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abstract. The work of Horn, Jackson and Feinberg laid the foundations of the chem-
ical reaction network theory. The topic of this theory is the relation between the simple
structure and the qualitative dynamical features of a chemical reaction network without
knowing the specific reaction rates inherent. The focus in the dynamical features lies on
the existence, uniqueness and stability of steady states. This thesis surveys the progress
made in chemical reaction theory up to its current state and especially the remaining open
problems in this field, the global attractor conjecture and the persistence conjecture.
The global attractor conjecture, which is the most important open problem in this theory
makes the connection between complexed balanced reaction networks and globally asymp-
totically stable steady states. The attempt of its proof by August and Barahona [6] will
be rebutted. However we will present network structure cases, which are the single linkage
class networks and the two or three species reaction networks (Anderson [3], Craciun et al.
[9]), for which the conjecture holds.
Besides we are treating the persistence conjecture and its link to the global attractor con-
jecture. Furthermore we are presenting necessary conditions for persistency using Petri-net
theory, Angeli et al. [4].





1 Introduction

1.1 Motivation

In the 1970s, Roy Jackson, Fritz Horn, and Martin Feinberg laid the foundations for the
chemical reaction network theory, [17, 10, 13, 14, 11]. The aim of this theory is to relate
qualitative dynamical features to the topological structure of the chemical reaction net-
work without the knowledge of any kinetic parameters. The approach is to link chemical
reaction network characteristics, like weak reversibility or deficiency, to dynamical proper-
ties such as existence of positive steady states, stability properties of these steady states
and the non-extinction of species. Background of this theory is the difficulty of analyzing
these qualitative dynamical features through the system of differential equations of rather
complex chemical reaction networks. This difficulty presents itself in the non-linearity of
these differential equations when considering chemical reaction networks with mass-action
kinetics, which means that we assume the rate of a reaction to be proportional to the
product of the reactant concentrations. As the corresponding system of differential equa-
tions to complex reaction networks cannot generally be solved analytically, the dynamical
properties, such as existence of unique steady states, stability properties of these steady
states and the non-extinction of species, should be tied to the topological structure of the
reaction network.
There are many fields of application in biological and medical sciences for chemical reac-
tion network theory since the dynamical systems theory plays an important role in the
understanding of biological and physiological processes. Its most well-suited application
would be systems biology, where parameter uncertainty is predominant. Systems biology
aims at the understanding of cell behavior and function at the level of chemical interac-
tions, and, in particular the characterization of qualitative features of dynamical behavior.
However, there exists a very large degree of uncertainty in the models of cellular biochem-
ical networks. As such, chemical reaction network theory could become useful as a tool of
verification of the developed models.
A well-known and still unsolved problem in chemical reaction network theory is the Global
Attractor Conjecture which states that in every complex balanced chemical reaction net-
work every concentration trajectory with positive initial conditions has a unique positive
steady state and this steady state is globally attractive respective to its stoichiometric
compatibility class. The resolution of the conjecture has important biological and math-
ematical implications since it would grant a desired level of stability and persistence to a
large class of chemical reaction networks. The actual sticking point of the global attractor
conjecture is the persistence, in other words the non-extinction of the species inherent in
complex balanced chemical reaction networks. As complex balanced reaction networks are
also weakly reversible the conjecture would be solved by a proof of the persistence conjec-
ture, which states that weakly reversible reaction networks are persistent.
Although the conjectures have not been proven in general, there are special cases of re-
action networks which have been proven to obtain global attractors. These cases are the
single linkage class networks and the two or three species reaction networks, [3, 1, 9].
The outline of this thesis is as follows: In this section we will continue by setting up the
basic vocabulary and notations commonly used in chemical reaction network theory and
proceed with an insight into the early results by M. Feinberg, F. Horn and R. Jackson,
which are the Deficiency Zero and Deficiency One Theorem. In the second section we will
prove that complex balanced steady states are locally asymptotically stable with the help



1 Introduction

of Lyapunov stability theory. In the third section we will delve into the global attractor
conjecture and deal with an attempt to prove the persistence conjecture. In the fourth and
last section we will mention some special cases for which the global attractor conjecture
has been proven. These special cases consist of the case of single linkage class reaction
networks and the case of reaction networks containing only two or three different species.
Furthermore we will elaborate under which necessary conditions the persistence conjecture
will hold by using the Petri net theory.

1.2 Vocabulary and notations

We will use this first section to set the basic vocabulary and notations commonly used
in reaction network theory. We will for this rely on the definitions and notations of the
lecture notes by M. Feinberg [11].
Let S denote the set of species in a network. Under the assumption that the number of
species is finite, we shall use the symbol N to denote the number of species in a network
(#{S} = N). We will write Sj for the jth species, thus, we have {S1, . . . , SN} = S.
Reactants and products of the different reactions occurring in a network will be called
complexes. The set of complexes in a network will be denoted by the symbol C and the
number of complexes in the considered network will be denoted by n (#{C} = n).
V = RN will be called the species space, where we can represent the N species as a standard
basis in V by associating Si with vi, the ith unit vector. V̄ + denotes the non-negative
orthant of the species space, so that every x ∈ V̄ + only has non-negative coordinates,
xi ≥ 0 for all i ∈ {1, . . . , N}. V + will denote the positive orthant of the species space.
In V̄ + we can represent the complex yj , j ∈ {1, . . . , n}, as complex vector where the entries
yj1, . . . , yjN are the stoichiometric coefficients of the respective species S1, . . . , SN in the
complex: yj = (yj1, . . . , yjN )T ∈ NN ⊂ V̄ + for j ∈ {1, . . . , n}. Alternatively we can
associate the jth complex in the complex space W = Rn with the jth unit vector, wj ∈W .
If we combine the complex vectors in V in a (N × n)-matrix Y :

Y = {y1, . . . , yn} : W −→ V (1)
wj 7−→ yj ,

then Y defines a linear transformation of the complex space W into the species space V .
A reaction diagram is a graph, in which the vertices are the complexes yi ∈ C and the
directed edges represent the reactions between complexes.

S2 + 3S42S1 + S3 S1 + 2S2

S3 + S4

S1 + S2 3S3 S1 + S3 + S4

Figure 1: Reaction diagram of a network with S = {S1, . . . , S4} and C = {2S1 + S3, S2 +
3S4, S1 + 2S2, S3 + S4, S1 + S2, 3S3, S1 + S3 + S4}.

For example we have in figure 1 the complex vectors: y1 = {2, 0, 1, 0}, y2 = {0, 1, 0, 3}, y3 =
{1, 2, 0, 0}, y4 = {0, 0, 1, 1}, y5 = {1, 1, 0, 0}, y6 = {0, 0, 3, 0}, y7 = {1, 0, 1, 1}. So the
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1.2 Vocabulary and notations

matrix Y is:

Y =


2 0 1 0 1 0 1
0 1 2 0 1 0 0
1 0 0 1 0 3 1
0 3 0 1 0 0 1


It should be clear of the context, if we regard the complexes to be vertices in a graph,
vectors in the species space respectively complex space or as simple elements of the set of
complexes.
R will be the set of reactions in a system. If there exists a reaction from complex yj
to complex yl we say yj → yl ∈ R. For a reaction yj → yl ∈ R we will define the
corresponding reaction vector as yl − yj = (yl1 − yj1, . . . , ylN − yjN )T ∈ V . If yj = ~0 or
yl = ~0 then the reaction represents an input or an output to the system respectively.
The rank s ∈ N of a chemical reaction network is the number of linearly independent
reaction vectors in a network. If we consider a reaction network with N species and r
reaction vectors, s can easily be determined by listing the reaction vectors in an r × N -
matrix and counting the non-zero rows left after reducing the matrix to an echelon form.
For example, the rank s for the reaction diagram depicted in figure 1 is 4.

We require of a chemical reaction network to satisfy certain properties which are consistent
with the chemical approach of a reaction network. A chemical reaction network is a triple
{S, C,R}, where S = {Si}Ni=1 is the set of species, C = {yj}nj=1 the set of complexes and
R = {yj → yl}j,l is the set of reactions and the network admits the following properties:

(1) For any Si ∈ S, there exists at least one complex yj ∈ C for which yji > 0,

(2) there is no trivial reaction yj → yj ∈ R for any complex yj ∈ C,

(3) for any yj ∈ C there exists at least one complex yl ∈ C for which yj → yl ∈ R or
yl → yj ∈ R.

Using the notation of [14], we say that two complexes yi, yj ∈ C are directly linked if either
yi → yj ∈ R or yj → yi ∈ R, and we write yi ↔ yj . Two complexes are linked if they
satisfy any of the following conditions:

• yi = yj

• yi ↔ yj

• ∃ y1, . . . , ym ∈ C such that yi ↔ y1 ↔ y2 ↔ . . .↔ ym ↔ yj

If two complexes yi, yj are linked, we write yi ∼ yj . This relation between complexes is an
equivalence relation, since it is reflexive, symmetric and transitive. It therefore induces a
partition on the set of complexes and the induced equivalence classes will be called linkage
classes. It should be clear, that the linkage classes are sets of complexes, which are linked
to each other, but do not describe which complexes are reactants or products to other
complexes. Let ` denote the number of linkage classes and Li, i = 1, . . . , ` the linkage
classes of a network.
If two networks present the same complexes and the same linkage classes, then the rank of
the two networks is also the same. If we consider the complexes as vectors in V and the
linkage classes as subspaces of V , which are the span of the complexes they contain, then
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1 Introduction

the statement is proven by simple matrix theory in linear algebra.
A complex yi is said to ultimately react to another complex yj if they satisfy one of the
following conditions:

• yi → yj

• ∃ y1, . . . , ym ∈ C such that yi → y1 → y2 → . . .→ ym → yj .

We then write yi ⇒ yj . This definition slightly differs from the definition given in [14].
M. Feinberg and F. Horn include the condition yi = yj in the definition of ’ultimately
reacts to’, which is rather confusing since by definition of a chemical reaction network, no
complex reacts to itself.
We say that two complexes yi and yj are strongly linked if yi = yj or yi ⇒ yj and yj ⇒ yi,
we denote this equivalence relation by yi ≈ yj . A strong linkage class LS ⊂ C is a set of
complexes where each pair of complexes is strongly linked.
A terminal strong linkage class is defined as a strong linkage class where no complex of the
set reacts to a complex belonging to a different strong linkage class. That is, we say LT ⊂ C
is a terminal strong linkage class if for every complex yi ∈ LT for which yi → yj ∈ R it
follows that yj ∈ LT . We denote the number of terminal strong linkage classes by the
symbol t. As there exists in each linkage class at least one terminal strong linkage class,
we have t ≥ `. (This is ensured by the convention that every complex is strongly linked to
itself.)
If for every reaction yj → yl ∈ R the reverse reaction yl → yj is also part of the network,
then we say the network is reversible. We call a network weakly reversible if for every
complex yi that ultimately reacts to another complex yj , yi ⇒ yj , it follows that yj ⇒ yi.
In other words, in a weakly reversible reaction network every two complexes that are linked
to each other are strongly linked to each other. Any theorem for weakly reversible networks
also applies to reversible networks as a special case.
For weakly reversible networks every linkage class is a terminal strong linkage class, since
in a linkage class every complex is strongly linked to every other complex in the same
linkage class, therefore t = `.

Remark Note that weak reversibility implies t = `, but not every network for which the
condition t = ` holds, is weakly reversible.

A chemical reaction network with n complexes and ` linkage classes need to contain only n−
` reactions. Since the rank s of a network is defined as the number of linearly independent
reaction vectors, see p. 3, the rank of a network with n complexes and ` linkage classes
cannot exceed n − `. Thus, we can say that n − ` − s ≥ 0 for any reaction network. We
call this non-negative integer the deficiency of a chemical reaction network

δ = n− `− s ∈ N. (2)

Since two reaction networks with the same complexes and the same linkage classes also
have the same rank, the deficiency for two reaction networks with the same complexes and
linkage classes will be the same.
Let sθ denote the rank and δθ denote the deficiency of the θt linkage class. As before,
if we consider the complexes to be vectors in the space V and the linkage classes to be
subspaces, we know from linear algebra that the sum of the ranks of the subspaces may not

4



1.3 Kinetics and the corresponding differential equations of a chemical reaction network

coincide with the rank of the space they span, s ≤
∑

θ≤` sθ. So it follows from equation
(2) that the sum of the deficiencies of the different linkage classes may not coincide with
the deficiency of the reaction network, δ ≥

∑
θ≤` δθ.

1.3 Kinetics and the corresponding differential equations of a chemical
reaction network

For {Si}Ni=1 species in a chemical reaction network, we denote by c1(t), . . . , cN (t) the re-
spective molar concentrations at time t. For a chemical reaction network with N species
we denote by c(t) = (c1(t), . . . , cN (t)) the concentration vector at time t, or simply the
concentration at time t of the considered chemical reaction network. By the support of the
concentration vector c at the time t, we shall mean the set of species with nonzero molar
concentration at time t,

supp(c(t)) = {Si| ci(t) > 0}.

