of image

% Ymax Maximum pixel value of Y-axis of image

% x x coordinates of the two points clicked by user
% y y coordinates of the two points clicked by user
% T Approximate distance between the reference point
% and one of its neighbors. Initial value: determined
% by Euclidean distance between first and second

% clicks

% xg0 Reference point, X coordinate of first point that
% was clicked on

% ygo Reference point, Y coordinate of first point that

61

42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73

74

76
s
78

79
80
81

82
83

84
85
86
87
88
89
90
91

% was clicked on

% alpha Rotation of image around reference point

% ¢ Parameter of normalization

% centroids Coordinates of all RGB centroids found in the

% nrows Number of rows

% mncols Number of columns

% choice User's choice whether the program should continue,

% restart or stop

% choice 2 User's choice whether an output file should be

% created or not

00

% Felix Beck, Maja Temerinac-Ott, Bence Melykuti (University of ...
Freiburg , Germany)

% 16/7/2015

if nargin = 0 % If no input was given, set col threshold to default value
col threshold=40;

end

filename=input('Enter filename: ','s');

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS

I_original = imread(filename);

dots=strfind (filename ,

".'); % Find the dot in the filename

if length(dots)>0

outputsuggestion=filename (1l:max(dots) -1);
else

outputsuggestion=filename;
end

outputname=input (sprintf('Enter filename for output (or press

for the default %s.mat): '

while (1) % If user decides that

the program repeats this loop until the user wishes to continue

,outputsuggestion),'s"');

Return ...

the simulated grid is not good enough,

[Ymax,Xmax] = size (I _original (:,:,1));

% Let user click on two neighbor centers

figure ;imshow (uint8 (I_original));title ('Click the centers

neighboring spots (zoom in

finished. ")

% Use the function ginpute

if necessary). Press Return when

of two ...

to click the centers of two neighbors.

% ginputc behaves similarly to ginput, except you can customize ..

the cursor

% color, line width, and line style.

[x, y] = ginputc('Color','w

get (approximately) the distance between

close (gcf)

"Y; % Click centers of two neighbors to

% We use 8 parameters to optimize the grid

r = norm ([x(1),y(1)]-[x(2),

r=[r r];

% Reference point (origin)

% Interval: must be in the

y(2)1);

image

two spot centers

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119

120

127

132

134
135

137
138

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 63

% Initial value: determined by first click

xg0 = x(1);
ygd = y(1);
lbxg = max(0.5,xg0-0.5xr(1)); % Lower bound xg

ubxg = min(Xmax+0.5 ,xg0+0.5%r(1)); % Upper bound xg

lbyg = max(0.5,yg0-0.5%r(2)); % Lower bound yg
ubyg = min(Ymax+0.5 ,yg0+0.5%r(2)); % Upper bound yg
% Rotation of image around reference point
% Interval: (-pi/2, pi/2]
% Initial value: gradient of the first two clicks
if x(2)-x(1)~=0
alpha—atan (¥ (2) -y (1)) /(x(2)-x(1)));
else
alpha=pi/2;

end

alpha=[alpha alpha]; % We allow different rotation for the two ...

canonical unit vectors (1,0), (0,1) but initialize them as equal

% Normalization
% Interval: (-Inf, Inf)
% Initial value: [0 0]
c=[le-6 le-6];

% Setting of the eight parameters:

par=[r,alpha,c,xg0,yg0]; % The optimization must run on all these

8 parameters

[0.5%r(1),0.5%r(2),-pi/2,-pi/2,-inf,-inf lbxg,lbyg]; % Lower bound
[2+%r(1),2%r(2),pi/2,pi/2,inf ,inf ,ubxg,ubyg]|; % Upper bound

Ib
ub

% Detect spots for all colors

centroidsRed = detect centroids (I original, 1, 'red, yellow,
magenta and white',r(1));

centroidsGreen = detect_centroids(I_original, 2, 'green, yellow, ...
cyan and white',r(1));

centroidsBlue = detect centroids (I original, 3, 'blue, magenta, ...

cyan and white',r(1));

centroids = |centroidsRed;centroidsGreen;centroidsBlue]|; % All ...

coordinates of all RGB centroids

% Set options for Isqnonlin optimation

% options=optimset ('TolFun', le-14,'TolX', le-18, 'MaxFunEvals',
3000, 'MaxIter', 3000, 'Algorithm', 'levenberg-marquardt');

options=optimset{ 'TolFun',le-14, 'TolX"' ,1e-18);

% Parameter optimization

% tic % For testing

[params _automatic ,resnorm| = lIsqnonlin (@(params)
errorFunctionProjectiveNew (centroids , params, Ymax, Xmax) ,
par, 1b, ub, options);

% toc

% disp (sprintf('Residual norm: %f',resnorm)) % For testing

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 64

140 % Calculate transformed grid points with new, optimized parameters
141 [~,transformed grid_matrix] = ...
compute transformed grid points perspective(params automatic,
Ymax, Xmax) ;

142

143 % Crop the grid matrix so that only the entries that lie inside ...
the limits

144 % of the image remain

145 [transformed grid matrix ,shape] = grid cropping
(Xmax,Ymax, transformed _grid _matrix ,centroids);

146

147 % Create four matrices: First matrix for area of interest (ie if ...
the grid

148 % point lies within the image boundaries, corresponding area of ...
interest

149 % entry=1 and the grid point will be part of our calculations). ...
Remaining

150 % three matrices represent the colors of the data set: Three ...
matrices with

151 % ones where there is a R/G/B spot at the coordinates of the grid
and zeros

152 % otherwise.

153 experiment matrix=color to matrix(transformed grid matrix,
I original, col threshold);

154

155

156 % Plot original image, the created grid and the spotted centroids

157 figure

158 image (uint8 (I original))

159 hold on

160 title ('Calculated grid after automatic fitting')

161 plot (centroids (:,1), centroids (:,2), 'k*')

162 plot (transformed grid matrix(:,:,2), ...
transformed grid _matrix (:,:,3), 'w.")

163 hold off

164

165

166

167 nrows=size (experiment matrix,1);

168 ncols=size (experiment_matrix ,2) ;

169

170 hexa(nrows ,ncols ,experiment matrix,I original ,shape,l); % Plot ...
original image and recognized grid with colors to check if fit ...
is good enough for user's needs

171 choice = menu({'Please compare the original image to the extracted ...
data and decide if they match.', 'How would you like to
proceed? '}, 'Save','Try again', ' 'Exit');

172 close all; % Close all figures

173

174 if choice==1 || choice==3 % Continue with program (i.e. exit ...
while (1) loop)

175 break

176 end

177 % If choice==2, start grid fitting again

178 end

179

180 if choice==3 % If user decided to stop the proogram, continue here

181
182

184

186

187

189
190
191

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS

disp ('The program was terminated by the user.')
else % If choice==1
if length (outputname)==0 % If user decides to use the default name

outputsuggestion

'

choice_2 = menu(['Are you sure you want to save the file y e e e

outputsuggestion, '.mat?'], 'Yes','No'); % Check if the
user would like to save the file
if choice_2==1
save (sprintf('%s.mat',outputsuggestion), ...
'experiment _matrix', 'shape')
disp (['The file ', outputsuggestion, '.mat was created ...
successfully.'])
else % User decides not to save the file
disp('No file was created. ')
end

else % outputname chosen by the user

'

choice 2 = menu(['Are you sure you want to save the file ', ...

outputname, '?'], 'Yes','No'); % Check if the user would ...

like to save the .mat file
if choice 2==

save (sprintf('%s',outputname), 'experiment matrix', 'shape')

disp (['The file ', outputname, ' was created successfully.'])

else % User decides not to save the file
disp('No file was created.')
end
end

end

end

65

© 00 N DU s W N

10

12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53

55

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 66

function centroids = detect_ centroids(I_original, j, ColorName,r)

% DETECT_CENTROIDS detects the coordinates of the centers of the spots that

% are R,G or B. The coordinates are saved in centroids and visualized. The

% user can add centroids that were not detected to improve the fitting of

% the grid. The adding of new centroids is done by calling the function

% ginputc. This function behaves similarly to ginput, except you can

% customize the cursor color, line width, and line style.

%

%

% EXPLANATION OF VARIABLES

%

% level Global threshold (level) that can be used to

% convert an intensity image to a binary image with ...
im2bw.

% level is a normalized intensity value that lies in the

%% range [0, 1].

%] Index of the color the function runs for

% BW Binary image of I Original (:,:,])

% r Approximate distance between the centers of two

% neighbors

% P Half of the surface area of a hexagon (with all sides

% equal) with radius 1/2x*r

% OriginalBW Binary image where all connected components

% (objects) that have fewer than P pixels are removed

% se Structuring element, SE, of the type disk (a

% flat , disk -shaped structuring element, where 1

% specifies the radius).

% erodeBW Eroded version of the image originalBW

% closeBW Morphological closing on the grayscale or binary image

% erodeBW

% dilateBW Dilation of closeBW

% s Centroids of each ellipse

% s2 Shortest axis of each ellipse

% s3 Longest axis of each ellipse

% s4 Scalar that specifies the angle between the

% x-axis and the major axis of the ellipse

% MajorAxisLength (.,1)-vector MajorAxisLength that includes every length

% median diameter Median of MajorAxisLength

% centroids Vector containing all the centroids detected

% ColorName Name of current colors

% 1 original Three matrices containing RGB data with the

% corresponding coordinates in the image.

% centroids Coordinates of all RGB centroids found in the image

%

%

% Felix Beck, Maja Temerinac-Ott, Bence Melykuti (University of ...
Freiburg , Germany)

% 16/7/2015

% Output of this function: centroids (:,1:2) => (x,y)-coordinates of the

% centroids

level = graythresh(I original (:,:,j));

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 67

56 BW = im2bw (I _original (:,:,j), level);

57

58 % Now we calculate the area A of a hexagon with outer radius 1/2%r and ...
remove

59 % all the connected components from a binary image that have fewer pixels

60 % than 1/2+*A. In practice this means removing all signals which are not

61 % strong enough.

62 P = ceil (1/2%3/2%(1/2%1r) " 2%sqrt (3));

63 originalBW = bwareaopen (BW, P);

64

65 se = strel('disk',1);

66

67 erodeBW = imerode(originalBW ,se);

68 closeBW = imclose (erodeBW,se);

69 dilateBW = imdilate (closeBW ,se);

70

71 BW = dilateBW

72

73 % Calculate centers

74 s = regionprops (BW, 'centroid');

75 82 = regionprops (BW, 'MinorAxisLength');

76 s3 = regionprops (BW, 'MajorAxisLength');

77 s4 = regionprops (BW, 'Orientation');

78

79

80 MajorAxisLength = cat (1, s3.MajorAxisLength); % Generate (.,1)-vector
MajorAxisLength that includes every length

81

82 median diameter = median(MajorAxisLength);

83 for i =1l:size(s,1) % For each ellipse

84 if (abs(MajorAxisLength (i)-median_diameter)>median_diameter/3) % If ...
ellipse is too big (e.g. when two neighbors are connected), ignore

85 s(i).Centroid (:) = [];

86 s2(1).MinorAxisLength=[];

87 s3(i).MajorAxisLength =[];

88 s4(i).Orientation =|[];

89 end

90 end

91

92 centroids = cat(l, s.Centroid);

93

94 % Show centroids that were detected

95 strl=['You can add any missing num2str (ColorName) spots by marking ...
their centers. Press Return when done.'];

96 figure;imshow(uint8 (I _original));title (strl)

97 hold on

98 if size (centroids ,1)>0 % If any centroids in the current color were

detected

99 plot(centroids (:,1), centroids (:,2), 'kx')
100 plot (centroids (:,1), centroids (:,2), 'wo')
101 end
102 hold off
103

104 % Add missing centroids
105 [t,u] = ginputc('Color','w'); % Gathering an unlimited number of

points until you press the Return key.