By the support of the complex yj we mean the set of species with nonzero stoichiometric
coefficient in the complex yj : supp(yj) = {Si|yji 6= 0}.
In order to formulate differential equations that describe the way in which the concentration
vector evolves in time, we need to understand how the instantaneous rate function of the
individual reactions in the network depend upon the instantaneous molar concentrations
of the different species of the reactor. Considering a reaction network {S, C,R} with N
species we define a kinetics to be an assignment to each reaction yj → yl of a rate function

Kyj→yl (·) : V̄ + −→ R≥0

c(t) 7−→ Kyj→yl (c(t))

where Kyj→yl (c(t)) is the rate of the reaction yj → yl at concentration c(t) at the time t.
We require that this function satisfies the following properties:

(1) Kyj→yl (·) is continuously differentiable, and

(2) Kyj→yl (c(t)) > 0 ⇐⇒ supp(yj) ⊆ supp(c(t)).

A kinetics of a chemical network is called mass-action if for each reaction yj → yl ∈ R
there exists a positive rate constant kj→l ∈ (0,∞) such that

Kyj→yl (c(t)) ≡ kj→l
N∏
i=1

(ci(t))
yji . (3)

By presuming mass-action kinetics, we assume that the rate of a reaction is proportional
to the product of the reactant concentrations. This is a rough approximation of the ide-
alization that a reaction’s occurrence is proportional to the probability of the reactants
occupying the same point in space.
To make the notation (3) easier we will write:

c(t)yj =
N∏
i=1

(ci(t))
yji . (4)

Note, that if for any species Si ∈ S the concentration at a time t is ci(t) = 0, then c(t)yj = 0.
Unless the species Si is not contained in the complex yj , for then c

yji
i (t) = 00 = 1.
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1 Introduction

A chemical reaction network together with a kinetics will be called a reaction system and
denoted by {S, C,R,K}. If the kinetics are of mass-action type, then we will call it mass-
action system and denote it by {S, C,R, k}, where k = {kj→l}yj→yl∈R.
For a reaction system we formulate the corresponding differential equation as follows:

ċ(t) =
∑
R
Kyj→yl (c(t))(yl − yj), c(t) ∈ V̄ +. (5)

Integrating (5) over t, we obtain

c(t) = c(0) +
∑

yj→yl∈R

(∫ t

0
Kyj→yl (c(s))ds

)
(yl − yj). (6)

Thus, c(t) − c(0) remains in the span S = span{yl − yj |yj → yl ∈ R}, called the stoi-
chiometric subspace. This linear subspace of V is the smallest subspace, that contains all
reaction vectors of the network. Note that the dimension of the stoichiometric subspace is
evidently the same as the rank of the reaction network. Therefore we denote the dimension
of the stoichiometric subspace by the symbol s: s = dimS .
For two concentration vectors c(t1), c(t2) at different times, t1, t2 ∈ [0,∞), to lie on the
same trajectory, their difference has to stay in the stoichiometric subspace. We shall denote
by c(t) + S = {c(t) + r|r ∈ S} the parallel subspace to the stoichiometric subspace that
contains the concentration c(t).
We say that two concentrations c, c′ are stoichiometrically compatible if they lie on the
same trajectory, that is if c − c′ ∈ S . In this manner, we can partition the set of all pos-
sible concentrations into stoichiometric compatibility classes. For a concentration c, the
corresponding stoichiometric compatibility class will be (c+ S )∩ V̄ +. More frequently we
will use the positive stoichiometric compatibility class (c + S ) ∩ V +, which only includes
positive concentrations.
If the kinetics of the reaction network is of mass-action type, we can formulate the differ-
ential equation by using equation (3)

ċ(t) =
∑
R
kj→l c(t)

yj (yl − yj). (7)

A concentration c̄ ∈ V̄ + for which

0 =
∑
R
Kyj→yl (c̄)(yl − yj) (8)

is called a steady state of the reaction system under consideration. If the species’ concen-
trations at the steady state are positive c̄ ∈ V +, then we call the concentration a positive
steady state of the reaction network.

1.4 Deficiency Zero and Deficiency One Theorems

In 1979 M. Feinberg achieved a first result in chemical reaction network theory by proving
the deficiency zero theorem and followed up with the deficiency one theorem. To that
matter we will lean on one of his papers, [12].
The two theorems stated in this section give rise to a relationship between the structure of
a reaction network and the corresponding differential equations. While the kinetics of the
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1.4 Deficiency Zero and Deficiency One Theorems

network are of mass-action type, it is of no relevance at which rate the different reactions
in the network appear. This means, that no matter what value kj→l ∈ (0,∞) for every
yj → yl ∈ R takes, the statements for the networks of deficiency zero or one hold. The
two theorems state that for certain restrictions on the reaction network structure we have
a unique positive steady state in each positive compatibility class. Furthermore, for the
networks which satisfy the properties of one of the two theorems, there exist no cyclic
concentration trajectory.
We say that c(·) is a cyclic concentration trajectory if there exists a T ∈ (0,∞) so that
c(0) = c(T ). It follows then that c(T )− c(0) =

∑
R
(∫ T

0 Kyj→yl (c(τ))dτ
)
(yl − yj) = 0.

Let c̄ ∈ V + be a positive steady state in a chemical reaction network. We say that this
steady state is asymptotically stable in (c0 + S ) ∩ V + if for every neighborhood O of c̄ in
(c0 + S ) ∩ V +, there is a neighborhood O′ of c̄ in O such that every solution c(t) with
c(0) = c0 in O′ is defined and remains in O for all t > 0 and limt→∞ c(t) = c̄, [16]. We
will need to distinguish under local and global asymptotical stability. We will say that
a steady state is locally asymptotically stable if the steady state is only asymptotically
stable respective to a neighborhood in the stoichiometric compatibility class to the steady
state. Whereas, we will say that a steady state is globally asymptotically stable if it is
asymptotically stable respective to the entire positive stoichiometric compatibility class.

Theorem 1.4.1 (Feinberg [12]). Deficiency Zero Theorem In a weakly reversible net-
work with mass-action kinetics and deficiency zero, every positive stoichiometric compati-
bility class contains precisely one steady state and this steady state is locally asymptotically
stable:
For all positive initial concentration vector c0 ∈ V + there exists one and only one c̄ ∈
(c0 + S) ∩ V + such that: ∑

yj→yl∈R
kj→lc̄(t)

yj (yl − yj) = 0.

Furthermore, there is no nontrivial cyclic concentration trajectory along which all concen-
trations are positive.

Theorem 1.4.2 (Feinberg [12]). Deficiency One Theorem Consider a chemical reac-
tion network with mass-action kinetics and ` linkage classes, which each contain only one
terminal strong linkage class (t = `). If every linkage class has deficiency no greater than
one (δθ ≤ 1) and the sum of the deficiencies of the linkage classes is equal to the deficiency
of the whole reaction network (

∑
δθ = δ), then the corresponding differential equation can

admit no more than one steady state in each positive stoichiometric compatibility class. If
the network is weakly reversible then the corresponding differential equation admits precisely
one steady state in each positive stoichiometric compatibility class.

Remark In the Deficiency Zero Theorem, the weak reversibility property of the networks
is essential for the existence and the uniqueness of the positive steady states. Whereas
in the Deficiency One Theorem, the existence of the positive steady state is guaranteed
by the property that deficiency of the network is no greater than one and the sum of the
deficiencies of the linkage classes coincides with the deficiency of the network itself. The
uniqueness then is an implication of the weak reversibility property.
More insight and proofs of the two theorems can be found in [12] and [11].

7
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Remark These versions of the deficiency theorems are actually the combination of two
theorems. The prior deficiency zero theorem states that a weakly reversible chemical
reaction system with deficiency zero is complex balanced, [10]. Furthermore, a chemical
reaction network which follows the conditions of the deficiency one theorem admits only
complex balanced steady states, and, hence, the reaction network is complex balanced. For
the definition of complex balanced reaction system see page 10. A second theorem stated
first in [17] implies the local asymptotic stability of complex balanced steady states.
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2 Application of a Lyapunov function

A first major result in chemical reaction network theory by F. Horn, R. Jackson and M.
Feinberg, [17, 11], was the proof of local asymptotic stability for steady states in complex
balanced chemical reaction networks. To be able to prove this, they used a method com-
monly applied in ordinary differential equation theory. By finding an appropriate Lyapunov
function to every positive steady state of the differential equation for the corresponding
complex balanced reaction network, they proved local asymptotic stability of these steady
states.
Let us assume that the kinetics for the reaction network considered here are of mass-action
type. In this case the corresponding differential equation is defined in (7).
To prove some statements we need a different approach to the differential equation. There-
fore we will refer to the approach of J. Gunawardena [15]. Recall the linear map Y : W → V
transforming the standard basis {wj}j=1,...,n ∈W into the reaction vectors {yj}j=1,...,n ∈ V ,
defined in equation (1). Let ψ : V →W be the nonlinear map, defined by:

ψ(c(t)) =
n∑
j=1

c(t)yjwj

Let x ∈W and suppose x has a composition based on the standard basis: x =
∑n

j=1 xjwj .
For a given kinetics on the network, we define the map Aκ : W →W by:

Aκ(x) =
∑

yj→yl∈R
kj→l xj(wl − wj) ⊂W ′, (9)

where W ′ denotes a subset of W and is defined as W ′ := span{wj − wi| yi → yj ∈ R}.

Remark The span of reaction vectors generated by actual reactions of the network coin-
cides with the span of reaction vectors generated by linked complexes:

span{wj − wi| yi → yj ∈ R} = span{wj − wi| yi ∼ yj}.

The proof for this can be found in the proof of Proposition 2.0.3.

If f : V → V denotes the right hand side of (7), then the following diagram commutes:

W
Aκ←−−−− W

Y

y xψ
V

f←−−−− V

(10)

and we have f(c) = Y Aκψ(c). We will call f the species formation rate function for the
mass-action system {S, C,R, k}.
The set of positive steady states of a network can be formulated as E = {c ∈ V + | f(c) = 0}.
There are only two possibilities for the composition Y Aκψ to be zero in the positive orthant
of V . Since for c ∈ V + it follows that ψ(c) ∈ W+, we always have ψ(c) 6= 0. If c ∈ V + is
a positive steady state, we have Aκψ(c) = 0 or Aκψ(c) ∈ kerY .

9



2 Application of a Lyapunov function

We will call a kinetic system complex balanced at a concentration c ∈ V + if Aκψ(c) = 0,
that is if for every yj ∈ C the following equation holds:∑

{l|yj→yl∈R}

Kyj→yl (c)c
yj =

∑
{l|yl→yj∈R}

Kyl→yj (c)c
yl . (11)

This means that for every complex the rate of creation and the rate of annihilation coincide.
We denote the set of all complex balanced steady states of a kinetic system by C = {c ∈
V + |Aκψ(c) = 0}. Obviously, C ⊂ E. If for a reaction network C = E 6= ∅, then the
kinetic system will be called complex balanced.
Furthermore, we will call a reversible kinetic system detailed balanced at a concentration
c ∈ V +, if for every reaction yj ↔ yl ∈ R it holds kj→l cyj = kl→j c

yl . The set of all detailed
balanced steady states in a reaction network will be denoted by D = {c ∈ V + |∀yj , yl ∈
C with yj ↔ yl : kj→l c

yj = kl→j c
yl}. Obviously, D ⊂ C ⊂ E. A kinetic system will be

called detailed balanced if D = C = E 6= ∅.

Remark In [15] another definition for the deficiency of a network is used:

δ = dim(kerY ∩ ImAκ) (12)

In general, the two definitions (2) and (12) differ in the way that 0 ≤ dim(kerY ∩ImAκ) ≤
n−`−s. Though for chemical reaction networks, for which every linkage class contains one
and only one terminal strong linkage class, in symbols t = `, the two definitions coincide,
so in this special case we have dim(kerY ∩ ImAκ) = n− `− s.

Proposition 2.0.3. If in a reaction network every linkage class contains one and only one
terminal strong linkage class, that is if t = `, then dim(kerY ∩ ImAκ) = n− `− s.

Proof. To prove this, we first notice that for every reaction network we have:

W ′ = span{wj − wi|yi → yj} = span{wj − wi|yi ∼ yj} =: W ′′ (13)

If yi → yj ∈ R, then wj − wi ∈ W ′ and because of the definition, it follows yi ∼ yj ,
therefore wj − wi ∈W ′′.
On the other hand, if yi ∼ yj , then there exist y1, . . . , yk so that yi ↔ y1 ↔ . . .↔ yk ↔ yj .
Since wp − wp−1 = −(wp−1 − wp) ∈ W ′, for every 2 ≤ p ≤ k, it follows wj − wi ∈ W ′. So
we have W ′ = W ′′.
The second observation is that dim(kerY ∩W ′′) = δ. Let Y |W ′′ : W ′′ → V be the restriction
of Y to W ′′. Since Y is a linear map we have dimW ′′ = dim kerY |W ′′ + dim ImY |W ′′ .

• dimW ′′ = n− `
Let Γk = span{wj−wi| yi, yj ∈ Lk} for 1 ≤ k ≤ `, then we haveW ′′ = Γ1⊕Γ2⊕. . .⊕Γ`
and Γk = span{wτ(2) −wτ(1), wτ(3) −wτ(1), . . . , wτ(nk) −wτ(1)} with nk denoting the
number of complexes in the kth linkage class, {yτ(1), . . . , yτ(nk)} = Lk. Since the
linkage classes form a partition of the set of complexes the following implication
follows:

dim Γk = nk − 1, k = 1, . . . , ` ⇒ dimW ′′ =
∑̀
k=1

(nk − 1) = n− `.

10



• dim ImY |W ′′ = s
Since Y is a linear map and (13) it follows:

ImY |W ′′ = Y (W ′′) = Y (W ′) = S = span{yj − yi| yi → yj ∈ R}.

Hence, dim ImY |W ′′ = s.

From this it follows now

dim(kerY ∩W ′′) = dim kerY |W ′′ = dimW ′′ − dimY |W ′′ = n− `− s = δ.

It follows from proposition 2.1.1 that dim kerAκ = t. Since Aκ is a linear map, we have
dim ImAκ = dimW − dim kerAκ = n− t. We can deduce from the definitions of Aκ, (9),
and W ′′, (13), that ImAκ ⊂W ′′. Since dimW ′′ = n− ` and dim ImAκ = n− t it follows

t = ` ⇐⇒ dimW ′′ = dim ImAκ ⇐⇒ W ′′ = ImAκ.

Hence, we have t = ` ⇐⇒ dim(kerY ∩ ImAκ) = δ.

We want to describe the linear map Aκ : W →W as a matrix. Therefore we first define
a matrix A ∈ Rn×n≥0 by:

A = (Aij)i,j≤n, Aij =

{
ki→j if yi → yj ∈ R,
0 otherwise.

The entries of this matrix are the rate constants of the different reactions occurring in the
network, where the row index stands for the reactant complex and the column index for
the product complex. If there is no reaction occurring between two complexes yj , yl the
entry Ajl = 0. Considering the reaction diagram, we can observe that for one vertex, one
complex yj respectively, the rate of formation is

∑
{i|yi→yj} xiAij − xj(

∑
{l|yj→yl}Ajl) on

a vector x ∈W . It follows then:

Aκ = AT − diag(Aen) (14)

where en ∈ W is the vector with 1 in every entry. The map diag inserts the components
of a vector in the main diagonal of a matrix, so that for a vector b ∈ Rn

(diag b)ij =

{
bi if i = j,

0 if i 6= j.

If c ∈ V +, Y is defined by (1) and cyj is defined by (4), then cY will be defined by
cY = (cy1 , . . . , cyn)T .
For mass-action kinetics, we can then express the species formation rate function in a
matrix form:

f(c) = Y Aκc
Y . (15)

11



2 Application of a Lyapunov function

2.1 Complex balanced network and its dynamical properties

A mass-action system with a complex balanced steady state ensures certain stability prop-
erties to the steady states. By getting a closer insight about the kernel of the linear kinetic
map Aκ we are going to be able to draw some important conclusions regarding the kinetic
properties of the system. These stability properties for complex balanced reaction systems
were first proven by M. Feinberg and F. Horn, [14, 11] and later proven in a different form
by J. Gunawardena [15], on which this section is also based on.
Recall the definition for the concentration vector (4). We simplify the algebra by con-
traction of the notations for certain functions. Recall the definition of the (N × n)-
transformation matrix Y , (1), and the composition cY . The natural logarithm of a vector
c ∈ V + will be defined by ln c = (ln c1, . . . , ln cN )T and the ratio c/a of two vectors
c, a ∈ V + will be defined by

c

a
=

(
c1

a1
, . . . ,

cN

aN

)T
∈ V +

By these definitions we can deduce the following relations:

ln cyi = ln

( N∏
j=1

c
yij
j

)
=

N∑
j=1

ln c
yij
j = yi · ln c ∈ R

ln cY = Y T ln c ∈ V

ln
c

a
= ln c− ln a ∈ V(

c

a

)yi
=

N∏
j=1

( cj
aj

)yij
=
cyi

ayi
∈ R

where · denotes here and in the following the scalar product in RN or in Rn respectively.
We start by mentioning a major proposition stated and proven in [14]. The statement will
be of importance for the properties of the Lyapunov function and is often referred to as
the master proposition.

Proposition 2.1.1. Let {S, C,R, k} be a mass-action system with t terminal strong linkage
classes {LT1 , . . . ,LTt } and let Aκ : W → W be the linear kinetic map. Then kerAk has a
basis {χ1, . . . , χt} ⊂ W̄+ such that

suppχi = LTi , ∀i ∈ {1, . . . , t}. (16)

To prove this proposition we have to get a better insight on kerAκ and it will require
preliminary work. We will prove the proposition by means of a series of lemmas.
We define the absolute value of a vector to be: |(x1, . . . , xn)| = (|x1|, . . . , |xn|) and for
vectors x, y ∈W we say x ≤ y if, and only if, xi ≤ yi for 1 ≤ i ≤ n and x < y if x ≤ y and
for some i ∈ {1, . . . , n}, xi < yi.

Lemma 2.1.2. If there exist x ∈W such that x ∈ kerAκ then |x| ∈ kerAκ.

Proof. Let x ∈ kerAκ, then it follows with (14) that ATx = diag(Aen)x. Taking absolute
values on both sides and since |ATx| ≤ AT |x|, |diag(Aen)x| = diag(Aen)|x| we have:

|ATx| = | diag(Aen)x| ⇒ AT |x| ≥ diag(Aen)|x|
⇒ (AT − diag(Aen))|x| ≥ 0

12



2.1 Complex balanced network and its dynamical properties

From eTn (AT − diag(Aen)) = eTnA
T − eTndiag(Aen) = (Aen)T − (Aen)T = 0 it follows:

if (AT − diag(Aen))x ≥ 0 then (AT − diag(Aen))x = 0 (17)

for all x ∈ W since ((AT − diag(Aen))x)T en = eTn (AT − diag(Aen))x = (eTn (AT −
diag(Aen)))x = 0.
So we have (AT − diag(Aen))|x| = 0 and therefore |x| ∈ kerAκ.

Lemma 2.1.3. Let x ∈ kerAκ and x ≥ 0. If for some yj ∈ C we have xj = 0 and there
exist yi ∈ C such that yi → yj ∈ R, then xi = 0.

Proof. From Aκ(x) = 0 it follows with equation (14):∑
{i|yi→yj}

xiAij = xj

( ∑
{l|yj→yl}

Ajl

)
.

Since by hypothesis xj = 0, it follows that xj
(∑

{l|yj→yl}Ajl

)
= 0. Since Aij > 0 whenever

there exists an elementary reaction yi → yj it follows then from
∑
{i|yi→yj} xiAij = 0 that

xi = 0 whenever there exists a reaction yi → yj .

Remark From this lemma it follows immediately, that if x ∈ kerAκ and there exists
yj ∈ C such that xj = 0 then xi = 0 whenever yi ⇒ yj . It directly implies the next
corollary.

Corollary 2.1.4. Let LSi be a strong linkage class of the mass-action system {S, C,R, k}
and let x ∈ kerAκ. If xj = 0 for some yj ∈ LSi , then for all yl ∈ LSi : xl = 0.

Remark From this corollary it follows: LSi ∩ suppx 6= ∅ ⇒ LSi ⊂ suppx.

Lemma 2.1.5. Let LT =
⋃t
i=1 LTi ⊂ C be the set of complexes residing in a terminal strong

linkage class for a mass-action system {S, C,R, k}. If x ∈ kerAκ, then suppx ⊂ LT .

Proof. Recall that

(Aκ(x))j =
∑

{i|yi→yj∈R}

ki→jxi −
( ∑
{l|yj→yl∈R}

kj→l

)
xj

Since by lemma 2.1.2 we have |x| ∈ kerAκ it follows:∑
{i|yi→yj∈R}

ki→j |xi| =
( ∑
{l|yj→yl∈R}

kj→l

)
|xj | ∀yj ∈ C

⇒
∑
yj∈LT

∑
{i|yi→yj∈R}

ki→j |xi| =
∑
yj∈LT

( ∑
{l|yj→yl∈R}

kj→l

)
|xj |

In fact we can reduce the second left-hand summation to a summation over all i for which
yi ∈ LT , for then both sides of the equation will sum over all reactions yj → yl where
yj , yl ∈ LT . Hence, ∑

yj∈LT

∑
{i|yi→yj∈R}

yi /∈LT

ki→j |xi| = 0

13



2 Application of a Lyapunov function

This means, that for every yi /∈ LT such that yi → yj and yj ∈ LT we have xi = 0. With
Lemma 2.1.3 (more exactly with its following remark) it follows that for every yi /∈ LT
such that yi ⇒ yj for yj ∈ LT we have xi = 0, hence, for every yi ∈ C\LT we have xi = 0,
which completes the proof.

For a mass-action system {S, C,R, k} let {LTi }i=1,...,t be the terminal strong linkage
classes. We define:

Γi = span{w ∈W | suppw = LTi }, i = 1, . . . , t.

Then, by the previous lemma we have: kerAκ ⊂ Γ1 ⊕ . . .⊕ Γt.

Lemma 2.1.6. For i ∈ {1, . . . , t} if x ∈ Γi, then Aκ(x) ∈ Γi.

Proof. Let Ri denote the reactions of R between the complexes of LTi . It then follows with
the previous lemma for x ∈ Γi:

Aκ(x) =
∑

yj→yl∈R
kj→lxj(wl − wj) =

∑
yj→yl∈Ri

kj→lxj(wl − wj).

If Ri = ∅, respectively #LTi = 1, then Aκ(x) = 0 and the proof is complete.
If Ri 6= ∅, we have for every yj → yl ∈ Ri that yj , yl ∈ LTi and therefore wl − wj ∈ Γi.
Hence, Aκ(x) ∈ Γi.

Lemma 2.1.7. For every i ∈ {1, . . . , t} there exists a χi ∈ Γi such that:

Aκ(χi) = 0,

∀yj ∈LTi : (χi)j > 0,

∀x ∈ Γi with Aκ(x) =0 ∃α ∈ R such that x = αχi.

Proof. We set Aiκ : Γi → Γi to be the restriction of Aκ on Γi:

Aiκ(x) =
∑

yj→yl∈Ri

kj→lxj(wl − wj).

We then have dim(ImAiκ) ≤ dim Γi. For every yj → yl ∈ Ri we have yj , yl ∈ LTi and
(wj + wl) · (kj→lxj(wl − wj)) = −kj→lxj + kj→lxj = 0. Hence, (

∑
yj∈LTi

wj) · Aiκ(x) = 0

for all x ∈ W and
∑

yj∈LTi
wj ∈ Γi, therefore dim(kerAiκ) = dim Γi − dim ImAiκ > 0. So

kerAiκ 6= ∅, that is there exists an χi ∈ kerAiκ and ∅ 6= suppχi ⊂ LTi . Corollary 2.1.1
implies LTi ⊂ suppχi, therefore we conclude suppχi = LTi . So, it follows:

(χi)j

{
6= 0 if yj ∈ LTi
= 0 if yj /∈ LTi

From Lemma 2.1.2 we can assume if (χi)j 6= 0 then (χi)j > 0.
Let x ∈ Γi be such that x 6= χi and Aκ(x) = 0. Let α be chosen such that xj −α(χi)j = 0
for some yj ∈ LTi . Evidently x − αχi ∈ kerAκ, so with the remark to 2.1.3 it follows
xj − α(χi)j = 0 for all yj ∈ LTi . Since supp(x− αχi) ⊂ LTi it follows x = αχi.
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2.1 Complex balanced network and its dynamical properties

Proof. (Proposition 2.1.1)
We now prove that every x ∈ kerAκ can be expressed as a composition of {χi}1≤i≤t, where
every χi in the set has the following properties:

• χi ∈ Γi

• Aκ(χi) = 0

• (χi)j > 0 if yj ∈ LTi .

It is clear that the set {χi}1≤i≤tis linearly independent. So if we are able to prove this
statement, it would mean that this set constitutes a basis for kerAκ.
Let x ∈ kerAκ. Since kerAκ ⊂ Γ1 ⊕ Γ2 ⊕ . . . ⊕ Γt, we have: x = x̄1 + x̄2 + . . . + x̄t with
x̄i ∈ Γi, i = 1, . . . , t. So, Aκ(x) = Aκ(x̄1) + . . . + Aκ(x̄t) = 0. Lemma 2.1.4 implies that
Aκ(x̄i) ∈ Γi and since the Γi are linearly independent it follows: Aκ(x̄i) = 0, ∀ 1 ≤ i ≤ t.
The last lemma implies that there exists {αi}1≤i≤t such that: x = α1χ1 +α2χ2 + . . .+αtχt.
By this last argument we have proven proposition 2.1.1.

From this proposition we deduce a series of important statements. One of them is the
following corollary:

Corollary 2.1.8. Let {S, C,R, k} be a mass-action system. Then:

kerAκ ∩W+ 6= ∅ ⇐⇒ the network is weakly reversible.

Proof. For the forward implication, let {S, C,R, k} be a reaction system that is not weakly
reversible. Hence, there exists a complex yj ∈ C that is not part of a terminal strong linkage
class. By proposition 2.1.1 every element x ∈ kerAκ has a decomposition x = x1 + . . .+xt
such that suppxi = LTi , i = 1, . . . , t. Therefore we have for every element of x ∈ kerAκ:
xj = 0. This implies kerAκ ∩W+ = ∅.
For the reverse implication let the network be weakly reversible. Then every complex is
part of a terminal strong linkage class and the sum of the basis vectors of kerAκ is an
element of kerAκ ∩W+.

Corollary 2.1.9. Let {S, C,R, k} be a mass-action system. If there exists c∗ ∈ V + such
that Aκψ(c∗) = 0, that is, if there exists a positive complex balanced steady state to the
system, then the network is weakly reversible.