106

107
108
109

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS

centroids = [centroids;[t,u]]; % Add selected
centroids

close(gcf) % Close image

end

centroids

to existing

68

w

© 0 N D Ot

10

12
13
14

15
16
17
18
19
20

21
22
23
24

31
32
33

34

35

36

37

38
39

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS

function dist = errorFunctionProjectiveNew (centroids , params, Ymax, Xmax)
% ERRORFUNCTIONPROJECTIVENEW.m uses the function kdtree to create a kd-tree

% and finds the closest grid points for all centroids found in the ...

image by

% calling the functions kdtree and kdtree_closestpoint. The distance

% between these centroids and the grid points is to be minimized.

%

00

% EXPLANATION OF VARIABLES

%

% params 8 parameters that need to be optimized

% Xmax Maximum pixel value of X-axis of image

% Ymax Maximum pixel value of Y-axis of image

% tree kd-tree based on grid points

% closest points Coordinates of the closest grid point for each ...
centroid

% centroids Coordinates of all RGB centroids found in the image

% dist Distances between grid points and centroids. dist is

% the objective function for the optimization

%

%

% Felix Beck, Maja Temerinac-Ott, Bence Melykuti (University of ...
Freiburg , Germany)

% 16/7/2015

transformed grid points = ...

compute_transformed grid_points_perspective(params, Ymax, Xmax);

% Find the closest point to each grid point

tree = kdtree(transformed_grid_points);

% For each centroid ,
coordinates of
% that point:

find the closest grid point and save the ...

closest points=transformed grid points (kdtree closestpoint (tree, ...

centroids), :);

% Minimize distance between coordinates of grid and centroids

% to get the best grid possible

dist =[closest points(:,1)-centroids(:,1) ; ...

closest _points (:

,2)-centroids (:,2)];

% Note that the output is a vector specifically for the lsgnonlin

optimizer.

% Optionally , to use another optimizer, individually square the

% coordinates and sum:

% dist = sum((closest points (:,1)-centroids (:,1))."2 4+ ...
(closest _points (:,2)-centroids (:,2))."2);

end

69

© 0 N DOt W

= =
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29

30
31
32
33
34
35
36
37
38
39
40
41
42

43

44

45
46
47
48
49

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 70

function [transformed_ grid points,transformed_grid_matrix] = ...
compute_transformed_grid_points_perspective(par, Ymax, Xmax)

% COMPUTE TRANSFORMED GRID POINTS PERSPECTIVEm creates the centers of

% the spots in the grid. By applicating the optimized 8 parameters, the

% grid points are adjusted.

%

%

% EXPLANATION OF VARIABLES

%

% par 8 parameters that need to be optimized

% |r,alpha,c,xg,ygl Splitting up of par

% L Number of dots (given r) on the diagonal ...
of the

% image

% Xmax Maximum pixel value of X-axis of image

% Ymax Maximum pixel value of Y-axis of image

% grid rows Number of rows of meshgrid (compare output of

% [X,Y]=meshgrid (...))

% grid_cols Number of columns

% grid points Grid points after shifting

% transformed grid points Grid points after applying the parameters for

% transformation

% transformed grid matrix Matrix of size (grid rows,grid cols,3). (:,:,1)

% is for area of interest (initially 1),

% (:,:,2:3) are x and y values of the grid

%

% Information about output:

% transformed grid_ points is used in errorFunctionProjectiveNew

% transformed grid matrix is used in ...
automatic grid fitting perspective click

%

% Felix Beck, Maja Temerinac-Ott, Bence Melykuti (University of ...
Freiburg , Germany)

% 16/7/2015

% Splitting up the parameters into different variables
r=par(1:2);

alpha=par (3:4);

c=par(5:6) ;

xg=par(7);

yg=par(8);

% Define the grid; its point are originally spaced by one unit

extra=2; % Depth of extra dots around the parameter we probably do not need

L = sqrt{Ymax"2+Xmax~2)/r(1); % Maximal length (diagonal divided by ...
distance => number of dots on the diagonal)

[X, Y] = meshgrid((-ceil(L)-extra):(ceil(L)4extra), ...
(-ceil(2/sqrt(3)*L)-extra):(ceil (2/sqrt(3)*L)+extra)); % 2/sqrt(3) ...
etc is chosen because we visualize with hexagons

Y=sqrt(3)/2+%Y; % Adjusting to y axis distance in hexagon grid with all ...

sides equal

% Size of meshgrid:
grid _rows=size (X,1);

grid cols=size(X,2);

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

72

73

74

75

76

d

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 71

% Moving every even/odd row to get a hexagon shape. Making sure the origin

% stays part of the grid and original shape==0

if (mod(size(X,1),4)==1) % Origin is (odd,xxx), even rows must move
X(2:2:end,:) = X(2:2:end,:)-0.5;

else % ie. mod(size(X,1) ,4)==3, origin is (even,xxx), odd rows must move
X(1:2:end,:) = X(1l:2:end,:)+0.5;

end

grid _points = [X(:),Y(:)]; % Shifted grid points

% Rotation:

a=zeros (3,1);b=zeros (3,1);
a(1l:2)=[r(1l)*cos(alpha(1l)) -r(2)x*sin(alpha(2))];
b(1:2)=[r(1)*sin(alpha(l)) r(2)+*cos(alpha(2))];
a(3)=xg;b(3)=ysg;

transformed grid points=linfrac translated (grid points,a,b,c);

transformed grid matrix (:,:,1)=ones(grid rows,grid cols);

transformed grid matrix(:,:,2)=reshape(transformed grid points(:,1),
[grid _rows ,grid_cols]);

transformed grid matrix (:,:,3)=reshape(transformed grid points(:,2),
[grid rows,grid cols]);

end

function X_tr = linfrac_translated (X,a,b,c) % Calculate transformed
grid points with rotation and parameters

X tr=[(a(l)*X(:,1)+a(2)*X(:,2))./(c(1)*X(:,1)+c(2)*X(:,2)+1)+a(3),

(b(1)*X{(:,1)+b(2)*X(:,2))./(c(1)*X{(:,1)4+c{2)*X(:,2)+1)+b(3)];
end

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 72

1 function [transformed grid_matrix ,shape] = grid_cropping ...

(Xmax, Ymax, transformed _grid _matrix ,centroids)
% GRID CROPPING deletes rows and columns of transformed grid matrix which
% are completely outside of the image. Grid points outside the image might
% still remain, but their indicators (first coordinate in
% transformed grid matrix) will be set to zero in color to matrix.

%

D Ot s W N

S

transformed _grid_matrix is overwritten by the cropped version which

is an
7 % output of this function. The shape of the created grid is saved in shape.
8 %

9 %

10 % EXPLANATION OF VARIABLES

1 %

12 % Xmax Maximum pixel value of X-axis of image

13 % Ymax Maximum pixel value of Y-axis of image

14 % transformed grid matrix Matrix of size (grid_rows,grid_cols ,3). (:,:,1)
15 % is for area of interest (initially 1),

16 % (:,:,2:3) are x and y values of the grid

17 % firstrow Number of the first row after cropping the

18 % grid.

19 % del_col Columns that have to be deleted from

20 % transformed grid matrix

21 % del _row Rows that have to be deleted from

22 % Transformed grid matrix

23 % shape Shape of the grid (determined by checking if
24 % firstrow is odd or even.)for more information
25 % see msm.m.

26 %

27 % Felix Beck, Maja Temerinac-Ott, Bence Melykuti (University of ...
Freiburg , Germany)

28 % 16/7/2015

29

30

31 for i=1l:size(transformed_grid matrix,1) % For all rows

32 temp=transformed grid matrix(i,:,3);

33

34 % y-values of row i that are outside I_original

35 check=find (temp>=0.5 & temp<Ymax+0.5); % Find all y-values of row
i that are inside I original

36 if length(check)==

37 transformed grid matrix(i,:,1)=0; % If all entries are outside ...

I original, grid matrix row i gets value 0

38 else % If at least one y-value in the row lies inside I_original:
If none of the corresponding x-values in the row lies inside ...
T_original, grid_matrix row i gets value 0

39 if max(transformed _grid_ matrix(i,check,2)>=0.5 & ...

transformed grid matrix(i,check ,2)<Xmax+40.5)==

40 transformed grid _matrix(i,:,1)=0;

41 end

42

43 end

44 end

45

46 % Use analogue technique for all columns
47 for j=l:size (transformed_grid_ matrix ,2)

48 temp 2=transformed grid matrix(:,j,2);
49

50

51
52

53

54

55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS

check=find (temp_2>=0.5 & temp_ 2<Xmax+0.5); % Find all x-values of
column j that are inside I _original
if length(check)==
transformed grid _matrix (:,j,1)=0; % If all entries are outside
I_original , grid_matrix column j gets value 0
else % If at least one x-value in the column lies inside
I_original: If none of the corresponding y-values in the ...
column lies inside I_original, grid_matrix column j gets value 0
if max(transformed grid matrix(check,j,3)>=0.5 &
transformed _grid _matrix (check,j,3)<Ymax+40.5)==0
transformed grid matrix (:,j,1)=0;
end
end
end
% Determine , which row number of transformed grid matrix is the first
row that is still in the image.
firstrow =0;

i=1;

while firstrow==0

if length(find (transformed grid_ matrix(i,:,1)==1))>0
firstrow=i;
end
i=i+1;
end
% Determine shape by checking if firstrow is odd or even

if mod(firstrow ,2)==0 % even —> shape ——
shape=1;

else
shape=0;

end

% We get our cropped matrix by determining all the entries that are 0
del _col=[];
for j=1:size (transformed_ grid matrix,2) % Delete columns

if max(transformed grid matrix(:,j,1))==0 % if all column entries
are 0
del col=[del col,j];
end
end
transformed grid matrix (:,del col,:) =[];

del_row =[];

for i=1:size (transformed grid matrix,1) % Delete rows

if max(transformed_grid_ matrix(i,:,1))==0 % if all row entries are 0
del_row=[del _row,i];
end
end
transformed grid_matrix (del_row ,: ,:) =[];
%Visualizing the cropped grid

% figure
% plot(centroids (:,1) ,centroids (:,2) ,'k*")

100
101
102
103
104
105
106
107
108
109
110
111
112

%
%
%
%
00
%
%

C
%

%
%

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS

hold on

title ('Image boundaries with centroids and fitted grid")
line ([0,0],[0,Ymax],'linewidth',2,"'color"','k")

line ([0 ,Xmax] ,[Ymax,Ymax] , 'linewidth ',2,'color ', 'k")
line ([Xmax,Xmax] ,[Ymax,0] , 'linewidth ',2,'color ', 'k")
line ([Xmax,0],[0,0], 'linewidth',2,'color','k")

74

plot (transformed grid_matrix (:,:,2) ,transformed _grid matrix(:,:,3) ,'b. ")

'reverse ')

set (gea,'YDir',
set (geca, ' XAxisLocation', 'top ')

hold off

end

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26

27
28
29
30
31
32

33
34
35
36
37
38
39
40

41
42
43
44
45
46
47

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 75

function experiment_matrix = color_to_matrix ...
(grid_matrix ,I_original ,col _threshold)

% COLOR_TO_MATRIX reads out the color of I original at the locations stored

% in grid _matrix. A matrix experiment matrix which consists of four ...
matrices

% with the size of the grid is created. The first matrix is an
indicator , it

% represents the area of interest (ie which grid points will be part ...
of our

% calculations), the remaining three matrices store the RGB ...
information of

% the data set. E.g. if red color is detected at grid point (i,j),

% experiment matrix(i,j,2)=1, 0 otherwise.