Proof. Since c∗ ∈ V + it follows that ψ(c∗) =
∑n

i=1(c∗)yiwi > 0. So there exists a positive
vector ψ(c∗) ∈ W+ in the kernel of Aκ. From Corollary 2.1.8 it then follows that the
network is weakly reversible.

Remark Recall that for a chemical reaction network {S, C,R} we defined the stoichio-
metric subspace S ⊂ V as S = span{yl − yj ∈ V |yj → yl ∈ R}. S⊥ is the orthogonal
complement to S in V , S⊥ = {v ∈ V |v · u = 0 for u ∈ S}. So, we have V = S ⊕ S⊥.
A mass-action system will be called conservative if S⊥ contains a vector in the nonneg-
ative orthant V̄ + of the species space. If for example we have in chemical terminology
conservation of mass, then the mass-action system is conservative. Conservation of mass
is not the only characteristic that leads to a conservative system. Consider the Michaelis-
Menten-Equation in figure 2 on page 16:
In this example we have conservation of the number of molecules of S + SE + P and the
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2 Application of a Lyapunov function

SES + E P + E

Figure 2: Michaelis-Menten-model, where S denotes the substrate, E the enzyme, SE the
enzyme-substrate complex and P the product

number of molecules of E + SE. Let XI denote the number of molecules of the species I,
then we have XS +XSE +XP = K1 and XE +XSE = K2 where K1,K2 are constants. So
we have two conservation relations: (1, 0, 1, 1)T ∈ S⊥ and (0, 1, 1, 0)T ∈ S⊥. If we consider
a more general notion of conservation, i.e. conservation of a reactant-product-relation, it
is only necessary that S⊥ is nonempty and S⊥ may also contain vectors with negative
coefficients. Assume that there is no input or output to the system, then the system must
be conservative due to conservation of mass.

Proposition 2.1.10 (Feinberg [11], lecture 4).

∀a, b ∈ V + ∃! η ∈ S⊥ : aeη − b ∈ S . (18)

Proof. Let a, b ∈ V +, we define ϕ : V → R by

ϕ(x) :=

N∑
i=1

(aie
xi − bixi).

Through computation we have: ϕ′(x) = aex − b = (a1e
x1 − b1, . . . , aNexN − bN ), where

ex = {exi}i=1,...,N . It so follows that the Hessian Hϕ(x) of ϕ at x is given by zTHϕ(x)z =
zT (diag aex)z for all z ∈ V . So we have for every z ∈ V , z 6= 0:

zTHϕ(x)z = zT (diag aex)z =

N∑
i=1

aie
xiz2

i > 0.

This means Hϕ is positive definite. Hence, ϕ is strictly convex.
For i ∈ {1, . . . , N} we have

lim
α→∞

(aie
αxi − αbixi) =

{
∞ if xi 6= 0

ai if xi = 0

It then follows for x 6= 0 that
lim
α→∞

ϕ(αx) =∞. (19)

We now prove the existence of η ∈ S⊥ such that aeη− b ∈ S . Let therefore ϕ|S⊥ : S⊥ → R
be the restriction of ϕ to S⊥. As ϕ is continuous and convex, it follows that ϕ|S⊥ is too.
Hence, the set G := {x ∈ S⊥|ϕ|S⊥(x) ≤ ϕ|S⊥(0) = a} is closed and convex. Moreover, G
is bounded. Let i ∈ {1, . . . , N} and ψi : S⊥ → R, ψi(x) = aie

xi − bixi, then there exists
some adequate γi ∈ R such that for all i and all x ∈ S⊥ holds ϕ(x)S⊥ ≥ ψi(x) ≥ γi.
Since ψi is continuous and convex for all i, we have {x ∈ S⊥|ψi(x) ≤ ai} is bounded,
hence,

⋂
1≤i≤N{x ∈ S⊥|ψi(x) ≤ ai} is bounded. Since G ⊂

⋂
1≤i≤N{x ∈ S⊥|ψi(x) ≤ ai}
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2.1 Complex balanced network and its dynamical properties

it follows that G is also bounded. So the set G is closed and bounded, hence, compact.
Therefore, there exists a η ∈ G such that:

ϕ|S⊥(η) ≤ ϕ|S⊥(x) ∀x ∈ G
⇒ ϕ|S⊥(η) ≤ ϕ|S⊥(x) ∀x ∈ S⊥

⇒ 0 =
d

dγ
ϕ|S⊥(η + γx)|γ=0 =

d

dγ
ϕ(η + γx)|γ=0 = ϕ′(η) · x ∀x ∈ S⊥

⇒ aeη − b = ϕ′(η) ∈ S .

At this point we only have to prove uniqueness to complete the proof. Let η̄ ∈ S⊥ such
that η̄ 6= η and aeη̄−b ∈ S . Then it must be such that a(eη̄−eη) ∈ S and with η̄−η ∈ S⊥,
it follows

0 = (η̄ − η) · a(eη̄ − eη) =
N∑
i=1

ai(η̄i − ηi)(eη̄i − eηi).

Since a ∈ V + this equation can only hold if η̄i = ηi for all i ∈ {1, . . . , N}. Hence,
uniqueness follows.

Corollary 2.1.11. Let {S, C,R} be a reaction network and let S ⊂ V be its stoichiometric
subspace. For all c∗ ∈ V + {c ∈ V +| ln c− ln c∗ ∈ S⊥} meets every positive stoichiometric
compatibility class (c0 + S ) ∩ V + in precisely one point.

Proof. Let d ∈ V + and d ∈ (d0 + S ) ∩ V +. First we are going to prove the existence of
an element c ∈ (d0 + S ) ∩ {c ∈ V +| ln c − ln c∗ ∈ S⊥} for d ∈ V been chosen arbitrarily.
Proposition 2.1.10 implies the unique existence of a vector η ∈ S⊥ such that c∗eη−d ∈ S .
If we define c := c∗eη, then c ∈ (d0 + S ) ∩ V + and ln c− ln c∗ = ln(c∗eη)− ln c∗ = ln eη =
η ∈ S⊥. So c satisfies the requirement of the corollary.
To prove uniqueness of c, let c′ ∈ V + be such that c′ ∈ (d0+S )∩{c ∈ V +| ln c−ln c∗ ∈ S⊥}
and c′ 6= c. Then it follows from c, c′ ∈ {c ∈ V +| ln c− ln c∗ ∈ S⊥} that ln c− ln c′ ∈ S⊥.
Since c− c′ ∈ S it then follows:

0 = (c− c′) · (ln c− ln c′) =

N∑
i=1

(ci − c′i)(ln ci − ln c′i).

Since ln : (0,∞) → R is a strictly increasing function, the last equation can only hold if
c′i = ci for all i ∈ {1, . . . , N}. Thus, uniqueness is proven.

Recall the notations E = {c ∈ V +| f(c) = 0} and C = {c ∈ V +|Aκψ(c) = 0} for the set
of steady states, respectively complex balanced steady states.

Theorem 2.1.12 (Feinberg [11], lecture 5). Let {S, C,R, k} be a mass-action system and
let S be its stoichiometric subspace and f = Y Aκψ the species formation rate function. If
c∗ ∈ V + is a complex balanced steady state to the system, then the following statements
hold:

(1) ∀ c ∈ V +, c /∈ E : (ln c− ln c∗) · f(c) < 0

(2) E = {c ∈ V +| ln c− ln c∗ ∈ S⊥}

(3) E = C.
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2 Application of a Lyapunov function

Proof. (1): We define

φ :V + −→ V

c 7−→ ln c− ln c∗

For every c ∈ V + we have cy = (c∗)yey·φ(c), ∀y ∈ C. This implies:

f(c) =
∑

yj→yl∈R
kj→l(c

∗)yjeyj ·φ(c)(yl − yj)

⇒ f(c)·(ln c− ln c∗) =
∑

yj→yl∈R
kj→l(c

∗)yjeyj ·φ(c)(yl · φ(c)− yj · φ(c))

With the argument

eα(α′ − α)

{
<

=

}
eα
′ − eα ⇐⇒

{
α 6= α′

α = α′

it follows:

f(c) · (ln c− ln c∗) ≤
∑

yj→yl∈R
kj→l(c

∗)yj (eyl·φ(c) − eyj ·φ(c)) ∀c ∈ V + (20)

with equality holding if and only if φ(c) · (yl − yj) = 0 for every yj → yl ∈ R.

⇒ f(c) · (ln c− ln c∗) ≤
∑

yj→yl∈R
kj→l(c

∗)yj (eyl·φ(c) − eyj ·φ(c))

=
( ∑
yj→yl∈R

kj→l(c
∗)yj (wl − wj)

)∑
yi∈C

eyi·φ(c)wi = 0 (21)

since
∑

yj→yl∈R kj→l(c
∗)yj (wl − wj) = Akψ(c∗) = 0. With equality holding if and only if

f(c) = 0.
(2): Let c ∈ {c ∈ V +| ln c − ln c∗ ∈ S⊥} and c 6= c∗, so it follows since f(c) ∈ S for all
c ∈ V that f(c) · (ln c− ln c∗) = 0. ln : (0,∞)→ R is a strictly increasing function, so that
for c 6= c∗, ln c 6= ln c∗. It therefore follows that f(c) = 0 and consequently c ∈ E.
If c ∈ E, then f(c) · (ln c− ln c∗) = 0. So it follows from (20) that

0 = f(c) · (ln c− ln c∗) ≤
∑

yj→yl∈R
kj→l(c

∗)yj (eyl·φ(c) − eyj ·φ(c))
(21)
= 0.

The middle inequality is an equality only if φ(c) · (yl−yj) = 0. Since yl−yj ∈ S , it follows
that φ(c) = ln c− ln c∗ ∈ S⊥. Hence, c ∈ {c ∈ V +| ln c− ln c∗ ∈ S⊥}.
(3): From the second part we know that c ∈ E implies ln c − ln c∗ ∈ S⊥. So we will now
prove that from this last statement follows that Aκψ(c) = 0.
Since c∗ ∈ V + is a complex balanced steady steady state, we know from Corollary
2.1.9 that the network is weakly reversible. Hence, every complex resides in a termi-
nal strong linkage class. Furthermore, proposition 2.1.1 implies existence of a basis
{χ1, . . . , χt} ⊂ W̄+ of kerAκ such that suppχi = LTi , i = 1, . . . , t. It follows:

ψ(c∗) =
n∑
i=1

(c∗)yiwi =
t∑

j=1

( ∑
yi∈LTj

(c∗)yiwi

)
=

t∑
j=1

λjχj ,
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2.2 Construction of the Lyapunov function

where λ1, . . . , λt ∈ (0,∞). Since the terminal strong linkage classes are disjoint, it follows
that

∑
yi∈LTj

(c∗)yiwi = λjχj , j = 1, . . . , t. Hence, {
∑

yi∈LTj
(c∗)yiwi}j=1,...,t also represents

a basis of kerAκ.
We have ln c − ln c∗ ∈ S⊥, so for every pair of linked complexes yj ∼ yl it follows from
yl− yj ∈ S that yj · (ln c− ln c∗) = yl · (ln c− ln c∗). This implies, that there exist θ1, . . . , θt
such that yj · (ln c− ln c∗) = θi for all yj ∈ LTi . So it follows that

ψ(c) =
n∑
i=1

cyiwi =
n∑
i=1

(c∗)yieyi·(ln c−ln c∗)wi

=
t∑

j=1

( ∑
yi∈LTj

(c∗)yieyi·(ln c−ln c∗)wi

)
=

t∑
j=1

eθj
( ∑
yi∈LTj

(c∗)yiwi

)
∈ kerAκ.

This means Aκψ(c) = 0 and the proof is complete.

Remark This theorem tells us that if a mass-action system contains one complex balanced
steady state, then every steady state in this system is complex balanced and therefore is
a complex balanced mass-action system. With Corollary 2.1.8 it follows then that this
system is weakly reversible. On the whole we have the implication:
∃ c∗ ∈ V + : Aκψ(c∗) = 0 ⇒ complex balanced system⇒ weakly reversible system.

Corollary 2.1.13. Let {S, C,R, k} be a complex balanced mass-action system. Then the
differential equations admit in each positive stoichiometric compatibility class exactly one
steady state.

Proof. Since from the theorem 2.1.12 we know that the set of positive steady states
coincides with the set {c ∈ V +| ln c− ln c∗} for c∗ ∈ V + a complex balanced steady state,
corollary 2.1.11 proves the statement.

2.2 Construction of the Lyapunov function

In the previous section we have seen that a complex balanced mass-action system with
terminal strong linkage classes {LTi }i=1,...,t implies:

• kerAκ has a basis {χ1, . . . , χt} such that suppχi = LTi , i = 1, . . . , t ;

• the mass-action system is weakly reversible;

• ∀c ∈ V + : f(c) · (ln c− ln c∗) ≤ 0, where c∗ ∈ V + is a complex balanced steady state
of the system;

• C = {c ∈ V +|Aκψ(c) = 0} = {c ∈ V +| ln c−ln c∗ ∈ S⊥} where c∗ ∈ V + is a complex
balanced steady state and S ⊂ V is the stoichiometric subspace of the system.

Let the network be complex balanced at a concentration c∗ ∈ V +, we introduce the function
H : V̄ + → R defined in [11] by

H(c) :=
N∑
j=1

(
(ln(cj)− ln(c∗j )− 1)cj + c∗j

)
(22)

where H(0) = c∗.
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2 Application of a Lyapunov function

From the definition of H, we can derive the following properties:

(H1) H(c) > 0 for all c 6= c∗ and H(c∗) = 0.