%
%
% EXPLANATION OF VARIABLES
%
% | Ymax, Xmax | Pixel limits of original image (see
% automatic_grid_fitting perspective_click.m)
% 1 original Three matrices containing RGB data with the
% corresponding coordinates in the image. The
% first entry of Image(I original) gives the
% value of the Y-axis, the second value
gives the
% X-value. Therefore, we switch X and Y in
% Image(I original)
% => RGB value for us = (Y,X,:)
% experiment matrix Consists of four different 2-dimensional
% matrices with the column and row size of the
% data set grid. The second, third and fourth
% matrix represent R, G and B. Whenever a spot
% has a color, the corresponding matrix
entry is
% set to 1. Whenever there is no color in the
% spot , the matrix entry remains 0. The first
% matrix indicates the 'area of interest'
% (initially all the entries are 1). E.g. it can
% happen that some parts of a column or row are
% not within the limits of our original ...
image. If
% that happens, the corresponding area of
% interest matrix entry is set to 0. Whenever
% there is a 0 entry in the area of interest
% matrix , the corresponding R/G/B matrix entries
% will be ignored for any further calculations.
% E.g. let us assume experiment_ matrix(1,5,1)=0.
% If that happens, exmeriment matrix(1,5,2:4)
% will be ignored in any further ...
calculations and
% the grid will consist of one grid point
% less.
% grid _matrix Matrix of size (grid_rows,grid_cols ,3). (:,:,1)
% is for area of interest (initially 1),
% (:,:,2:3) are x and y values of the grid.
% col _threshold Threshold for recognition of colors

%

48

49
50
51
52
53
54
55
56
57
58
59

60
61

62
63
64
65
66
67
68

69
70

71
72
73
74
75
76
s
78

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS

% Felix Beck, Maja Temerinac-Ott, Bence Melykuti (University of ...

Freiburg , Germany)

% 16/7/2015

% Returns filled matrix (size

% no R/G/B color

in the original

[Ymax,Xmax, ~]=size (I original);

experiment matrix=zeros (size (grid_matrix ,1) ,size {grid_matrix,2) ,4); %

Prepare variable

of grid _matrix) with zeros where

there was

image and ones where a color was detected

% Check if image has a R/G/B value higher than col_threshold at the

grid coordinates.

% If so, set the corresponding experiment matrix=1.

% coordinates lie

for i=1:size(grid matrix, 1)

for j=1l:size(grid matrix,2)

if grid_matrix(i,j,2)>=0.5 && grid_matrix (i,]j,2)<Xmax+0.5 &&
(i,j,3)>=0.5 && grid matrix(i,j,3)<Ymax+0.5

within

grid matrix

experiment matrix(i,j,1)=1; % If grid point lies

for

end
end
end

end

end

the

images boundaries: area of intrest=Il.

col=2:4 % For RGB

if I original (round (grid matrix (i, j, 3)), round

end

(grid_matrix{(i, j, 2)), col-1) > col_threshold %

(i,j,2) and (i,j,1) need to be exchanged.
like in e.g. size(l original)

experiment _matrix(i,j,col)=1;

Also check

within the image boundaries and adjust area of

if the grid

interest.

Just

© 00 N DU s W N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49

50
51
52
53
54
55

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 77
function hexa (nrows,ncols,wells ,iniwells , shape, plotmode)
% HEXA.m visualizes simulations. It first creates a hexagonal grid and
% then adds the corresponding color to each spot.
%%
%
% EXPLANATION OF VARIABLES
%
% shr Shrinkage parameter is in (0,1], shows how much the spots
% are shrunk relative to the circumscribed spots
% nrows Number of rows
% ncols Number of columns
% shape Shape of the grid
% plotmode Mode of plotting:
% 0: Plot the first simulation before and after
% contamination
%% 1: Plot original image and recognized grid with colors
% to check if fit is good enough for user's needs
% iniwells If plotmode==0, iniwells is the same as the variable wells
% before contamination.
% If plotmode==1, iniwells contains three matrices containing
% RGB data with the corresponding coordinates in the image
% (see I _original in
%% automatic grid fitting perspective click.m)
% wells Consists of four different 2-dimensional
% matrices with the column and row size of the
% data set grid. The second, third and fourth
% matrix represent R, G and B. Whenever a spot
% is filled with a color, the corresponding
% matrix entry is set to 1. Whenever there is no
% color in the spot, the matrix entry remains
% 0. The first matrix indicates the 'area of
% interest ' (initially all the entries are 1).
% E.g. it can happen that some parts of a column
% or row are not within the limits of our
% original image. If that happens, the
% corresponding area of interest matrix entry is
% set to 0. Whenever there is a 0 entry in the
% area of interest matrix, the corresponding
% R/G/B matrix entries will be ignored for any
% further calculations. E.g. let us assume
% wells (1,5,1)=0. If that happens,
% wells (1,5,2:4) will be ignored in any further calculations
% and the grid will consist of one grid point less.
% colors Vector with row and col numbers of colored wells
% color Vector containing the corresponding color to each .
entry in
% colors
%
%%
% Felix Beck, Maja Temerinac-Ott, Bence Melykuti (University of ...
Freiburg , Germany)
% 16/7/2015
shr=0.8;

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79

80

81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105

106

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS

[X, Y] = meshgrid(-1:ncols+1,0:nrows+1); % Create well-centers
m = size(X,1); % = nrows+2

n = size(X,2); % = ncols+3

% Adjust grid according to shape

if shape =— 0
if mod(m,2)==
X =X + repmat ([0; 0.5],[m/2,n]); % Shift x-axis
else
X =X + [repmat ([0; 0.5],[floor (m/2),n]); zeros(l,n)];
end
else % shape—=1
if mod(m,2)==
X =X + repmat ([0.5; 0],[m/2,n]); % Shift x-axis
else
X =X + [repmat ([0.5; 0],[floor (m/2),n]); 0.5%o0ones(1l,n)];
end
end
% Prepare plots

figure;

subplot (1,2,1); % First grid shows wells before contamination

if plotmode==0 % If plotmode==0, the first plot is the first ...
simulation before contamination
% [XV, YV] = voronoi(X(:),Y(:)); % voronoi can be activated to
visualize the (hexagonal) grid
% plot (XV,YV,'w')
subplot (1,2,2); % Second grid shows wells after contamination
% plot (XV,YV, 'w')
else
imshow (uint8 (iniwells));title ('Original image') % If plotmode==1,
the first plot is the original image
subplot (1,2,2); % Second grid shows recognized grid with colors
hold on
title ('The location of recognized spots')
set (gca, 'XTickLabel' ,[]) % Remove labels from second plot
set (geca, 'YTickLabel' ,[])
hold off
end
for 1=2:-1:1

if 1==1 % Before contamination
wellsl=iniwells;

else % After contamination
wellsl=wells ;

end

colors=zeros (2,0);

color="";

% Find matrix entries with red, green or blue color and save into
colors

[rrow, ...
rcol]=find (wellsl (:,:,2).%(1-wellsl (:,:,3)).*x(1-wellsl (:,:,4)));

% Find red entries

colors=[colors [rrow rcol]'];

78

107
108

109
110
111

112
113
114
115
116

117
118
119

120
121
122

123
124
125

126
127

144
145
146

147

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS

color=repmat('r',[1 length(rrow)]);

[grow,
gcol]=find ((1-wellsl (:,:,2)).+wellsl (:,:,3).*%(1-wellsl (:,:,4)));
% Find green entries

colors=[colors [grow gcol]'];

color=[color repmat('g',[1 length(grow)]) |;

[brow, ...
becol]=find ((1-wellsl (:,:,2)).x(1-wellsl (:,:,3)).*xwellsl (:,:,4));
% Find blue entries

colors=[colors [brow bcol]'];

color=[color repmat('b',[1 length(brow)]) |;

% Find matrix entries with two or three colors and save into colors

[yrow,
ycol]=find (wellsl (:,:,2) . +wellsl (:,:,3).*(1l-wellsl (:,:,4))); %
Find yellow (red&green) entries

colors=[colors [yrow ycol]'];

color=[color repmat('y',[1 length(yrow)]) |;

[crow, ...
ccol]=find ((1-wellsl (:,:,2)).xwellsl (:,:,3) . xwellsl (:,:,4)); %
Find cyan (green&blue) entries

colors=[colors [crow ccol]'];

color=[color repmat('c',[1 length(crow)]) |;

[mrow, ...
mcol]|=find (wellsl (:,:,2) .%(1-wellsl (:,:,3)).xwellsl (:,:,4)); %
Find magenta (red&blue) entries

colors=[colors [mrow mcol]'];

color=[color repmat('m',[1 length (mrow)])];

[wrow, wcol]=find (wellsl (:,:,2).*wellsl (:,:,3).xwellsl (:,:,4)); %
Find white (red&green&blue) entries

colors=[colors [wrow wcol]'];

color=[color repmat('w',[1 length(wrow)]) |;

% Prepare color variable for plotting colors into corresponding grid
subplot (1,2,1); % Select grid

% Presettings for subolots in the loop

set(gca, 'color','k','XAxisLocation','top','YDir','reverse')
axis ([0 ncols+1.5 0 nrows-+1]);

daspect ([sqrt (3) ,2,1]); % Determine the relative scaling of the

data units along the axes
for k=1:size(colors ,2) % For all the color entries

% Fill spots with corresponding color
i=colors (1,k); % Row number of current spot

j=colors (2,k); % Column number of current spot

% Add corresponding color to current spot by using the
coordinates of the current spot and filling it with patch
if shape==0
if mod(i,2)==
patch ([j, j+shr*0.5, j+shr*0.5, j, j-shr*0.5,
j-shr%0.5], [i-shr%5/8, i-shrx3/8, i+shr*3/8, ...
i+shr+5/8, i+shr=3/8, i-shrx3/8], color(k))
else

79

148

149
150
151
152

end

end

A. MATLAB CODE I: RECOGNITION OF THE GRID AND SPOTS 80

patch ([j, j+shrx0.5, j+shrx0.5, j, j-shrx0.5,
j-shr+0.5] 4+ 0.5xones(1,6), [i-shr*5/8, i-shr=3/8,
i+shr*3/8, i+shr*5/8, i+shr*3/8, i-shr*3/8], color(k))
end
else % shape=—
if mod(i,2)==
patch ([j, j+shrx0.5, j+shrx0.5, j, j-shrx0.5,
j-shr+%0.5] 4+ 0.5%ones(1,6), [i-shr*5/8, i-shrx3/8,
i+shr+3/8, i+shrx5/8, i+shr*3/8, i-shrx3/8], color(k))
else
patch ([j, j+shr*0.5, j+shr*0.5, j, j-shr*0.5,
j-shr+0.5], [i-shrx5/8, i-shrx3/8, i+shr=3/8,
i+shr*5/8, i+shr*3/8, i-shrx3/8], color(k))
end
end
end
if plotmode==1 % If plotmode==1, the first plot stays untouched;
Exit the loop
break
end

N Ot W N

(o]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39

APPENDIX B

MATLAB Code II: Estimation by MSM

The following functions are shown in the order they are called in the program

structure.

function [solutions ,result ,experiment matrix,wells] = ...

msm(simstep_max , loops ,mu_max)

% MSM is the main function for the parameter estimation by the method of
% simulated moments. It calls the RGB matrices and shape of the data set
% from a file that was created by

% automatic grid fitting perspective click.m. The moments we need for the

%%

estimation are called from simcalcs.m. Initial estimators are ...

S

chosen, the

% objective function for the optimization is computed in optim.m and then

% optimized with fminsearchbnd. The best estimator is saved in

% in a file.

%

%

00

% EXPLANATION OF VARIABLES

%

% simstep max Number of simulations

% loops Number of optimizations with different initial values

% mu_max Maximum initial mu value for optimizations

% shape Shape of the grid

%

% shape=0: Odd numbered rows are shifted to the right by half a unit

% 1 2 3 ... ncols-1 ncols (shiftedrowsds)

% 1 2 3 ... ncols-1 ncols (originalrowsds)

% 1 2 3 ... ncols-1 ncols (shiftedrowsds)

%

%

% shape=1: Even numbered rows are shifted to the right by half a unit

% 1 2 3 ... ncols-1 ncols

% 1 2 3 ... ncols-1 ncols (shiftedrowsds)

% 1 2 3 ... ncols-1 ncols

%

%

% experiment matrix Four matrices of size (nrows,ncols) - representing the

% grid we get from the data set - with entries of

% either 0 or 1. experiment matrix(:,:,1) represents the

% area of interest , ie if experiment_ matrix(i,j,l)==

% that well is going to be part of the final grid ...
and of

% the calculations. If experiment_ matrix(i,j,1)==0, we

% remove that well from all our calculations.

81

40
41
42
43
44
45
46
47
48

49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

%
%
%
%
%
%
%
%
%

%
%
%

%
%
%
%
%
%
%
%
%%
%
%
%
%
%
%%
%
%
%
%
%
%%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

B.

nrows
ncols
originalrowsds

that are

shiftedrowsds
right '. see

max edges

wells

totalwells

indexed wells

rpwells

edges

totaledgelocations

indexed edges

rpedges

solutions

MATLAB CODE II: ESTIMATION BY MSM 82

experiment_matrix(i,j,2:4) represent the RGB color (s)
in well (i,j). e.g. if experiment_ matrix(i,j,3)==1,
there is green color in well (i,j).

For more detailed information see explanation of
experiment_matrix in

automatic grid fitting perspective click.m.

Number of rows

Number of columns

Rows in experiment matrix of the data set (ds) ...

'"further left '. see
explanation of shape.

Rows in experiment_matrix that are 'further ...

explanation of shape.

Note:

The main purpose is to know which rows are 'further
right ', which we call shiftedrowsds. They are just
called originalrowsds and shiftedrowsds , it is not
important to know if shiftedrowsds were actually
shifted to the right or if originalrowsds were shifted
to the left.

Matrix of size (nrows,ncols,3) that carries information
about if there can possibly be contamination between
well (i,j) and its neighbors. The last dimension
represents the three directions of possible
contamination. Edge direction: l=right, 2=right down,
3=left down. E.g. if there could be contamination
between well (i,j) and its right down neighbor,

max edges(i,j,2)==1. If there cannott be contamination
(ie at least one of the two wells lies outside the area
of interest), max edges (i,j,2)==0.

Matrix of size (nwors,ncols ,4,simstep max). Each
simulation step has one matrix of size

(nrows ,ncols ,4). (:,:,1) represents the

area of interest. (:,:,2:4) represent the wells of
the data set that can be filled with R, G or B

(e.g. if well (i,j) of the first simulation is

filled with green color, wells(i,j,3,1)=1, else 0).
Number of wells that could possibly have a color.
wells (:,:,1,:) has indicator variables 0 and 1;
indexed wells will index the locations of 1s in
increasing order, Os will remain 0

Permutation of totalwells

simstep _max matrices of size (nrows, ncols, 3) matrix
whose entries (i,j,k) are indicator variables of edges
between well (i,j) and its neighbor to the (k=1) right,
(k=2) right down, (k=3) left down.

Number of edges that could possibly be open.

max edges has indicator variables 0 and 1;

indexed _edges will index the locations of 1s in
increasing order, Os will remain 0.

Permutation of totaledgelocations.

Vector containing the initial estimators and the
objective function value (first 5 entries of each row),
the corresponding estimators after the optimization

(entries 6-9 of each row) and the objective function

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119

140
141
142
143
144
145
146

147

B. MATLAB CODE II: ESTIMATION BY MSM 83

% value (10th entry of each row).

% lambda_max max/initial lambda: Sum of all R-G-B wells divided

% by number total wells (there could not have been more
% seeds than how many times the color is observed after
Y% contamination) .

% lambda=[x; y; z] Seeding rate for the three colors

% mu Contamination rate (probability of any given

% undirected edge being open)

% estimator Best estimator of all optimizations

% result Output of the best estimator [lambda,mu]

% optimizations Variable with the number of loops and all estimators
% and errors before and after optimizations

%

%

% Felix Beck, Bence Melykuti (University of Freiburg, Germany)
% 16/7/2015

S

% Load the RGB matrices of the data set and shape, ie the variables ...

'experiment matrix' and 'shape
filename=input ('Filename for data set: ','s');

load (filename);

dots=strfind (filename ,'."'); % Find the dot in the filename
if length(dots)>0

outputsuggestion=sprintf('%s estimators'

,filename (1:max(dots)-1));
else

',filename);

outputsuggestion=sprintf{'%s estimators
end
outputname=input (sprintf('Enter filename for output (or press Return ...

for the default %s.mat): ',outputsuggestion),'s');
tic

% Preset sizes of simulation matrices
nrows=size (experiment matrix,1);

ncols=size (experiment matrix ,2);

% rng ('shuffle '); % Shuffle random generator

rng ('default '); % Reset random generator

% Create originalrowsds & shiftedrowsds

if shape==0;
originalrowsds =2:2:size (experiment _matrix ,1);
shiftedrowsds =1:2:size (experiment _matrix,1);

else %shape ==1
originalrowsds =1:2:size (experiment _matrix ,1);
shiftedrowsds =2:2:size (experiment _matrix ,1);

end

% We create three matrices max edges(:,:,1:3) for possible open edges (ie
% possible contamination between two neighbors), needed for the ...
calculations of the moments:

% Edge direction: l=right, 2=right down, 3=left down. If an edge would

148

149

160
161
162
163

177

B. MATLAB CODE II: ESTIMATION BY MSM

% connect a well outside and one inside the area of interest , it must
be set to closed (0). We first allow every edge to be open

randomly , then zero those which cannot be:

% (originalrowsds , 1): no left down; (shiftedrowsds, end): no right, ...

no right down; (originalrowsds, end): no right; (end,:): no right
down, no left down

max_edges=ones (nrows ,ncols ,3);

max_edges(originalrowsds ,1,3)—=0;

max_edges(shiftedrowsds,end,1)=0;

max_edges(shiftedrowsds, end,2)=0;

max_edges(originalrowsds,end,1)=0;

max edges(end,: ,[2 3])=0;

84

% Checking if the neighbors for each well are part of area of interest and

% if not, close the corresponding edge.
for i=1l:nrows
for j=1l:ncols

if experiment matrix(i,j,1)==1 % 'Area of interest '

if max(i=originalrowsds)==1 % If row is part of originalrowsds

if j<ncols && experiment matrix(i,j+1,1)==0 % If right
neighbor is not in area of interest
max_edges(i,j,1)=0; % right edge cannot exist
end
if i<nrows && experiment matrix(i+1,j,1)==0 % If right
down neighbor is not in area of interest
max_ edges(i,j,2)=0; % right down edge cannot exist
end
if i<nrows && j>1 && experiment matrix(i+1,j-1,1)==0 %
If down left neighbor is not in area of interest
max edges(i,],3)=0; % left down edge cannot exist
end
else % Analogue if row is part of shiftedrowsds
if j<ncols && experiment matrix(i,j+1,1)==
max_edges(i,j,1)=0;
end
if j<ncols && i<nrows && experiment matrix(i+1,j+1,1)==
max_edges(i,]j,2)=0;
end
if i<nrows && experiment matrix(i+1,j,1)==0
max_edges(i,]j,3)=0;
end
end
else
max edges(i,j,:)=0; % If (i,j) is not in area of interst ,
all three edges are zero
end
end

end

% Preparing wells

wells=zeros (nrows,ncols ,4) ;

wells (:,:,1)=experiment matrix(:,:,1); % Area of interest equals the
area of interest of the experiment_matrix

totalwells=sum(sum(wells (: ,:,1)));

indexed _wells=wells (:,:,1);

B. MATLAB CODE II: ESTIMATION BY MSM

196 counter=0;

197 for i=1l:nrowsx*xncols

198 counter=counter+indexed wells(i);

199 indexed _wells(i)=indexed _wells(i)*counter; % Only insert counter

if not 0 (ie. 1)

200 end

201

202 rpwells=zeros (totalwells ,3,simstep_max); % This is the source of
randomness for wells.

203 for simstep=1:simstep_max

204 for i=1:3

205 rpwells (:,i,simstep)=randperm (totalwells);
206 end

207 end

208

209 % Preparing edges
210 edges=zeros(nrows,ncols ,3,simstep max);
211

212 totaledgelocations=sum (sum (sum(max_edges)));

214 indexed edges—=max edges;

215 counter=0;

216 for i=1:nrowss*ncols=#3

217 counter=counter+max edges(i);

218 indexed _edges(i)=max_edges(i)xcounter; % Only insert counter if

not 0 (ie. 1)

219 end

220

221 rpedges=zeros(totaledgelocations ,simstep max); % This is the source of
randomness for edges.

222 for simstep=1:simstep_max

223 rpedges (:,simstep)=randperm (totaledgelocations);

224 end

225

226

227 | dsRGB,dstwocol ,dsnb | = simcalcs(nrows, ncols, shiftedrowsds,

originalrowsds , experiment_ matrix, max_edges); % Calculations for

data set

229 solutions=zeros(loops ,10); % Presettings for solutions
230

231 lambda max=[sum(sum(experiment matrix(:, :, 2))) / ...
sum (sum(experiment _matrix (:, :, 1))),... % max/initial lambda: sum
of all R-G-B wells / number total wells
232 sum (sum (experiment _matrix(:, :, 3))) /
sum (sum (experiment _matrix (:, :, 1))),...
233 sum(sum(experiment matrix (:, :, 4))) / ...
sum(sum (experiment _matrix (:, :, 1)))];
234
235

236 % Settings for initial estimator(s) of lambda and mu

237 for l=1:loops % For number of optimizations

238 if 1==1 % If first optimization

239 lambda=lambda_max; % lambda gets the largest value possible
240 mu=0; % mu gets the smallest value possible

241 else % If loops >1, mu is going up, lambda is going

down; lambda is always >0

B. MATLAB CODE II: ESTIMATION BY MSM 86

242 lambda=lambda -lambda_max/loops; % New initial lambda ...
estimators (assumption: lambda_max/loops<=lambda<=lambda_max)
243 mu=mutmu_max/(loops-1); % New initial mu estimators

(assumption: O<=mu<=mu_max)

244

245 end

246

247 solutions (1,1:4)—=[lambda ,mu]; % Estimators before optimization

248

249 % Calculating the max error with initial values of lambda and mu
to test if

250 % the optimized error is really smaller

251 [~,abst]=optim_output ([lambda ,mu], nrows, ncols, shape,
simstep max, dsRGB, dstwocol, dsnb, max edges, 0, totalwells ,
indexed wells, rpwells, wells, totaledgelocations , ...
indexed _edges, rpedges, edges);

252 solutions (1,5)=sum(abst (:));

253

254 % Options for fminsearchbnd optimization (function optim returns the

255 % estimators for lambda and mu)

256 options = .
optimset ('MaxFunEvals',20000, 'MaxIter',20000, 'TolFun',le-7, 'TolX"' ,le-7);

257 % fminsearchbnd behaves similarly to fminsearch, except you can
add bound

258 % constraints.