(H2) ∀c ∈ V + : H(c) = (ln c − ln c∗ − eN ) · c + c∗, where eN is the vector in V with all
entries equal to 1. Furthermore H is continuously differentiable on V + with

H ′(c) = ln c− ln c∗. (23)

(H3) If 0 ≤ λ < 1, c1 ∈ ∂V̄ +, c2 ∈ V +, then c2 + λ(c1 − c2) ∈ V + and

lim
λ→1

(
d

dλ
H(c2 + λ(c1 − c2))

)
= +∞ (24)

(H4) H is continuous on its domain.

(H5) H is strictly convex, that is
∀t ∈ (0, 1), ∀c1, c2 ∈ V̄ + with c1 6= c2 : H(tc1 + (1− t)c2) < tH(c1) + (1− t)H(c2).

(H6)

lim
|c|→∞

H(c) = +∞ where |c| =
√
c2

1 + . . .+ c2
N (25)

Proof. (H1) We have ln cj−ln c∗j ≥ (cj−c∗j )/cj for all j ∈ {1, . . . , N}. Therefore, it follows:

H(c) =
N∑
j=1

(
(ln(cj)− ln(c∗j )− 1)cj + c∗j

)
>

N∑
j=1

(( 1

cj
(cj − c∗j )− 1

)
cj + c∗j

)
= 0

for all c 6= c∗ and H(c) = 0 if and only if c = c∗.

(H2) H is a composition of continuously differentiable functions and:

H ′(c) =
(

(ln c− ln c∗ − 1)c+ c∗
)′

=
∑
j≤N

d

dcj

(
(ln cj − ln c∗j − 1)cj + c∗j

)
vTj

=
∑
j≤N

(
1 + ln cj − ln c∗j − 1

)
vTj = ln c− ln c∗,

where vj is the jth unit vector in V .

(H3) For λ < 1 we have d
dλH(c2 + λ(c1 − c2)) =

(
ln(c2 + λ(c1 − c2))− ln(c∗)

)
· (c1 − c2),

it then follows:

lim
λ→1

(
d

dλ
H(c2 + λ(c1 − c2))

)
= lim

λ→1

(
ln(c2 + λ(c1 − c2))− ln(c∗)

)
· (c1 − c2)

= lim
λ→1

(
ln(c2 − λc2) · (−c2)

)
= lim

λ→1

(
ln(c2 − λc2)

)
· (−c2) = +∞

The second equality follows with the we can assume c1 = 0, since for every j with
(c1)j > 0 it follows that

(
ln((c2)j +λ((c1)j − (c2)j))− ln(c∗)j

)
((c1)j − (c2)j) is finite.
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2.2 Construction of the Lyapunov function

(H4) H is a composition of continuous functions.

(H5) From (23) it follows that ∀c ∈ V +, ∀a ∈ V : aTH(H(c))a =
∑ a2i

ci
> 0, so the

Hessian matrix H of H is positive-definite and therefore H is strictly convex.

(H6) follows directly from the definition of H.

In [16] the classification of a steady state is defined as follows:
A steady state c∗ of a dynamical system is called stable if for every neighborhood O of c∗

in V there is a neighborhood O′ of c∗ in O such that every concentration trajectory c(t)
with c0 = c(0) in O′ is defined and remains in O for all t > 0.
A steady state c∗ is called asymptotically stable if it is stable and limt→∞ c(t) = c∗ holds.
A steady state that is not stable, is called unstable.
Considering a chemical reaction network, it is evidently more significant to admit asymp-
totically stable steady states. If, for example, there are perturbations to the systems,
which are likely not only for biological systems, then it is desirable that these deviations
are canceled out by the system rather than maintain a slight change of the system.

Theorem 2.2.1 (Hirsch et al. [16] Lyapunov Stability, p.194). Let c∗ be a steady state for
ċ = f(c). Let H : O → R be a differentiable function defined on an open set O containing
c∗. Suppose further that

(1) H(c∗) = 0 and H(c) > 0 if c 6= c∗;

(2) d
dtH(c(t)) ≤ 0 for every c(t) ∈ O\{c∗}

Then c∗ is stable and H is called a Lyapunov function. Furthermore, if H also satisfies

(3) d
dtH(c(t)) < 0 for every c(t) ∈ O\{c∗},

then c∗ is asymptotically stable and H is called a strict Lyapunov function.

Corollary 2.2.2. Let {S, C,R, k} be a complex balanced mass-action system and let c∗ ∈
(c0 + S ) ∩ V + be a steady state to the system. If we take O in the previous theorem to
be the largest level set of H restricted to the positive stoichiometric compatibility class of
c∗ that contains c∗, then Hc∗ : (c0 + S ) ∩ V + → R represents the restriction of H to
the positive stoichiometric compatibility class, a strict Lyapunov function to the considered
positive stoichiometric compatibility class.

Proof. From the definition of H it follows directly that the function is differentiable and
H(c) > 0 for every c 6= c∗. The second condition

d

dt
H(c(t)) = H ′(c(t)) · ċ(t) = H ′(c) · f(c) ≤ 0 ∀c ∈ V + (26)

with equality holding if and only if Aκψ(c) = 0 follows directly from (23) and the theorem
2.1.12.

It follows immediately from this corollary that complex balanced steady states are locally
asymptotically stable relative to their corresponding positive stoichiometric compatibility
class. For a better understanding of the Lyapunov theory and the Lyapunov function we
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2 Application of a Lyapunov function

are going to explain how the different properties of a Lyapunov function interact to guaran-
tee stability, respectively, local asymptotic stability of the differential system in question.
For a fixed complex balanced steady state c∗ we define Hc∗ to be the restriction of H onto
the positive stoichiometric compatibility class containing c∗. Property (H1), (H4) and
(H5) imply that for each complex balanced steady state c∗, Hc∗ admits only one minimum,
namely c∗. From property (H2) together with (26) it follows that Hc∗ is non-increasing
along any concentration trajectory residing in the same stoichiometric compatibility class
and H ′ is zero only at c∗, therefore c∗ is stable. It follows even that the restricted Lyapunov
function is decreasing along any trajectory for c(t) 6= c∗, and with the property (H6) that
H converges to infinity as the concentration trajectory tends to infinity, it follows that
every trajectory is bounded. Hence, with the Lyapunov theory we are able to state that
every complex balanced mass-action system implies bounded concentration trajectories
and asymptotically stable steady states.
One might now assume that the complex balanced steady states are asymptotically stable
respective to the entire stoichiometric compatibility class. However, this is not warranted.
The Lyapunov function is not radially unbounded with respect to the stoichiometric com-
patibility class and consequently we cannot rule out the possibility that trajectories tend
toward the boundary of the set. This is the actual sticking point of the global attractor
conjecture which we will get into more detail in the next chapter. Additionally we will
show how the global attractor conjecture is linked to the persistence conjecture.
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3 Global Attractor Conjecture

3.1 Open problem of the Global Attractor Conjecture

So far we have seen that in a complex balanced mass-action system there exists only one
steady state in each positive stoichiometric compatibility class and in all chemical reaction
networks every concentration trajectory remains for all time in the same stoichiometric
compatibility class as it initialized. Furthermore complex balanced mass-action systems
give rise to locally asymptotically stable steady states relative to the positive stoichio-
metric compatibility classes. This means that in a complex balanced mass-action system,
every trajectory initializing in a close neighborhood of a steady state remains in a close
neighborhood in the same stoichiometric compatibility class of the steady state and tends
to the steady state. The natural question is now how large a neighborhood we can chose
so that the asymptotic stability still holds. As we already noted in the last paragraph the
trajectories may also tend to the boundary of the positive orthant of the species space.

Theorem 3.1.1 (Anderson [2]). Let c(t) be a concentration trajectory with initial con-
centration c(0). Let c∗ be the complex balanced steady state in the open stoichiometric
compatibility class (c(0) + S ) ∩ V +. Let H be the Lyapunov function (22), then either

lim inf
t→∞

d(c(t), c∗) = 0 or lim inf
t→∞

d(c(t), ∂V̄ +) = 0.

Proof. Assume that for some c(t), c∗ ∈ (c(0)+S )∩V + c(t) 9 c∗. From property (H2) of V
we know that Hc∗ decreases along trajectories, hence Hc∗(c(t)) is bounded from above by
Hc∗(c(0)) for all t ≥ 0 and c(t) is bounded for all t > 0. Since we assumed that c(t) 9 c∗

and c∗ is locally asymptotically stable, there exists a δ > 0 such that ||c(t) − c∗|| > δ for
all t > 0.
Let ε > 0 and let Cε = {c(t) ∈ (c(0)+S )∩V +| d(c(t), ∂V̄ +) ≥ ε and |c(t)− c∗| ≥ δ}. Since
the trajectories are bounded andH ′, f are continuous functions there exists a η = η(ε) such
that H ′(f(c(t))) = H ′(c(t)) · f(c(t)) < −η for all c(t) ∈ Cε. So it follows that H(c(0))/η
is the maximum amount of time that any trajectory can spend in the set Cε, as otherwise
c(t)→ c∗. ε was chosen arbitrarily, hence, lim inft→∞ d(c(t), ∂V̄ +) = 0.

Though as for now we cannot prove asymptotic stability for the complete positive stoi-
chiometric compatibility class, the system is asymptotically stable in the neighborhood of
the steady state. Hence, we say complex balanced mass-action systems are locally asymp-
totically stable.

Proposition 3.1.2 (La Salle and Lefschetz [18], §13. The Extent of Asymptotic Stability).
Let H(c) be a scalar function with continuous first partial derivatives. Let Dl designate the
region where H(c) < l. Assume that Dl is bounded and that within Dl:

• H(c) > 0 for c 6= c∗,

• H ′(c) < 0 for c 6= c∗.

Then every trajectory c(t) in Dl tends to c∗ as t→∞.

For big enough l, the domain Dl includes the boundary of the positive orthant, where
the conditions for H to be a strict Lyapunov function do not hold anymore. Without the
unboundedness of the Lyapunov function towards the boundary we cannot assume that
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3 Global Attractor Conjecture

asymptotic stability holds for the complete positive stoichiometric compatibility class.
However it is conjectured since the early 1970s that the the steady states of complex
balanced systems are globally asymptotically stable, meaning asymptotically stable in the
complete positive stoichiometric compatibility class. This conjecture was given the name
global attractor conjecture by Craciun et al. [8].

Conjecture 1 (Global Attractor Conjecture). A complex balanced steady state contained
in a positive stoichiometric compatibility class is globally asymptotically stable relative to
the interior of its positive stoichiometric compatibility class.

The open problem of the global attractor conjecture is the non-extinction of the species
of the network. D. Anderson [2] proved that the conjecture holds if it can be proven that
there exist no steady states on the boundary. This brings us to two important definitions
in chemical reaction network theory.
Let {S, C,R,K} be a chemical reaction network. We will call a concentration trajectory
c(t) persistent if

lim inf
t→∞

ci(t) > 0 ∀i ∈ {1, . . . , N}.

We will call the chemical reaction network persistent if every concentration trajectory of
the network is persistent.
If it can be shown that every complex balanced mass-action system is persistent, then the
conjecture will be proven.
The set of ω-limit points for a concentration trajectory c(t) with initial concentration c0

is defined as

w(c(·)) := w(c(·), c0) = {z ∈ V̄ +| lim
n→∞

c(tn) = z for some sequence tn →∞}. (27)

Hence, the other possibility to prove that the species of a complex balanced mass-action
system do not become extinct, is to prove that w(c(·)) ∩ ∂V̄ + = ∅.
In the last years research has been concentrated more on proving the Persistence conjecture
stated by Feinberg, M. in [12][Remark 6.1.E]:

Conjecture 2 (Persistence Conjecture). Any weakly reversible mass-action system is per-
sistent.

There exists a weaker version of the persistence conjecture stated by [3] which requires the
concentration trajectories to be bounded so that the mass-action system will be persistent.

Conjecture 3. Any weakly reversible mass-action system with bounded concentration tra-
jectories is persistent.

In fact it is still an open problem whether weakly reversible reaction networks only give
rise to bounded concentration trajectories.

Conjecture 4. Any weakly reversible mass-action system has bounded trajectories.

Hence, the common persistence conjecture can be divided into conjecture 3 and conjec-
ture 4, which together are equivalent to the open problem of the global attractor conjecture.
Note that the Global Attractor Conjecture only considers complex balanced reaction net-
works, whereas the Persistence Conjecture considers a larger class of reaction networks,
the weakly reversible reaction networks.
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3.2 Bounded solutions of the reaction rate equation for weakly reversible networks

If the persistence conjecture holds, then the global attractor conjecture will be proven too.
Since every complex balanced reaction network is also weakly reversible and persistence of
the network would mean that every concentration trajectory with positive initial condition
does not reach the boundary ∂V̄ +, we can conclude with the Lyapunov theory that the
steady states are globally asymptotically stable.
In the next section we will see an attempt to prove the persistence conjecture.

3.2 Bounded solutions of the reaction rate equation for weakly reversible
networks

This section is based on the paper of E. August and M. Barahona, [6]. They claim to
have proven that every concentration trajectory in a weakly reversible reaction system
with positive initial conditions is bounded from above and below. Thus, the persistence
conjecture would be proven. Though we are not entirely convinced about the completeness
of the proof, it presents an interesting approach to solving the persistence conjecture.
We are going to elaborate the proof of the paper and point out where we suspect the
imprecision.