259 [param, fval]|=fminsearchbnd (@(param) optim(param, nrows, ncols,
shape, simstep max, dsRGB, dstwocol, dsnb, max edges, ...
totalwells , indexed_wells, rpwells, wells, totaledgelocations , ...
indexed edges, rpedges, edges), [lambda,mu], [0,0,0,0],
[lambda max,0.2], options);

260

261 solutions (1,6:10) =[param, fval]; % Estimators after optimization
and objective function value

262

263 end % of for

264

265 [~ ,rowmin]=min(solutions (:,end)); % Searching for best estimator in ...

solutions

267 %Preparing output
268 estimator=[solutions (rowmin,6); solutions(rowmin,7);
solutions (rowmin,8); solutions (rowmin,9) |;
269 result=[{'estimators'};estimator(1l);estimator (2);estimator(3);estimator (4)];

% Output of the best estimator [lambda 1,lambda 2,lambda 3 ,mu]

272 % Returning an optimized simulation as an output because the
optimization function has limited output options: (note that if
simstep_max>1, the image that will be shown as an output is not

273 % representative for the calculated errors/distances because the image ...
only shows the first simulation!!)

274 lambda=estimator (1:3) ';

275 mu=estimator (4) ';

276 [wells ,abst]=optim_output ([lambda ,mu], nrows, ncols, shape,
simstep__max, dsRGB, dstwocol, dsnb, max_edges, 1, totalwells, ...
indexed wells, rpwells, wells, totaledgelocations , indexed edges,

rpedges, edges);

318
319
320

B. MATLAB CODE II: ESTIMATION BY MSM 87

optimizations=cell (size (solutions ,1)+41,size (solutions ,2)+1); % Create

variable with all estimators and errors before and after optimizations

titles=['optim number'; 'lambda_1_ ini'; 'lambda_ 2 ini'; 'lambda_ 3 ini';
'mu_ini '; 'error ini '3 'lambda 1 '; 'lambda 2 RS
'lambda_3 "5 'mu Yo
'error "1

optimizations (1,:)=cellstr (titles);
for i=1:size(solutions ,1)
optimizations (i+1,:)=num2cell ([i,solutions(i,:)]);

end

optimizations % Output for testing reasons
abst % Output for testing reasons

result % OQutput of final estimators

% Create a file with the best estimator.

estimators=cell (4,2);

est titles=['lambda red '; 'lambda green'; 'lambda blue '; 'mu ...
I

estimators (:,1)=cellstr (est titles);

estimators (:,2)=num2cell (estimator (1:4) ');

% Create output for ellapsed time
eltime=toc;

time_titles='Ellapsed time in sec';
time (l)=cellstr (time titles);

time (2)=num2cell (eltime) ;

% Create output for trivial error and optimized error
error_titles=['Trivial error '; 'Optimized error'];
errors (:,1)=cellstr (error titles);

errors (:,2)=num?2cell ([solutions (1,5) ;sum(abst (:))]);

% Create output for inputs by the user

input titles=['Number of simulations 's 'Number of ...
optimisazions '; 'Max initial mu value for
optimizations '];

input values(:,l)=cellstr (input titles);

input_values (:,2)=num2cell ([simstep _max,loops ,mu_max]) ;

if length (outputname)==0 % If user decides to use the default name ...
outputsuggestion
choice = menu(['Do you want to save the results in the file ', ...
outputsuggestion, '.mat?'], 'Yes','No'); % Check if the user ...

would like to save the file

if choice==1

save (sprintf('%s.mat',outputsuggestion),

' ' ' | [

'estimators','wells','time','errors','input values', 'max edges')

disp (['The file ', outputsuggestion, '.mat was created
successfully.'])
else

disp('No file was created.")

else

end

end

B. MATLAB CODE II: ESTIMATION BY MSM 88

end
% If user chose a file name

choice = menu(['Do you want to save the results in the file ', ...

outputname, '?'], 'Yes','No'); % Check if the user would like
to save the file
if choice==

save (sprintf('%s',outputname), ...

' ' ' ' '

'estimators','wells','time', 'errors','input_ values', 'max_edges')

[

disp (['The file ', outputname, was created successfully.'])
else
disp ('No file was created. ')

end

© 0 N D O W

e e e
w N = O

14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29

30

31

32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50

%
%
%
%
%
%
%
Y%
%
%
%
%

S

S

S

%
%
%
%
%
%
%

%
%
%
%
%
%%
%
%
%

%

%

%
%
%
%
%
%
%

%
%
%
%
%
%
%
%
%
%
%
%

B. MATLAB CODE II: ESTIMATION BY MSM
function [avRGB,avtwocol ,avnb | = ...
simcalcs (nrows ,ncols ,shiftedrows ,originalrows , wells ,max_edges)
SIMCALCS.m calculates the moments we chose for the optimization of our
simulations: averages of colors, multiple colors per well and neighbors
with the same color
EXPLANATION OF VARIABLES
simstep max Number of simulations
wells Matrix of size (nwors,ncols ,4,simstep max). Each
simulation step has one matrix of size
(nrows ,ncols ,4). (:,:,1) represents the
area of interest: E.g. it can happen that some ...
parts of a column
or row are not within the limits of our
original image. If that happens, the
corresponding area of interest matrix entry is
set to 0. Whenever there is a 0 entry in the
area of interest matrix, the corresponding
R/G/B matrix entries will be ignored for any
further calculations. (:,:,2:4) represent the ...
wells of
the data set that can be filled with R, G or B
(e.g. if well (i,j) of the first simulation is
filled with green color, wells(i,j,3,1)=1, else
0).
avRGB [R,G,B]-vector of well-average of color
RGsim Matrix with ones where there is R and G color ,else 0
RBsim Matrix with ones where there is R and B color ,else 0
GBsim Matrix with ones where there is G and B color ,else 0
avRG Average #R&G per well (divided by total number of
wells & divided by number of simulations)
avRB Average #R&B per well (divided by total number of ...
wells & divided by number of simulations)
avGB Average #G&B per well (divided by total number of ...
wells & divided by number of simulations)
avtwocol |[RG,RB,GB] - vector of well-average of multiple colors
in one well
nrows Number of rows
ncols Number of columns
originalrows Rows in experiment matrix that are 'further left '. See
explanation of shape
shiftedrows Rows in experiment matrix that are 'further ...
right '. See
explanation of shape
max _edges Matrix of size (nrows,ncols,3) that decides if there
can possibly be contamination between well (i,j) and
its neighbors. The last dimension represents the
three directions of possible contamination. Edge
direction: 1=right, 2=right down, 3=left down.
E.g. if there could be contamination between well (i,j)
and its right down neighbor, max edges(i,j,2)==1. If
there cannot be contamination (ie the neighbor lies

89

simnb r

outside the area of interest), max_edges (i,
same colored neighbors average for

right arrow

i.2)==0.

simulations -

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75

76

s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
96
97
98

99

B. MATLAB CODE II: ESTIMATION BY MSM 90

% simnb _dr # same colored neighbors average for simulations -

% right down arrow

% simnb dl # same colored neighbors average for simulations -

%% left down arrow

% avnb [R,G,B]-vector of well-average of same colored

% neighbors

%%

00

% Felix Beck, Bence Melykuti (University of Freiburg, Germany)

% 16/7/2015

simstep max=size (wells ,4); % By initial definition of simstep max

% Calculate number of RGB in data set by adding together all occupied

% wells of all simulations. Divide by total number of wells (number of
ones in area of

% interest matrix) and by total number of simulations to get average per

% well.

avRGB=[sum (sum (sum (wells (: ,: ,2,:)))./sum(sum(wells (:,:,1,:))))/simstep max, ...
sum (sum (sum{ wells (:,:,3,:)))./sum(sum(wells (:,:,1,:))))/simstep max, ...
sum (sum (sum{ wells (:,: ,4,:)))./sum(sum{wells (:,:,1,:))))/simstep_max];

% Calculate number of wells with (at least) two colors by adding

together all
% wells of all simulations that are RG,GB or RB. Divide by total ...
number of wells and by total number of simulations to get average

% per well.

RGsim=wells (:,:,2 ,:)=—wells (:,:,3,:) & wells (:,:,2,:)==1;

RBsim=wells (:,:,2,:)=—wells (:,:,4,:) & wells (:,:,2,:)==1;

GBsim=wells (:,:,3 ,:)=wells (:,: ,4,:) & wells (:,:,3,:)==1;
avRG=sum (sum (sum (RGsim (: ,: ,1 ,:)))./sum(sum(wells (:,:,1,:))))/simstep max;
avRB=sum (sum (sum (RBsim (: ,: ,1 ,:)))./sum(sum(wells (:,:,1,:))))/simstep_max;
avGB=sum (sum (sum (GBsim (: ,: ,1 ,:)))./sum(sum(wells (:,:,1,:))))/simstep max;
avtwocol=[avRG,avRB,avGB | ;

avnb=zeros (1,3); % Preset

% Calculate number of neighbored wells with same color by adding together

% all the R/G/B wells of all simulations that hava a neighbor with the

same color. Divide by

% total number of wells and by total number of simulations to get average

% per well.
for k=2:4 % Check neighbors for same color for R-G-B

simnb_r = sum (sum (sum (wells (:, 1:(ncols-1), k, :) = wells (:,
2:ncols, k, :) & wells(:, 1:(ncols-1), k, :) = 1))./sum (sum
(max_edges (:,:,1))));

B. MATLAB CODE II: ESTIMATION BY MSM

100 simnb_dr = sum (sum (sum ([wells(shiftedrows (shiftedrows~=nrows),
1:(ncols-1), k, :) = wells((shiftedrows
(shiftedrows~=nrows)+1), 2:ncols, k, :)

101 & wells (shiftedrows (shiftedrows~=nrows), 1l:(ncols-1), k, :)

= 1; ...

102 wells (originalrows (originalrows~=nrows), 1l:(ncols-1), k, :)

— wells ((originalrows (originalrows~=nrows)+1),
1:(ncols-1), k, :)

103 & wells(originalrows (originalrows~=nrows), 1:(ncols-1), k, :)
=— 1]))./sum(sum (max_edges(:, :, 2))));
104
105 simnb dl = sum (sum (sum ([wells(shiftedrows (shiftedrows~=nrows),
1:(ncols-1), k, :) = wells((shiftedrows
(shiftedrows~=nrows)+1), 1:(ncols-1), k, :)
106 & wells(shiftedrows (shiftedrows~=nrows), 1l:(ncols-1), k, :)
— 1;
107 wells(originalrows (originalrows~=nrows), 2:ncols, k, :) —

wells ((originalrows (originalrows~=nrows)+1), 1l:(ncols-1),

k, :)

108 & wells(originalrows (originalrows~=nrows), 2:ncols, k, :) —
1]))./sum (sum (max edges(:, :, 3))));

109

110 avnb(k-1)=sum ([simnb r,simnb dr,simnb dl])/simstep max;

111 end

112

113 end

D Ot s W

3

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

B. MATLAB CODE II: ESTIMATION BY MSM 92

function [wells_output ,abst] = optim_output(param, nrows, ncols, ...

%

S

%%

C
%

%
%

S

%
Y%
%%
%
%
%
%
%%
%
%
%
%
%
%
%
%
%

S

S

S

S

S

S

S

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%%
%
%
%
%
%
%
%
%

o

S

S

S

S

S

S

shape, simstep_max, dsRGB, dstwocol, dsnb, max_edges, visualize, ...
totalwells , indexed wells, rpwells, wells, totaledgelocations , ...
indexed _edges, rpedges, edges)

OPTIM_OUTPUT.m is used for returning the results of a simulation ...
using the

already optimized values of lambda and mu in addition to the errors

because the function optim.m has limited output options.