In this section we are considering a weakly reversible reaction system endowed with mass-
action kinetics. As for the sections before, let N be the number of species and n the
number of complexes in the weakly reversible network. For {L1, . . . ,L`} the (terminal
strong) linkage classes of the reaction system, we have:

∀1 ≤ p, q ≤ `, p 6= q : Lp ∩ Lq = ∅ and
∀yi, yj ∈ Lp, yi → yj ∈ R, ∃yτ(1), . . . , yτ(k) ∈ Lp : yj → yτ(1) → . . .→ yτ(k) → yi.

The main graphical tool of this argumentation is to break up the linkage classes into
reaction cycles. Since we are considering weakly reversible networks all reactions of the
network will appear in at least one reaction cycle.

Example Let us consider the following reaction network with S = {S1, . . . , S7, S8}:

S6 + S7 S8 S4

S1 S2 + S3

S5

S6 S1 + S8 S4 + S5

Figure 3: A weakly reversible reaction network
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In this reaction network the reaction cycles are

R1 = {S1 → S2 + S3, S2 + S3 → S4, S4 → S5, S5 → S6 + S7, S6 + S7 → S1},
R2 = {S6 + S7 → S8, S8 → S4, S4 → S5, S5 → S6 + S7},
R3 = {S2 + S3 → S4, S4 → S2 + S3},
R4 = {S5 → S6 + S7, S6 + S7 → S5},
R5 = {S6 → S1 + S8, S1 + S8 → S6},
R6 = {S1 + S8 → S4 + S5, S4 + S5 → S1 + S8},
R7 = {S6 → S1 + S8, S1 + S8 → S4 + S5, S4 + S5 → S1 + S8, S1 + S8 → S6}.

As we can see, some reaction arrows can participate in more than one reaction cycle. We
will denote the multiplicity of the reaction yj → yl in the union of the reaction cycles by
βjl. Let us denote the number of reaction cycles in the reaction system by C. So we can
rewrite the corresponding differential equation (7) as a summation over these cycles:

ċ(t) =
C∑
z=1

∑
yj→yl∈Rz

kj→l
1

βjl
c(t)yj (yl − yj), (28)

where Rz denotes the zth reaction cycle of the system. If we consider one reaction cycle,
we have:

∑
yj→yl∈Rz(yl − yj) = 0. For the stoichiometric coefficients this means that

either for every elementary reaction the stoichiometric coefficients of species Sν are equal,
or there exists a complex yM for which yMν ≥ yjν for all 1 ≤ j ≤ n and yMν > yiν for
some 1 ≤ i ≤ n and there exists a complex ym for which ymν ≤ yjν for all 1 ≤ j ≤ n and
ymν < yiν for some 1 ≤ i ≤ n. It also follows that

C∑
z=1

∑
yj→yl∈Rz

(yl − yj) = 0.

Lemma 3.2.1. Let {S, C,R, k} be a weakly reversible mass-action system. If cν(t0) > 0
and cmin, cmax ∈ (0,∞) are such that 0 < cmin ≤ ci(t) ≤ cmax <∞, ∀i ∈ {1, . . . , N}, i 6=
ν, ∀t ∈ [0,∞), then

0 < cν(t) <∞ for all t ∈ [0,∞).

Proof. From the preceding we know that
∑C

z=1

∑
Rz(yjν − yiν) = 0 and therefore either

(1) yjν = yiν for every yi → yj ∈ Rz and for all 1 ≤ z ≤ C or (2) there exists M ∈
{1, 2, . . . , n} such that

• yMν ≥ yjν for all 1 ≤ j ≤ n

• yMν > yiν for some 1 ≤ i ≤ n, i 6= M .

Case (1) is trivial so we will focus on case (2).
Assume that cν(t) is unbounded from above for t → ∞. If cν(t) > γ1 > 1 for a constant
γ1 ∈ (1,∞) and for all t > t′ then it follows:

• cν(t)yMν ≥ cν(t)yjν for all 1 ≤ j ≤ n
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3.2 Bounded solutions of the reaction rate equation for weakly reversible networks

• cν(t)yMν > cν(t)yiν for some 1 ≤ i ≤ n, i 6= M .

Since 0 < cmin ≤ ci(t) ≤ cmax < ∞ for all i 6= ν and for all t, we have for any j ∈
{1, 2 . . . , n}:

0 <
N∏
i=1
i 6=ν

(cmin)yji ≤
N∏
i=1
i 6=ν

ci(t)
yji ≤

N∏
i=1
i 6=ν

(cmax)yji <∞

Let us consider a reaction cycle Rz and denote by Cz the set of complexes participating
in the reactions of the cycle. Within this cycle we have a complex yM ∈ Cz for which
cν(t)yMν ≥ cν(t)yjν for all complexes yj in the cycle Rz and cν(t)yMν > cν(t)yiν for some
complexes yi 6= yM in the cycle Rz. So there exists a constant γ ∈ (1,∞) such that if
cν > γ it follows:

kM→l
1

βMl

N∏
i=1

ci(t)
yMi |ylν − yMν | ≥ kM→l

1

βMl
cν(t)yMν

N∏
i=1
i 6=ν

(cmin)yMi |ylν − yMν |

>
∑
yj∈Cz

yjν<yMν

kj→k
1

βjk
cν(t)yjν

N∏
i=1
i 6=ν

(cmax)yji |ykν − yjν |

≥
∑
yj∈Cz

yjν<yMν

kj→k
1

βjk

N∏
i=1

ci(t)
yji |ykν − yjν |,

where yM → yl, yj → yk ∈ Rz. This holds too when summing over all reactions where the
stoichiometric coefficient for species Sν is maximal in the reactant complex:

∑
yj→yj′∈Rz
yjν=yMν

kj→j′

βjj′

N∏
r=1

cr(t)
yjr |yj′ν − yjν | ≥

∑
yj→yj′∈Rz
yjν=yMν

kj→j′

βjj′
cν(t)yjν

N∏
r=1
r 6=ν

(cmin)yjr |yj′ν − yjν |

>
∑

yj→yj′∈Rz
yjν<yMν

kj→j′

βjj′
cν(t)yjν

N∏
r=1
r 6=ν

(cmax)yjr |yj′ν − yjν |

≥
∑

yj→yj′∈Rz
yjν<yMν

kj→j′

βjj′

N∏
r=1

cr(t)
yjr |yj′ν − yjν | (29)

For all j ∈ {1, . . . , n} with yjν = yMν we have for all reactions yj → yj′ ∈ R that
yj′ν − yjν ≤ 0. So it follows that

∑
yj→yj′∈Rz
yjν=yMν

kj→j′

βjj′

N∏
r=1

cr(t)
yjr |yj′ν − yjν | = −

∑
yj→yj′∈Rz
yjν=yMν

kj→j′

βjj′

N∏
r=1

cr(t)
yjr(yj′ν − yjν)

By subtracting the right hand side of this equation from both sides of the inequality (29),
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we get:

0 >
∑

yj→yj′∈Rz
yjν=yMν

kj→j′

βjj′

N∏
r=1

cr(t)
yjr(yj′ν − yjν) +

∑
yj→yj′∈Rz
yjν<yMν

kj→j′

βjj′

N∏
r=1

cr(t)
yjr |yj′ν − yjν |

≥
∑

yj→yj′∈Rz
yjν=yMν

kj→j′

βjj′

N∏
r=1

cr(t)
yjr(yj′ν − yjν) +

∑
yj→yj′∈Rz
yjν<yMν

kj→j′

βjj′

N∏
r=1

cr(t)
yjr(yj′ν − yjν)

=
∑

yj→yj′∈Rz

kj→j′

βjj′

N∏
r=1

cr(t)
yjr(yj′ν − yjν)

For cν large enough, that is, there exists γ̃ ∈ (1,∞) such that for cν > γ̃, we have:

ċν(t) =
C∑
z=1

∑
yj→yl∈Rz

kj→l
1

βjl

N∏
i=1

ci(t)
yji(ylν − yjν) < 0 (30)

Thus there exists a t1 > t′ such that cν(t) < γ̃ for t > t1.
Let us see the implication when cν is not bounded away from zero for t → ∞. As before
we know that since the reaction system is weakly reversible that

∑C
z=1

∑
Rz(yjν−yiν) = 0.

Therefore either yjν = yiν for every yi → yj ∈ Rz and for all 1 ≤ z ≤ C or there exists
m ∈ {1, 2 . . . , n} such that

• ymν ≤ yjν for all 1 ≤ j ≤ n and

• ymν < yiν for some 1 ≤ i ≤ n, i 6= m.

So we have
∑
Rz |yjν − ymν | ≥

∑
Rz(yjν − ymν) > 0. If 0 < cν(t) < γ′ < 1 for t > t′, then

• (cν(t))ymν ≥ (cν(t))yjν for all 1 ≤ j ≤ n

• (cν(t))ymν > (cν(t))yiν for some 1 ≤ i ≤ n, i 6= m.

Analogously to the above arguments, it then follows that for cν < 1 small enough, that is,
for some γ̃′ ∈ (0, 1), if cν ∈ (0, γ′), then:

ċν(t) =

C∑
z=1

∑
yj→yl∈Rz

kj→l
1

βjl

N∏
i=1

ci(t)
yji(ylν − yjν) > 0 (31)

So there exists a t2 > t′ such that cν(t) > γ̃′ for t > t2.
This proves that 0 < γ̃′ < cν(t) < γ̃ <∞ for t ≥ max{t1, t2}.

Remark The previous lemma even holds if for some species their concentrations are 0.
Let there be a species Sd such that cd(0) = 0 and ċd(t) = 0 for every t > 0. If for every
complex yj ∈ C yjd 6= 0, then

∏N
i=1 ci(t)

yji = 0 for every 1 ≤ j ≤ n.
Generally we have for all 1 ≤ j ≤ n :

∏N
i=1 ci(t)

yjiyjd = 0, so we can reduce the reaction
rate equation for the concentration cd:

ċd(t) =
∑

yj→yl∈R
kj→l

N∏
i=1

ci(t)
yji(yld − yjd) =

∑
yj→yl∈R

kj→l

N∏
i=1

ci(t)
yjiyld.
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3.2 Bounded solutions of the reaction rate equation for weakly reversible networks

Since ċd = 0, it follows
∏N
i=1 ci(t)

yjiyld = 0. This means that the species Sd is not
created, so the reactions having as product complexes complexes with Sd contained in
their support are inactive. This implies that the reactant complexes of these reactions
are absent. Consequently, these reactant complexes are not created, which means that
the reactions producing these complexes are inactive. In this manner, by following the
reactions backwards through all reaction cycles containing species Sd, it follows that those
reaction cycles are inactive. So the reaction rate equation can be reduced to a sum over
those reaction cycles that do not contain species Sd. Let C ′ < C be the number of
reaction cycles that do not contain Sd and {Rτ(1), . . . ,Rτ(C′)} the set of reaction cycles
not containing species Sd.
Let us assume that species Sν participates in at least one of the remaining reaction cycles.
Otherwise it follows cν(t0) > 0 and ċν(t) = 0, ∀t, so that cν remains constant for all time
t. So we can reduce the reaction rate equation for the concentration of Sν to:

ċν(t) =

C′∑
z=1

∑
yj→yl∈Rτ(z)

kj→l

N∏
i=1

ci(t)
yji(ylν − yjν)

Thus, it follows from the previous lemma that if cd = 0, 0 < cmin ≤ cj(t) ≤ cmax <∞ for
all j 6= ν and j 6= d, t > 0, then cν is also bounded from above and below.
So far we agree with the reasoning. However we suspect an imprecision in the argumenta-
tion in the proof of the following step .

Part (III) of the proof of theorem 6 (August and Barahona [6]). Let {S, C,R, k}
be a weakly reversible mass-action system. If cν(t0) > 0, cµ(t0) > 0 and
0 < cj(t) ≤ cmax < ∞, ∀j ∈ {1, . . . , n}, j 6= ν, j 6= µ, ∀t ∈ [0,∞), then
cν(t) and cµ(t) are also bounded from above and below for all t ∈ [0,∞).

We will follow the proof by E. August and M. Barahona, [6], to the point where we suspect
the imprecision. To support our assumption we will give a counterexample and we will
propose additional conditions on the concentration trajectories cν , cµ so that the conclusion
will probably hold. However, with these additional conditions the initial statement of the
lemma and subsequently the main statement, persistence of weakly reversible systems, is
unproven.

Since the reaction system is weakly reversible, we have
∑C

z=1

∑
Rz(yl−yj) = 0. Especially,(

C∑
z=1

∑
Rz

(ylν − yjν) = 0 and
C∑
z=1

∑
Rz

(ylµ − yjµ) = 0

)
⇒

C∑
z=1

∑
Rz

(ylν + ylµ − yjν − yjµ) = 0.

So either ylν + ylµ − yjν − yjµ = 0 for every reaction in every reaction cycle, from which
follows that cν(t) + cµ(t) = γ for all time t, γ > 0 a constant, or there exists a complex
yH ∈ C for which

• yHν + yHµ ≥ yjν + yjµ for all 1 ≤ j ≤ n and

• yHν + yHµ > yiν + yiµ for some 1 ≤ i ≤ n, i 6= H.
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3 Global Attractor Conjecture

Assume that both cν , cµ are unbounded from above. In August and Barahona [6] it is then
implied that:
If cν(t)cµ(t) > γ > 1 for all t > t1, γ ∈ (1,∞) a constant, then we have:

• cν(t)yHνcµ(t)yHµ ≥ cν(t)yjνcµ(t)yjµ for all 1 ≤ j ≤ n and

• cν(t)yHνcµ(t)yHµ > cν(t)yiνcµ(t)yiµ for some 1 ≤ i ≤ n, i 6= H.