NOTE: The difference between optim.m and optim_output.m is the ...
number of

outputs (and the variable visualize). This is because the 'real'

optim.m that delivers the objective function for the optimization can

only have limited outputs.

EXPLANATION OF VARIABLES

param Current values of [lamda ,mu]
simstep max Number of simulations
originalrows Rows that are 'further left '. See explanation of

shape in msm.m.

shiftedrows Rows that are 'further right'. See explanation of
shape in msm.m.

wells Matrix of size (nwors,ncols ,4,simstep max). Each
simulation step has one matrix of size
(nrows ,ncols ,4). (:,:,1) represents the
area of interest. (:,:,2:4) represent the ...

wells of

the data set that can be filled with R, G or B
(e.g. if well (i,j) of the first simulation is

filled with green color, wells(i,j,3,1)=1, else

0).
totalwells Number of wells that could possibly have a color.
indexed wells wells (:,:,1,:) has indicator variables 0 and 1;

indexed wells will index the locations of 1s in
increasing order, Os will remain 0O

rpwells Permutation of totalwells

edges simstep max matrices of size (nrows, ncols, 3)
matrix whose entries (i,j,k) are indicator
variables of edges between well (i,j) and its
neighbor to the (k=1) right, (k=2) right down,
(k=3) left down.

totaledgelocations Number of edges that could possibly be open.

indexed_edges max_edges has indicator variables 0 and 1;
indexed_edges will index the locations of 1s in

increasing order, O0s will remain O.

rpedges Permutation of totaledgelocations.
nrows Number of rows

ncols Number of columns

shape Shape of the grid

vizualize Information about if simulation.m

visualizes the simulation or not (if visualize==
=> visualize)

max_edges Matrix of size (nrows,ncols,3) that carries
information about if there can possibly be

contamination between well (i,j) and its neighbors.

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
d
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93

94
95
96

97
98
99
100
101
102
103

B. MATLAB CODE II: ESTIMATION BY MSM 93

% The last dimension represents the three directions
% of possible contamination. Edge direction: l=right,
% 2=right down, 3=left down. E.g. if there could be
% contamination between well (i,j) and its right down
% neighbor , max_edges(i,j,2)==1. If there cannot be
% contamination (ie the neighbor lies outside the

% area of interest), max_edges (i,j,2)==0.

% d_RGB Normalized squared distances of averages of single
% colors [R,G,B] over all wells, between data set

% and simulations

% d_twocol Normalized squared distances of averages of

% multiple colors [RG,RB,GB] in one well over all

% wells , between data set and simulations (currently
% decided not to be important and set to zero)

% d_nbRGB Normalized squared distances of averages of same
% colored [R,G,B] neighbors over all possible

% edges, between data set and simulations

% dsRGB [R,G,B]-vector of well-average of color for data
%% set

% dstwocol [RG,RB,GB] - vector of well -average of multiple

% colors in one well for data set

% dsnb [R,G,B]-vector of well-average of same colored

% neighbors for data set

% abst (3,3) matrix with all the above distances

%

% outputs:

% wells output Wells calculated with the optimal estimators

% abst Distances calculated with the optimal estimators
%%

%

% Felix Beck, Bence Melykuti (University of Freiburg, Germany)

% 16/7/2015

lambda=param (1:3) ;

mu=param (4) ;

% Start simulation with optimized estimators and visualize results
[wells , shiftedrows , originalrows]=simulation(nrows, ncols, shape, ...
lambda, mu, visualize, totalwells , simstep max, indexed wells,

rpwells , wells, totaledgelocations , indexed edges, rpedges, edges);

wells output=wells (:,:,:,1); % Save first simulation for output of ...

simulated wells

% Get averages from simcalcs
[avRGB,avtwocol ,avnb] = simcalcs(
nrows ,ncols ,shiftedrows ,originalrows , wells ,max_edges); % ...

Calculations for simulations

% Presetting for absolute distances between data set and simulations
d RGB=zeros (1,3);

d_twocol=zeros (1,3);

d_nbRGB=zeros (1,3);

%(squared) distances between data set and simulations

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

121
122
123

for

end

B. MATLAB CODE II: ESTIMATION BY MSM 94

i=1:3
if dsRGB(i)~=0
d RGB(i)=((dsRGB(i)-avRGB(i))/dsRGB(i)) " 2;
else
d_RGB(i)=(dsRGB(i)-avRGB(i)) "~ 2;
end
if dstwocol(i)~=0
d_twocol(i)=0x((dstwocol(i)-avtwocol(i))/dstwocol(i)) ~2;
else
d_twocol(i)=0x(dstwocol(i)-avtwocol(i))~2;
end
if dsnb(i)~=0
d_nbRGB(i)=((dsnb(i)-avnb(i))/dsnb{i))"~2;
else
d nbRGB(i)=(dsnb(i)-avnb(i)) ~2;

end

abst=[d_RGB;d_twocol;d nbRGB]; % (3,3) matrix with all distances

end

— =
= O © 0 N D U s WwWwN

CUOOT O T Ot A R R i B R B A R R W W W W W W W W oW W RN N NN NN NN R e e e e e e
AN R O © 00O WA WP, O 00N XN RO ®© 0N R RN RO © 0N AW N

B. MATLAB CODE II: ESTIMATION BY MSM 95

function [wells, shiftedrows ,originalrows] = simulation (nrows, ncols, ...

Yo
%
%

C
%

%
%
%
%
Y%
%
%
%%
%
%
%
%
%
%
%%
%
%
%
%
%
%%
%
%
%
%
%
%%
%
%
%
%
%
%
%
%
%
%
%
%
%
%%
%
%
%
%
%
%
%
%

S

IS

S

S

S

S

S

S

S

S

S

shape, lambda, mu, visualize , totalwells , simstep_max, ...
indexed wells, rpwells, wells, totaledgelocations , indexed edges,
rpedges, edges)
SIMULATION.m creates the wells and the contamination edges for the
simulations. The wells before the contamination, as well as the
wells after contamination, which are an output of contamination.m , are

visualized.

EXPLANATION OF VARIABLES

nrows Number of rows

ncols Number of columns

shape Shape of the grid

originalrowsds Rows in wells that are 'further left '.

shiftedrowsds Rows in wells that are 'further right'.

simstep max Number of simulations

wells simstep _max matrices of size (nrows,ncols ,4) -
representing the grid we get from the data set - with

entries of either 0 or 1.
First coordinate: row
Second coordinate: column
Third coordinate: 1:Indicator whether well is part of
the area of interest. Ie if
wellsds.w(i,j,1)==1 that well is
going to be part of the final grid
and of the calculations. If
wellsds.w(i,j,1)==0, we ignore that
well for all our calculations.
2:Indicator if red (l1=well is filled
with red seed, O=well is not filled
with red seed)
3:Indicator of green
4:Indicator of blue

totalwells Number of wells that could possibly have a color.
threshwell Number of seeds that will be put into wells
indexed wells wells (:,:,1,:) has indicator variables 0 and 1;

indexed wells will index the locations of 1s in
increasing order, 0Os will remain 0

rpwells Permutation of totalwells

iniwells The wells before contamination (after seeding). Needed
for visualization

edges simstep max matrices of size (nrows, ncols, 3)
matrix whose entries (i,j,k) are indicator
variables of edges between well (i,j) and its
neighbor to the (k=1) right, (k=2) right down,
(k=3) left down.

totaledgelocations Number of edges that could possibly be open.

threshedge Number of edges that will be put into edges.

indexed__edges max_edges in msm.m has indicator variables 0 and 1;
indexed _edges will index the locations of 1s in
increasing order, Os will remain 0.

rpedges Permutation of totaledgelocations

simstep Number of current simulation

lambda=[x; y; z] Seeding rate for the three colors

mu Contamination rate (probability of any given

B. MATLAB CODE II: ESTIMATION BY MSM

55 % undirected edge being open)

56 % vizualize Information about if simulation.m visualizes

57 % the simulation or not (if visualize==1 => visualize)
58 %

59 %

60 %

61 % Felix Beck, Bence Melykuti (University of Freiburg, Germany)

62 % 16/7/2015

63

64 % Setting originalrows & shiftedrows for zeroing out the indicator of the
65 % last well in every odd row.

66 if shape==0;

67 originalrows =2:2:nrows;
68 shiftedrows =1:2:nrows;
69 else % shape=1

70 originalrows =1:2:nrows;
71 shiftedrows =2:2:nrows;
72 end

73

74 % lambda=[0.1,0.2,0.3]; % For testing reasons

75 % mu=0.04; % For testing reasons

76

77 threshwell=round (lambdaxtotalwells);

78 % We use the random permutations rpwells so that the proportions of ...
seeded wells are very accurately the respective parameters.

79 % rpwells (1l:threshwell(i),i,simstep); -- @Gives index values; the
places in indexed wells where these values are found are those
that must get the seeds.

80 % The entries of wells with the four coordinates

81 % |jl j2]=find(indexed wells=—rpwells(j,i,simstep)), i+1, simstep

82 % will get a seed of colour i.

83 for simstep=1:simstep max

84 for i=1:3

85 for j=1l:threshwell (i)

86 [j1, j2]=find (indexed wells==rpwells(j,i,simstep));

87 wells (jl,j2,i+1,simstep)=1;

88 wells (:,:,1,simstep)=wells (:,:,1,1); % Adjust area of
interest for all simulations

89 end

90 end

91 end

92 iniwells=wells;

93

94

95 threshedge=round (muxtotaledgelocations);

96

97 % We use the random permutations rpedges so that the proportion of ...
open edges is very accurately the respective parameter.

98 % rpedges (l:threshedge ,simstep); -- Gives index values; the places in ...
indexed edges where these values are found are those that will get
the open edges.

99 % The entries of edges with these four coordinates:

100 %

S

ind2sub ([nrows ,ncols ,3], find(indexed edges—rpedges(i,simstep))), ...
simstep
101 % will get an edge. Here we cannot use find on its own as there are 3
coordinates , not only 2. The way we use it gives a linear index.
102

103
104
105

106
107
108
109

110

111

112

113
114

115

116

117
118

120
121

122

123

125

127

140
141
142

143
144

145

B. MATLAB CODE II: ESTIMATION BY MSM 97
for simstep=1:simstep_max
for i=1l:threshedge
[i1, i2, i3]=ind2sub ([nrows,ncols ,3],
find (indexed _edges==rpedges (i ,simstep)));
edges (il ,i2,i3 ,simstep)=1;
end
edges3d=edges (:,:,:,simstep); % Transform edges into 3D to give
correct input for contamination.m
% Find all the contaminated wells
if simstep==1 % For visualization of the first simulation
[edgelist , componentsl|=contamination(edges3d, nrows, ncols,
shiftedrows , originalrows);
else
[~, componentsl|=contamination(edges3d, nrows, ncols, ...
shiftedrows , originalrows);
end
wells3d=wells (:,:,:,simstep); % Transform wells for each
simulation into 3D
for i=1l:size (componentsl,2) % Loop for all connected components of ...
contamination
for j=2:4 % Loop for all colors RGB
comp=componentsl{i}+(j-1)*nrows*ncols; % (j-1)*nrows*ncols ...
because of dimension of wells => 'Jumps' into next matrix
wells3d (comp)=max(wells3d (comp)) ; % Apply contamination
for connected component i and color j
end
end
wells (:,:,:,simstep)=wells3d; %Transform wells back into 4D
end
% Visualize first simulation before and after contamination (if optimal
% estimator already found)
if visualize==
% Create grid with hexa function
hexa(nrows,ncols ,wells (:,:,:,1) ,iniwells (:,:,:,1) ,shape,0);
for 1=1:2
subplot (1,2,1); % Plot 1: wells before contamination; Plot 2: .
wells after contamination
if l==
title ('First simulation before contamination')
else
title ('First simulation after contamination')
end
hold on
for i=1l:size(edgelist ,2) % Add open edges/connected components ...
to figures
if shape==0
plot ([edgelist(2,i) + 0.5-0.5 *x (1-mod{edgelist(1,i),
2)), edgelist(4,i) + 0.5-0.5 % ...
(1-mod(edgelist (3,i), 2))], [edgelist(1,i),
edgelist (3,i)], 'w', 'Linewidth', 1.5); % Adjust x-axis

else % shape==

B. MATLAB CODE II: ESTIMATION BY MSM

146 plot ([edgelist(2,i) + 0.5-0.5 * (mod(edgelist (1,i),
2)), edgelist(4,i) + 0.5-0.5 % (mod(edgelist(3,i),
2))], [edgelist(1,i), edgelist(3,i)], 'w',
'Linewidth', 1.5); % Adjust x-axis

147 end

148 end

149 hold off

150 end

151 end

152

153 end

© 0 N D O W

e e e
w N = O

14
15

16
17
18
19
20
21
22

23
24
25
26

28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52

function [edgelist , componentsl]=contamination (edges, nrows,

shiftedrows ,

%

S

% 4-row matrix ,

% breadth - first

%
%

edgelist and a cell

B. MATLAB CODE II: ESTIMATION BY MSM

originalrows)

search.

% EXPLANATION OF VARIABLES

%

% edges

%
%
%

% edgelist
(4, no.

%
%

99

ncols , ...

CONTAMINATION.m creates from the matrix edges the list of edges in a

array of connected components by

simstep _max matrices of size (nrows, ncols, 3) matrix

whose entries (i,j,k) are indicator variables of edges
between well (i,j) and its neighbor to the (k=1) right,

(k=2) right down, (k=3) left down.
List of the edges (connected neighbors)

of size ...

of edges). Each column stores an edge (v_1, v_2) as

[rowindex (v 1); colindex (v 1); rowindex (v 2);

colindex (v _2)].

% originalrows

%
%
%

S

shiftedrows

% edgelistl

%
%

Rows that are 'further left '. See explanation of shape

in msm.m.

Rows that are 'further right'. See explanation of shape

in msm.m.

edgelist converted to size (2, no. of edges) by

sub2ind, ie. each vertex is indexed by a linear index.

Each column stores a [linearindex(v_1);

linearindex (v_2)].

% componentsl{i}

%
%%
%

% edgelistql

%
% vtov
%
%
%

% Felix Beck,
12/8/2015

%

S

Bence Melykuti

Matrix which contains in one row the elements of the

i'th connected component (linear indexing). Its purpose

is that each well within a connected component will

ultimately have the same color.

Queue of edges. Created as a copy of edgelistl , the

visited edges are removed from it until

it is empty.

Vertices to visit. A row vector of vertices which have

been discovered as mneighbors of an already visited

element of the current componentsl{i}.

edgelist=zeros (4,0);

% For right -arrows

[i, j]=find (edges(:,:,1)); % Find row and column indices of
nonzero elements of edges (:,:,1)

% 1st coordinate: row indices of 1st vertices of edges

% 2nd coordinate: column indices of the same vertices

% 3rd coordinate: row indices of 2nd vertices of edges

% 4th coordinate: column indices of the same vertices

edgelist=[edgelist [i';j"';i"';j"'+1]];

% Analogue for

right -down arrow

[i, j]=find (edges(shiftedrows (:) ,:,2));

edgelist=[edgelist

(University of Freiburg, Germany)

all ...

[shiftedrows (i);j';shiftedrows (i)+1;j'+1]];

64
65

66
67
68
69
70
71
72
73
74
75
76
d

78
79
80
81
82
83
84
85
86
87
88
89
90

91
92

93
94

95
96
97
98
99
100
101

B. MATLAB CODE II: ESTIMATION BY MSM 100

[i, j]=find (edges(originalrows (:) ,:,2));
edgelist=[edgelist [originalrows (i);j';originalrows (i)+1;j"']];
% Analogue for left -down arrow

[i, j]=find (edges(shiftedrows (:) ,:,3));

edgelist=[edgelist [shiftedrows(i);j';shiftedrows(i)+1;j"']];
3))s
J

i
[i, j]=find (edges(originalrows (: s
edgelist=[edgelist [originalrows(i);j';originalrows (i)+1;j"'-1]];

i

% Converting the representation of wells in edgelist from (row, col) ...
to (col-1)*nrows+trow (from 2 coordinates to 1).

% The breadth-first search (BFS) implemented this way is faster.

edgelistl =[sub2ind ([nrows ncols], edgelist (1,:), edgelist (2,:)); ...
sub2ind ([nrows ncols], edgelist (3,:), edgelist (4,:))];

% We start with the first edge in edgelistql. Put its endpoints into both
%%
%

% While vtov not empty: Take first element from vtov. k2: all edges from

S

componentsl{i} and vtov. Remove this edge from edgelistql.

% edgelistql which have vtov(l) in the second row. Restrict k2 to k which

% are those where the neighbor of vtov(l) in the first row is not in

% componentsl{i} yet. Put these neighbors into both componentsl{i} and

% vtov. Remove the k2 edges from edgelistql as these have been traversed.

% Repeat with kl1: all edges from edgelistql which have vtov(l) in the first

% row. Remove vtov (1) from vtov. When vtov is empty, then the ...
component has

% been fully explored. If there is still an edge left in edgelistql , then

% it starts a new component.

componentsl=cell (1);
edgelistql=edgelistl;

i=1;

while size(edgelistql ,2)>0
% Start the new component with endvertices of first edge of edgelistql
componentsl{i}=[edgelistql (1,1) edgelistql (2,1)]; vtov=componentsl{i};
edgelistql (:,1) =]];
while length (vtov)>0
k2=find (edgelistql (2 ,:)==vtov(1)); % Elements in edgelistql ...
where the vertex vtov(l) is the second vertex
k=[];
for 1=1:length(k2) % Look through the neighbors k2 and only ...
keep the ones that are not in componentsl{i}
if any(edgelistql (1,k2(1))=—=componentsl{i})==0
k=[k k2(1)]; % k has the indices of all neighbors of ...
vtov(1l) that are not yet in componentsl{i} when ...
vtov(l) is in the second row of edgelistql
end
end
componentsl{i}=[componentsl{i} edgelistql (1,k)];
vtov=[vtov edgelistql (1,k)];
edgelistql (:,k2)=][];

% Do this also when vtov(1l) is in the first row of edgelistqgl

102

103
104

105
106

107
108
109
110
111
112
113
114
115
116
117

B. MATLAB CODE II: ESTIMATION BY MSM

kl=find (edgelistql (1 ,:)==vtov(1l)); % Elements in edgelistql

where the vertex vtov(1l) is the

k=[];

first vertex

for 1=1:length (k1) % Look through the neighbors kl and only

keep the ones that are not in componentsl{i}
if any(edgelistql (2,k1(1))=—componentsl{i})==
k=[k k1(1)]; % k has the indices of all neighbors of

end

end

vtov(l) that are not yet
vtov(1l) is in the first

in componentsl{i} when

row of edgelistql

componentsl{i}=[componentsl{i} edgelistql (2,k)];
vtov=[vtov edgelistql (2,k)];
edgelistql (:,k1)=][];

vtov (1)

=[1;

end % of while length(vtov)>0

i=i+1;
end % of while

end

size (edgelistql ,2)>0

101

~N O w

(o]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

B. MATLAB CODE II: ESTIMATION BY MSM 102

function epsilon_new=optim(param, nrows, ncols, shape, simstep max, ...

%
%

%

C
%

%
%

%
Y%
%
%
%
%
%
%%
%
%
%
%
%
%
%
%
%

S

S

S

S

S

S

S

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

o

dsRGB, dstwocol, dsnb, max_edges, totalwells , indexed_wells, ...
rpwells , wells, totaledgelocations , indexed edges, rpedges, edges)
OPTIM.m computes the objective function for the optimization of parameter
values with given values of lambda and mu. The matrices for the
simulation
(ie. wells) are received from simulation.m and the moments needed for

the optimization from simcalcs.m.

NOTE: The difference between optim.m and optim_output.m is the ...
number of

outputs (and the variable visualize). This is because the 'real'

optim.m that delivers the objective function for the optimization can

only have limited outputs.

EXPLANATION OF VARIABLES

param Current values of [lamda ,mu]
simstep max Number of simulations
originalrows Rows that are 'further left '. See explanation of

shape in msm.m.

shiftedrows Rows that are 'further right'. See explanation of
shape in msm.m.

wells Matrix of size (nwors,ncols ,4,simstep max). Each
simulation step has one matrix of size
(nrows ,ncols ,4). (:,:,1) represents the
area of interest. (:,:,2:4) represent the ...

wells of

the data set that can be filled with R, G or B
(e.g. if well (i,j) of the first simulation is

filled with green color, wells(i,j,3,1)=1, else

0).
totalwells Number of wells that could possibly have a color.
indexed wells wells (:,:,1,:) has indicator variables 0 and 1;

indexed wells will index the locations of 1s in
increasing order, Os will remain 0O

rpwells Permutation of totalwells

edges simstep max matrices of size (nrows, ncols, 3)
matrix whose entries (i,j,k) are indicator
variables of edges between well (i,j) and its
neighbor to the (k=1) right, (k=2) right down,
(k=3) left down.

totaledgelocations Number of edges that could possibly be open.

indexed_edges max_edges has indicator variables 0 and 1;
indexed_edges will index the locations of 1s in

increasing order, O0s will remain O.

rpedges Permutation of totaledgelocations.

nrows Number of rows

ncols Number of columns

shape Shape of the grid

max_edges Matrix of size (nrows,ncols,3) that carries

information about if there can possibly be
contamination between well (i,j) and its neighbors.
The last dimension represents the three directions
of possible contamination. Edge direction: l=right ,
2=right down, 3=left down. E.g. if there could be

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86

87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

B. MATLAB CODE II: ESTIMATION BY MSM 103

% contamination between well (i,j) and its right down
% neighbor , max_edges(i,j,2)==1. If there cannot be
% contamination (ie the neighbor lies outside the

% area of interest), max_edges (i,j,2)==0.

% d_RGB Normalized squared distances of averages of single
% colors [R,G,B] over all wells, between data set

% and simulations

% d_twocol Normalized squared distances of averages of

% multiple colors [RG,RB,GB] in one well over all

% wells , between data set and simulations (currently
% decided not to be important and set to zero)

% d_nbRGB Normalized squared distances of averages of same
% colored [R,G,B] neighbors over all possible

% edges, between data set and simulations

% dsRGB [R,G,B]-vector of well-average of color for data
% set

% dstwocol [RG,RB,GB]-vector of well -average of multiple

% colors in one well for data set

% dsnb [R,G,B]-vector of well-average of same colored

% neighbors for data set

% abst (3,3) matrix with all the above distances

% epsilon_new Sum of all distances (which is to be minimized)

%%

%

% Felix Beck, Bence Melykuti (University of Freiburg, Germany)

% 16/7/2015

lambda=param (1:3) ;

mu=param (4) ;

% Start simulation(s)
[wells ,shiftedrows ,originalrows]|=simulation (nrows, ncols, shape, ...
lambda, mu, 0, totalwells , simstep max, indexed wells, rpwells,

wells , totaledgelocations , indexed edges, rpedges, edges);

% Get averages from simcalcs
| avRGB,avtwocol ,avnb | = simcalcs(
nrows ,ncols ,shiftedrows ,originalrows , wells ,max_edges); % ...