With the assistance of Dr. Bence Mélykúti we made the observation that these inequalities
do not hold in general.

Counterexample Consider a weakly reversible reaction network, where yHν = 5, yHµ =
1, yjν = 1, yjµ = 3, then we have yHν + yHµ > yjν + yjµ.

5Sν + Sµ Sν + Sµ

Figure 4: Part of an example of a weakly reversible reaction network holding the assump-
tions

Assume now that there exists T > 0 such that cν(T )2 < cµ(T ). It follows that there exists
γ ∈ (1,∞) such that if cµ(T ) > γ then:

cν(T )5cµ(T )1 < cν(T )1cµ(T )3

This is in opposition to the statement above.

We can assume that for the boundedness of the concentration trajectories cµ, cν , we need
more insight about the relation between the two concentrations. We discern two distinct
cases:

(C1) lim inft→∞
cν(t)
cµ(t) > 0 and lim supt→∞

cν(t)
cµ(t) <∞

(C2) otherwise.

By adding property (C1) to the assumptions of the lemma we conjecture the lemma to
hold.

Lemma 3.2.2 (Conjecture). Let {S, C,R, k} be a weakly reversible mass-action system.
If

(1) cν(t0) > 0, cµ(t0) > 0,

(2) limt→∞
cν(t)
cµ(t) = δ, 0 < δ <∞ and

(3) 0 < cj(t) ≤ cmax <∞, ∀j ∈ {1, . . . , n}, j 6= ν, j 6= µ, ∀t ∈ [0,∞),

then there exist cm, cM ∈ (0,∞) such that cm ≤ cν(t), cµ(t) ≤ cM for all t ∈ [0,∞).

As we did mention before, the main statement of the paper August and Barahona [6],
Theorem 6, builds on the accuracy of the last step without the additional conditions on
the concentration trajectories. Since there are additional conditions needed for the proof
the theorem can not be proven on its initial conditions.
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3.2 Bounded solutions of the reaction rate equation for weakly reversible networks

Theorem 6.[[6]] For every weakly reversible reaction system, the concentration
trajectories with strictly positive initial conditions are bounded from above and
below and remain in their corresponding positive stoichiometric compatibility
class.

∀i ∈ {1, . . . , N}, ∀t ∈ [0,∞) : 0 < cmin ≤ ci(t) ≤ cmax <∞

The authors claim that the purported theorem can be proven by induction over ν ∈
{1, . . . , N}. Since the details are missing about the induction it is difficult to verify this
reasoning.
Even if we assume additionally that for every two distinct species Sν ,Sµ ∈ S there exists
a δνµ > 0 and a T > 0 such that for all t ≥ T cν(t) = δνµcµ(t), we cannot assume that the
system is persistent.
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4 Proven cases of the Global Attractor Conjecture

4 Proven cases of the Global Attractor Conjecture

4.1 Single linkage class case

In 2011 David F. Anderson proved the global attractor conjecture in the single linkage
class case. To do so, he proved that complex balanced mass-action systems with a single
linkage class are persistent. In this section we are going to review the most important steps
of this proof. For further details we refer to [3].
One of the tools of the proof of this special case is to project the dynamical system of the
network onto a reduced network. The later use of this tool is to lay focus on those species
which tend to extinction.
The reduced reaction network of {S, C,R} associated with U ⊆ {1, . . . , N} is the reaction
network {SU , CU ,RU} constructed in the following manner:

(1) SU := {Si ∈ S| i ∈ U}.

(2) CU := {yj |U | y ∈ C}. The complex yj is reduced to the complex yj |U . For the complex
vector, this means yj |U := {yj1, . . . , yjM} ∈ RM .

(3) RU := {yj |U → yk|U | yj → yk ∈ R, yj |U 6= yk|U}.

(4) If in the reduced network a linkage class contains only one complex, then this complex
is deleted from CU . Hence, the linkage class is deleted too.

The first property of a typical chemical reaction network is that every species in S has
to participate in at least one of the complexes of the network. For the reduced network
though it is possible that some species are inactive. That means, there may be a species
Si ∈ SU such that for all yj ∈ CU we have Si /∈ supp yj . If for example one species only
participates in the complex that after reduction is the single element in a linkage class
and, hence, this linkage class, respectively complex, gets deleted by property (4), then the
species remains in the set SU , but is not a participant of the reduced network. Although
we omit the first property of chemical reaction networks, the reduced reaction network
follows all the other properties established on page 3.

(2) there is no trivial reaction yj → yj ∈ RU for any yj ∈ CU . This follows immediately
from (3) of the definition of reduced reaction networks.

(3) For any yj ∈ CU there exists a yl ∈ CU for which yj → yl ∈ RU or yl → yj ∈ RU .
By property (4) of reduced chemical networks this is guaranteed. Furthermore, if
there exist yi → yj , yj → yl ∈ R for which yj |U = yl|U then it follows by definition
yi|U → yl|U ∈ RU .

Now we need to provide the kinetics to the reduced network. For that, we project the
dynamics of the original system on the elements of U . Let the original chemical reaction
system {S, C,R, k} be a mass-action system with the general differential equation

ċ(t) = f(c(t)) =
∑

yj→yl∈R
kj→lc(t)

yj (yl − yj) (32)

If we want to project this dynamical system onto a subset of the dependent variables,
say U = {1, . . . ,M} ⊂ {1, . . . , N} with U 6= ∅, we include the concentrations ci(t) for
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4.1 Single linkage class case

M + 1 ≤ i ≤ N in the kinetics,

k̂j→l(t) :=
∑

yp→yq∈R
yj |U=yp|U and yl|U=yq |U

kp→q(c(t)|Uc)yp|Uc

where U c = N\U = {M + 1, . . . , N} and c(t)|Uc,i = ci(t) for all i ∈ U c.
As by then we can consider the dynamical system in RM with state concentration vector
c|U with c|U,i(t) = ci(t) for all 1 ≤ i ≤M . In RM we then get differential equations of the
form:

ċ|U (t) = f̂(c|U (t)) :=
∑

yj→yl∈R
k̂j→l(t)

M∏
i=1

c|U,i(t)yji(yl − yj)

We call this system of differential equations the projected dynamics of (32) with respect to
U . Note that the original system {S, C,R, k} is autonomous, which means that the kinetics
are not dependent on the time parameter t. However, the kinetics in the reduced system
{SU, CU,RU, k̂(t)} are functions of time, hence the reduced system is nonautonomous.
Note also that in the original and the reduced reaction system the differential equation for
each species Si ∈ S with i ∈ U are the same and there has been made no change to the
dynamics of the system.

Proposition 4.1.1. The number of linkage classes of the reduced reaction network is less
than or equal to the number of linkage classes of the original reaction network.

Proof. By the property (3) of reduced chemical networks the number of reactions may only
reduce and if two complexes yi, yj were in the same linkage class in the original network,
then yi|U , yj |U are in the same linkage class in the reduced network. With property (4)
the number of linkage classes may only reduce.

Proposition 4.1.2. If the original reaction network is weakly reversible, then the reduced
reaction network is also weakly reversible.

Proof. Let yj , yl be strongly linked in {S, C,R}, then there exist yτ(1), . . . , yτ(k) such that
yj → yτ(1) → . . . → yτ(k) → yl. If yτ(i)|U 6= yτ(i+1)|U for every 1 ≤ i ≤ k − 1 and
yj |U 6= yτ(1), yl|U 6= yτ(k), then yj |U → yτ(1)|U → . . . → yτ(k)|U → yl|U . If there exists
1 ≤ i ≤ k − 1 such that yτ(i)|U = yτ(i+1)|U , then it follows by definition that yτ(i−1)|U →
yτ(i)|U → yτ(i+2). Hence, yj |U ⇒ yk|U . It then also follows that yj |U ≈ yk|U .

The most important tool in proving the global attractor conjecture in the single linkage
class case is partitioning vectors along sequences. The set of complex vectors is partitioned
into subsets such that for a given concentration trajectory c(·) the subsets contain com-
plexes y for which c(t)y grow similarly.
Let C ⊂ V̄ + be the set of complex vectors in the species space for a chemical reaction
network {S, C,R}. Moreover let c(t) ∈ V + denote a strictly positive trajectory. C is parti-
tioned along the sequence c(t) if there exists a partition

⋃̇P

i=1Ti = C such that Ti 6= ∅ and
a constant C > 1, such that

(1) if yj , yk ∈ Ti for some i ∈ {1, . . . , P}, then for all t

1

C
c(t)yj ≤ c(t)yk ≤ Cc(t)yj ;
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4 Proven cases of the Global Attractor Conjecture

(2) if yk ∈ Ti and yj ∈ Ti+m for some i ∈ {1, . . . , P} and some m ∈ {1, . . . , P − i}, then
c(t)yk

c(t)yj
→∞ as t→∞.

We will call the subsets Ti ⊂ C tiers. Through this definition we get an ordering of the
tiers: T1 � T2 � . . . � TP , where T1 contains the complexes for which c(t)y is increasing
the fastest and Tp contains the complexes for which c(t)y is increasing the slowest.

Lemma 4.1.3. Let c(t) be a concentration trajectory in the positive orthant V +. Then
there exists a subsequence c(tk) along which C is partitioned.

Proof. We are only going to sketch the proof of this lemma, for the more detailed proof
we refer to [3].
Since there are n! <∞ ways to order the complexes, there exists a reordering of the complex
vectors such that the set of time steps tk for which c(tk)y1 ≥ c(tk)y2 ≥ . . . ≥ c(tk)yn holds
is infinite. By this, we obtain the subsequence and an ordering of the complexes along this
subsequence.
To partition the complexes into tiers we analyze the lower limit of the ratio c(tk)yi/c(tk)yi+1

for every i ∈ {1, . . . , n− 1} starting with i = 1 as k tends to infinity. Whenever the lower
limit of the ratio exists, the two complexes belong to the same tier and we can choose a
subsequence of time such that limtn→∞ c(tk)

yi/c(tk)
yi+1 exists. If the lower limit of the

ratio tends to infinity, then we begin another tier and repeat the process of testing for
existence of lower limits. In this manner we get the partition of the complexes into tiers.
Let P denote the number of tiers. For every j ∈ {1, . . . , P} and every yi, yi+1 ∈ Tj we
set Cj,i = limk→∞ c(tk)

yi/c(tk)
yi+1 . So there exists K > 1 such that for every k ≥ K it

holds 1 ≤ c(tk)
yi/c(tk)

yi+1 ≤ Cj,i + 1. For each tier we can then set a constant, Cj =∏
{i| yi,yi+1∈Tj}(Cj,i + 1) which the ratios of this tier cannot exceed. Taking the maximum

of these constants, we get the quested constant C.

Let {Ti}1≤i≤P denote a partition of C and let U ⊂ {1, . . . , N} be nonempty. We
say that the vector w ∈ V̄ + is a nonnegative conservation relation that respects the pair
(U, {Ti}1≤i≤P ) if

(1) suppw = U and

(2) whenever yj , yl ∈ Ti for some i ∈ {1, . . . , P}, we have that w · (yj − yl) = 0.

If Ti = {yi} for each i ∈ {1, . . . , P} and P = n, then any vector w with suppw = U is a
nonnegative conservation relation that respects the pair (U, {yi}).
If P = 1, which means C = T1, then the conservation relation describes the conservation
of mass which we described in section 2.1.
To prove the next theorem, we are going to need the help of a theorem from linear algebra
stated by E. Stiemke.

Lemma 4.1.4 (Stiemke [22]). For k = 1, . . . , n, let vk ∈ Rm. Either

• there exists α ∈ Rn such that for all j = 1, . . . ,m( n∑
k=1

αkvk
)
j
≤ 0

and such that there exists at least one j ∈ {1, . . . ,m} for which (
∑n

k=1 αkvk)j < 0,
or
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4.1 Single linkage class case

• there exists a positive vector w ∈ Rm>0 such that w · vk = 0 for each k ∈ {1, . . . , n}.

Theorem 4.1.5 (Anderson [3]). Let {S, C,R} be a chemical reaction network and let
c(t) ∈ V + denote a concentration trajectory with c(t) → z ∈ ∂V̄ +, as t → ∞. Set
U = {i ∈ {1, . . . , N}| zi = 0}. If C is partitioned along c(t) with tiers Ti, for i = 1, . . . , P ,
and constant C > 0, then there is a nonnegative conservation relation w ∈ V̄ + that respects
the pair (U, {Ti}).