Calculations for simulations

% Presetting for absolute distances between data set and simulations
d RGB=zeros (1,3);

d_twocol=zeros (1,3);

d_nbRGB=zeros (1,3);

%(squared) distances between data set and simulations
for i=1:3
if dsRGB(i)~=0
d_RGB(i)=((dsRGB(1i)-avRGB(i))/dsRGB(i)) ~2;
else
d RGB(i)=(dsRGB(i)-avRGB(i)) ~2;
end
if dstwocol(i)~=0
d twocol(i)=0%((dstwocol(i)-avtwocol(i))/dstwocol(i))"2;

else

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

B. MATLAB CODE II: ESTIMATION BY MSM 104

d_twocol(i)=0x(dstwocol(i)-avtwocol(i))"~2;
end
if dsnb(i)~=0
d_nbRGB(i)=((dsnb(i)-avnb(i))/dsnb{i))~2;
else
d nbRGB(i)=(dsnb(i)-avnb(i)) ~2;
end

end

% optimize the maximum of the calculated distances to get the best possible
% estimator for lambda and mu
abst=[d RGB;d twocol;d nbRGB];

epsilon_new=sum(abst (:));

end

© 00 N DU s W N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49

50
51
52
53
54
55

B. MATLAB CODE II: ESTIMATION BY MSM 105

function hexa (nrows,ncols,wells ,iniwells , shape, plotmode)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%%
%
%
%
%
%
%%
%
%
%
%
%
%%
%
%
%
%
%
%
%
%
%
%

S

S

%
%
%
%

%

HEXAm visualizes simulations. It first creates a hexagonal grid and

then adds the corresponding color to each spot.

EXPLANATION OF VARIABLES

shr
nrows
ncols

shape
plotmode

iniwells

wells

colors
color

entry in

Felix Beck,

Shrinkage parameter is in (0,1], shows how much the spots
are shrunk relative to the circumscribed spots

Number of rows

Number of columns

Shape of the grid

Mode of plotting:

0: Plot the first simulation before and after
contamination

1: Plot original image and recognized grid with colors

's needs

to check if fit is good enough for user
If plotmode==0, iniwells is the same as the variable wells
before contamination.

If plotmode==1, iniwells contains three matrices containing
RGB data with the corresponding coordinates in the image
(see I _original in

automatic grid fitting perspective click.m)

Consists of four different 2-dimensional

matrices with the column and row size of the

data set grid. The second, third and fourth

matrix represent R, G and B. Whenever a spot

is filled with a color, the corresponding

matrix entry is set to 1. Whenever there is no

color in the spot, the matrix entry remains

0. The first matrix indicates the 'area of

interest ' (initially all the entries are 1).

E.g. it can happen that some parts of a column

or row are not within the limits of our

original image. If that happens, the

corresponding area of interest matrix entry is

set to 0. Whenever there is a 0 entry in the

area of interest matrix, the corresponding

R/G/B matrix entries will be ignored for any

further calculations. E.g. let us assume

wells (1,5,1)=0. If that happens,

wells (1,5,2:4) will be ignored in any further calculations
and the grid will consist of one grid point less.

Vector with row and col numbers of colored wells

Vector containing the corresponding color to each ...

colors

Maja Temerinac-Ott, Bence Melykuti (University of ...

Freiburg , Germany)

16/7/2015

shr=0.8;

B. MATLAB CODE II: ESTIMATION BY MSM 106

56
57 [X, Y] = meshgrid(-1:ncols+1,0:nrows+1); % Create well-centers

58 m = size(X,1); % = nrows+2

59 n = size(X,2); % =— ncols+3

60

61 % Adjust grid according to shape

62 if shape — 0

63 if mod(m,2)==

64 X =X + repmat ([0; 0.5],[m/2,n]); % Shift x-axis

65 else

66 X =X + [repmat ([0; 0.5],[floor (m/2),n]); zeros(l,n)];

67 end

68 else % shape=—=1

69 if mod(m,2)==

70 X =X + repmat ([0.5; 0],[m/2,n]); % Shift x-axis

71 else

72 X =X + [repmat ([0.5; 0],[floor (m/2),n]); 0.5%o0ones(1l,n)];

73 end

74 end

75

76 % Prepare plots

77 figure;

78 subplot(1,2,1); % First grid shows wells before contamination

79 if plotmode== % If plotmode==0, the first plot is the first ...

simulation before contamination

80 % [XV, YV] = voronoi(X(:),Y(:)); % voronoi can be activated to ...
visualize the (hexagonal) grid

81 % plot (XV,YV,'w')

82 subplot (1,2,2); % Second grid shows wells after contamination

83 % plot (XV,YV, 'w')

84 else

85 imshow (uint8 (iniwells));title ('Original image') % If plotmode==1,
the first plot is the original image

86 subplot (1,2,2); % Second grid shows recognized grid with colors

87 hold on

88 title ('The location of recognized spots')

89 set (gca, 'XTickLabel' ,[]) % Remove labels from second plot

90 set (geca, 'YTickLabel' ,[])

91 hold off

92 end

93

94

95 for 1=2:-1:1

96 if 1==1 % Before contamination

97 wellsl=iniwells;

98 else % After contamination

99 wellsl=wells ;

100 end

101 colors=zeros (2,0);

102 color="";

103

104 % Find matrix entries with red, green or blue color and save into
colors

105 [rrow, ...
rcol]=find (wellsl (:,:,2) .*%(1-wellsl (:,:,3)).x(1-wellsl (:,:,4))); ...

% Find red entries

106 colors=[colors [rrow rcol]'];

107
108

109
110
111

112
113
114
115
116

117
118
119

120
121
122

123
124
125

126
127

144
145
146

147

B. MATLAB CODE II: ESTIMATION BY MSM

color=repmat('r',[1 length(rrow)]);

[grow,
gcol]=find ((1-wellsl (:,:,2)).%wellsl (:,:,3).*%(1-wellsl (:,:,4)));
% Find green entries

colors=[colors [grow gcol]'];

color=[color repmat('g',[1 length(grow)]) |;

[brow, ...
becol]=find ((1-wellsl (:,:,2)).%(1-wellsl (:,:,3)).*xwellsl (:,:,4));
% Find blue entries

colors=[colors [brow bcol]'];

color=[color repmat('b',[1 length(brow)]) |;

% Find matrix entries with two or three colors and save into colors

[yrow,
ycol]=find (wellsl (:,:,2) . +wellsl (:,:,3).*(1l-wellsl (:,:,4))); %
Find yellow (red&green) entries

colors=[colors [yrow ycol]'];

color=[color repmat('y',[1 length(yrow)]) |;

[crow, ...
ccol]=find ((1-wellsl (:,:,2)).xwellsl (:,:,3) . xwellsl (:,:,4)); %
Find cyan (green&blue) entries

colors=[colors [crow ccol]'];

color=[color repmat('c',[1 length(crow)]) |;

[mrow, ...
mcol]|=find (wellsl (:,:,2) .%(1-wellsl (:,:,3)).xwellsl (:,:,4)); %
Find magenta (red&blue) entries

colors=[colors [mrow mcol]'];

color=[color repmat('m',[1 length (mrow)])];

[wrow, wcol]=find (wellsl (:,:,2) .*wellsl (:,:,3).xwellsl (:,:,4)); %
Find white (red&green&blue) entries

colors=[colors [wrow wcol]'];

color=[color repmat('w',[1 length(wrow)]) |;

% Prepare color variable for plotting colors into corresponding grid
subplot (1,2,1); % Select grid

% Presettings for subolots in the loop

set(gca, 'color','k','XAxisLocation','top','YDir','reverse')
axis ([0 ncols+1.5 0 nrows-+1]);

daspect ([sqrt (3) ,2,1]); % Determine the relative scaling of the

data units along the axes
for k=1:size(colors ,2) % For all the color entries

% Fill spots with corresponding color
i=colors (1,k); % Row number of current spot

j=colors (2,k); % Column number of current spot

% Add corresponding color to current spot by using the
coordinates of the current spot and filling it with patch
if shape==0
if mod(i,2)==
patch ([j, j+shr*0.5, j+shr*0.5, j, j-shr*0.5,
j-shr%0.5], [i-shr%5/8, i-shrx3/8, i+shr«3/8, ...
i+shr+5/8, i4+shr=3/8, i-shrx3/8], color(k))
else

107

148

149
150
151
152

end

end

B. MATLAB CODE II: ESTIMATION BY MSM

108

patch ([j, j+shrx0.5, j+shrx0.5, j, j-shrx0.5,
j-shr+0.5] 4+ 0.5xones(1,6), [i-shr*5/8, i-shr=3/8,
i+shr*3/8, i+shr*5/8, i+shr*3/8, i-shr*3/8], color(k))
end
else % shape=—
if mod(i,2)==
patch ([j, j+shrx0.5, j+shrx0.5, j, j-shrx0.5,
j-shr+%0.5] 4+ 0.5%ones(1,6), [i-shr*5/8, i-shrx3/8,
i+shr+3/8, i+shrx5/8, i+shr*3/8, i-shrx3/8], color(k))
else
patch ([j, j+shr*0.5, j+shr*0.5, j, j-shr*0.5,
j-shr+0.5], [i-shrx5/8, i-shrx3/8, i+shr=3/8,
i+shr*5/8, i+shr*3/8, i-shrx3/8], color(k))
end
end
end
if plotmode==1 % If plotmode==1, the first plot stays untouched;
Exit the loop
break
end

Bibliography

[D’E12] John D’Errico. fminsearchbnd, fminsearchcon. 2012. URL: http:
//de .mathworks . com/matlabcentral /fileexchange /8277 -
fminsearchbnd - - fminsearchcon / content / FMINSEARCHBND /
fminsearchbnd.m.

[Dok12] Jiro Doke. Custom GINPUT. 2012. URL: http://de .mathworks.
com/matlabcentral /fileexchange /38703 - custom- ginput/
content/ginputc.m.

|[FHG63] HL Frisch and JM Hammersley. “Percolation processes and re-
lated topics”. In: Journal of the Society for Industrial € Applied
Mathematics 11.4 (1963), pp. 894-918.

|GBO06] Ulrike Genschel and Claudia Becker. Schliefiende Statistik: Grundle-
gende Methoden. Springer-Verlag, 2006.

[GM90] Christian Gourieroux and Alain Monfort. “Simulation based in-
ference in models with heterogeneity”. In: Annales d’Economie
et de Statistique no. 20/21 (1990), pp. 69-107.

[GMIT] Christian Gourieroux and Alain Monfort. Simulation-based econo-
metric methods. Oxford University Press, 1997.

[Gri99] Geoffrey Grimmett. Percolation. Springer, 1999.

[Han82] Lars Peter Hansen. “Large sample properties of generalized method
of moments estimators”. In: Econometrica: Journal of the Econo-
metric Society (1982), pp. 1029-1054.

[Hof+12a] Jochen Hoffmann et al. “Solid-phase PCR in a picowell array
for immobilizing and arraying 100000 PCR products to a micro-
scope slide”. In: Lab on a Chip 12.17 (2012), pp. 3049-3054.

|Hof+12b| Jochen Hoffmann et al. “Universal protocol for grafting PCR
primers onto various lab-on-a-chip substrates for solid-phase PCR”.
In: RSC Advances 2.9 (2012), pp. 3885-3889.

[Mic08] Stephen Michael. KD Tree Nearest Neighbor and Range Search.
2008. URL: http://kr .mathworks.com/matlabcentral/fileexchange/

7030-kd-tree-nearest-neighbor-and-range-search.

109