Proof. The method used for proving this theorem is proof by contradiction. So we assume
that there exists no nonnegative conservation relation that respects the pair (U, {Ti}). Let
us define

Ti := {yj − yl| yj , yl ∈ Ti} and T ′ :=
P⋃
i=1

Ti

and let Ti|U , T |U the respective projections on Rm. Since we assumed that there exists no
nonnegative conservation relation that respects (U, {Ti}), T |U must contain at least one
nonzero vector vk. From the same assumption it follows with Lemma 4.1.4 that there
exists αk ∈ R such that

(∑
vk∈T |U αkvk

)
j
≤ 0 for every j ∈ {1, . . . ,m} and that the

inequality is strict for at least one j. Let

M : V̄ + −→ R

x 7−→
∏
uk∈T

(
xuk
)αk/mk

where mk denotes the number of vectors uk ∈ T that reduce to the vector vk ∈ T |U .
By construction the complexes are partitioned such that there exists a sequence c(tk)
constant C > 0 such that 1/C ≤ c(tk)uk = c(tk)

yl/c(tk)
yj ≤ C for uk = yl − yj . Therefore

it follows that M(c(t)) is uniformly bounded from above and below. Since c(t) ∈ V + we
have

ln(M(c(t))) =

∑
uk∈T

αk
mk

uk

 · ln c(t).
Dividing the left hand of the equation up into summations over U and U c, we have that the
summation over U c is bounded from above and below since cj(t) is bounded for all j ∈ U c.
However, the second summation (

∑
uk∈T |U αkvk) · ln(c|U (t)) tends to +∞ as t→∞ since(∑

vk∈T |U αkvk
)
j
< 0 for at least one j and c|U (t) → 0. This is in contradiction with the

boundedness of the left hand of the equation, ln(M(c(t)). By this contradiction then the
proof of the theorem follows.

A nonautonomous mass-action system {S, C,R,K(t)} is said to have bounded kinetics if
there exists a constant η > 0 such that η < ki→j(t) < 1/η for every reaction yi → yj ∈ R
and for all t ≥ 0.
Let H : V̄ + → [0,∞) be the Lyapunov function defined in (22) and Hc∗ the restriction of
H to the positive stoichiometric compatibility class containing c∗. For this section c∗ in
the function Hc∗ does not need to be a complex balanced steady state.

Lemma 4.1.6. Let {S, C,R,K(t)} be a weakly reversible, nonautonomous mass-action
system with bounded kinetics. Suppose c0 ∈ V + is chosen such that the concentration
trajectory c(t) with initial condition c0 remains bounded and dist(c(t), ∂V̄ +)→ 0 as t→∞.
Then one or both of the following conditions holds:
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4 Proven cases of the Global Attractor Conjecture

(1) ∀c∗ ∈ V +, ∃T (c∗) > 0 ∀t > T (c∗) : H ′c∗(c(t)) = f(c(t)) · (ln c(t)− ln c∗) < 0.

(2) ∃(tn) ⊂ [0,∞), tn →∞ : c(tn)→ z ∈ w(c(·)) ∩ ∂V̄ + as tn →∞ and

(i) C is partitioned along c(tn) with tiers {Ti}Pi=1, and constant C, and

(ii) T1 consists of a union of linkage classes

For the proof of this lemma we are referring to Anderson [3].

Lemma 4.1.7. Let {S, C,R,K(t)} be a nonautonomous mass-action system with bounded
kinetics and with a single linkage class and let c(t) be a bounded concentration trajectory
with initial condition c0 ∈ V +. Moreover, let d(c(t), ∂V̄ +) → 0 as t → ∞. Then, there
exists no subsequence (tn)→∞ such that C is partitioned along c(tn) in which T1 consists
of a union of linkage classes.

Proof. The system consists of only one linkage class, hence, for T1 to consist of a union of
linkage classes it must be the case T1 = C. As for the proof before we are going to assume
the negated statement, that there exists such a sequence tn →∞ so that C is partitioned
along c(tn) with T1 = C and that this statement leads to a contradiction.
Since the concentration trajectory is bounded, there exists a subsequence c(tn) that has a
limit point c. Since the trajectory tends to the boundary of V + we can define the nonempty
set U = U(c) = {i ∈ {1, . . . , N}| ci = 0}. C is partitioned along this sequence as well and
with theorem 4.1.5 there exists a nonnegative conservation relation w ∈ V̄ + that respects
the pair (U, T1). Hence, w = suppU 6= ∅ and it follows w · c(tn) → 0 for n → ∞. On the
other hand we have w · (yl − yj) = 0 for all yj → yl ∈ R since T1 = C, so with (32) it
follows w · c(t) > 0 is constant in time t. This contradicts w · c(tn)→ 0 for n→∞, so the
lemma is proven.

Lemma 4.1.8. Let {S, C,R,K(t)} be a nonautonomous reaction system with bounded
mass-action kinetics. Suppose c0 ∈ V + such that for any c∗ ∈ (c0 + S )∩ V + there exists a
T (c∗) > 0 so that for every t > T (c∗) we have H ′c∗(c(t)) < 0. Then the ω-limit set of c(t)
consists of a single element.

Proof. Since we assumed that for any c∗ ∈ (c0 + S ) ∩ V + there exists a T (c∗) > 0 so that
for every t > T (c∗) we have H ′c∗(c(t)) < 0, Hc∗ is bounded. Hence, the trajectory remains
bounded which implies that the ω-limit set is nonempty.
Furthermore, for any c∗ ∈ V + there exists a hc∗ ≥ 0 such that Hc∗(c(t))→ hc∗ as t→∞.
Let us suppose there exist two distinct elements w1, w2 in the ω-limit set. It follows that
for every c∗ ∈ V + Hc∗(w1) = Hc∗(w2) = hc∗ . Choose arbitrary c∗1, c∗2 ∈ V +, then we have:

0 = Hc∗1
(w1)−Hc∗1

(w2)− (Hc∗2
(w1)−Hc∗2

(w2))

= (w1 − w2) · (ln c∗2 − ln c∗1), (33)

where (33) follows from the following computation: For i ∈ {1, . . . , N} we have(
w1,i(ln(w1,i)− ln(c∗1,i)− 1) + c∗1,i

)
−
(
w2,i(ln(w2,i)− ln(c∗1,i)− 1) + c∗1,i

)
−
(
w1,i(ln(w1,i)− ln(c∗2,i)− 1) + c∗2,i

)
+
(
w2,i(ln(w2,i)− ln(c∗2,i)− 1) + c∗2,i

)
= w1,i(ln(c∗2,i)− ln(c∗1,i))− w2,i(ln(c∗2,i)− ln(c∗1,i)).

Since we chose c∗1, c∗2 ∈ V + arbitrarily, it must follow from (33) that w1 = w2. Hence, there
exists only a single point in the ω-limit set.
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4.1 Single linkage class case

Theorem 4.1.9 (Anderson 3). Let {S, C,R,K} be a complex balanced mass-action system
with a single linkage class and c(t) a concentration trajectory with initial concentration
c0 ∈ V then w(c(·)) ∩ ∂V̄ + = ∅. Hence, the concentration trajectory is persistent.

Proof. Let us assume there exists an initial concentration c0 to a trajectory c(t) such that
w(c(·)) ∩ ∂V̄ + 6= ∅ and define U := {i ∈ {1, . . . , N}| ci = 0 for some c ∈ w(c(·))}. U is the
set of indices for the species whose concentrations tend to zero for some subsequence of the
considered concentration trajectory. Additionally we know from section 2.2 that complex
balanced mass-action systems imply bounded concentration trajectories. So we have for
each i ∈ U :

lim inf
t→∞

ci(t) = 0 and lim sup
t→∞

ci(t) <∞.

On the other hand, we have for each j ∈ U c:

0 < lim inf
t→∞

cj(t) ≤ lim sup
t→∞

cj(t) <∞. (34)

Let {SU, CU,RU, k̂(t)} denote the reduced reaction system of {S, C,R, k} defined at the
beginning of this section. Because of (34) and the definition of k̂(t) we know that there
exists an η > 0 such that η < k̂i→j(t) < 1/η for all t ≥ 0 and all reactions yi → yj ∈ RU .
This means, the reduced reaction system has bounded mass-action kinetics.
By proposition 4.1.1 and proposition 4.1.2 the reduced reaction network is weakly reversible
and contains only one linkage class.
Without loss of generality let us assume |SU | = N and set c̄(t) the concentration trajectory
to the reduced system. Because of the definition of the set U the set of ω-limit points of c̄(t)
must intersect with ∂RN≥0. Proposition 4.1.1 and lemmas 4.1.6, 4.1.7, 4.1.8 imply then that
the ω-limit set of the reduced system must consist of a single point. Hence, this must be
the point 0 ∈ ∂RN≥0. Since otherwise there exists an i ∈ U such that lim inft→∞ ci(t) > 0,
which is a contradiction to the definition of U . However it also follows by the three
lemmas 4.1.6, 4.1.7, 4.1.8 that for t large enough H ′c∗(c̄(t)) < 0 for some c∗ ∈ V +, so 0 is a
local maximum of the Lyapunov function. Hence, c̄(t) 9 0. It follows that w(c(·))∩∂V̄ + =
∅.

This theorem also holds for a weakly reversible mass-action system with a single linkage
class, for which the concentration trajectories follow the conditions:

• the concentration trajectories are bounded, and

• the ω-limit set of the concentration trajectories is either completely contained in
the boundary of the positive orthant or completely contained in the interior of the
positive orthant.

Note that not the persistence but the global attractor conjecture has been proven since a
complex balanced steady state was assumed.
We remark that to prove the persistence conjecture in the single linkage class case, we
would have to prove that for every weakly reversible mass-action system the ω-limit set is
completely contained in either the boundary or the interior of the positive orthant V +, [3].
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T +M C0 C1 C2 Ci−1 Ci CN−1 CN
k1

k−1,0

kp,0 kp,1 kp,i kp,N−1

k−1,1
k−1,2

k−1,i−1
k−1,i

k−1,N−1
k−1,N

Signal

Figure 5: Model for kinetic proofreading in T-cell receptor signal transduction

Example McKeithan model
In 1995 T.W. McKeithan proposed a model for kinetic proofreading for T-cell receptor
signal transduction, [19]. The aim was that it should describe a possible mechanism ex-
plaining the selectivity of T-cell interactions. In this model depicted in figure 5, the process
of kinetic proofreading can be described as follows: After binding the ligand peptide-major
histocompatibility complex, short peptide-MHC, the T-cell receptor complex undergoes a
number of modification, including tyrosine phosphorylation steps before transmitting a
signal. The assumption is that recognition signals are determined by the concentrations of
the final complex CN and that this chain of modification is the reason for both increased
sensitivity and selectivity of response.
Let T be the T-cell receptors not bound to a ligand and M the peptide-MHC complexes
not bound to a receptor. When a peptide-MHC complex binds to a receptor this gives the
basic form of the occupied receptor C0. This basic form can be modified, for example by
tyrosine phosphorylations, at up to N sites. These successive modifications like tyrosine
phosphorylations are leading from the initial complex C0 to the final complex CN and
the corresponding rate constants are denoted by kp,i. However, there are also dissociation
reactions, where the peptide-MHC complex detaches from the receptor and the receptor
is simultaneously completely dephosphorylated. Whether or not a signal is transmitted
depends on the reaction rate constants, which are specific for the binding ligands. For
nonspecific complexes (self-antigens) the rate of dissociation is sufficiently high that disso-
ciation most always occurs before the nonspecific complex can be activated and generate
signals. With this feature the receptor is able to discriminate between a foreign antigen
and self-antigens with only moderately lower affinity.
The corresponding system of differential equations are described as follows:

ċT (t) = −k1cT (t)cM (t) +
N∑
i=0

k−1,icCi(t)

ċM (t) = ċT (t)

ċC0(t) = k1cT (t)cM (t)− (k−1,0 + kp,0)cC0(t)

...
ċCi(t) = kp,i−1cCi−1(t)− (k−1,i + kp,i)cCi(t)

...
ċCN (t) = kp,N−1cCN−1

(t)− k−1,NcCN (t)

The total concentrations of T-cell receptors T ∗ and peptide-MHC complexes M∗ (both
bound and free) are conserved quantities and can be used to eliminate the variables cT
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4.2 Chemical reaction networks with 2 or 3 species

and cM from the system if desired.

T ∗ = cT (t) +
N∑
i=0

cCi(t), M∗ = cM (t) +
N∑
i=0

cCi(t) for all t > 0.

This gives the system for the variables Ci:

ċC0(t) = k1

(
T ∗ −

N∑
i=0

cCi(t)

)(
M∗(t)−

N∑
i=0

cCi(t)

)
− (k−1,0 + kp,0)cC0(t)

...
ċCi(t) = kp,i−1cCi−1(t)− (k−1,i + kp,i)cCi(t) (35)

...
ċCN (t) = kp,N−1cCN−1

(t)− k−1,NcCN (t)

E. Sontag was the first to apply the results of chemical reaction network theory to this
model, in [21]. Evidently, the model consists of a single linkage class. Furthermore, the
deficiency of the model is zero since the number of complexes is N + 2 and the dimension
of the stoichiometric subspace is N + 1 as we can depict from the reduced reaction system
(35). Hence, with the deficiency zero theorem we can conclude that the reaction system is
complex balanced for every choice of rate constants. The proven global attractor conjecture
in the single linkage class case then implies that there is exactly one steady state concen-
tration in each stoichiometric compatibility class and that it is globally asymptotically
stable. Especially, there is exactly one steady state concentration for the final complex in
each stoichiometric compatibility class. The steady state concentrations depend solemnly
on the rate constants and, in particular, on the constants T ∗ and M∗. This conclusion
rules out periodic orbits and chaotic behavior and shows the “determinism” of the process
described by T. W. McKeithan.

4.2 Chemical reaction networks with 2 or 3 species

A chemical reaction network is called permanent if there exists a compact set P ⊂ V +

such that every concentration trajectory of the network with positive initial concentration
ends up in P. In other words, if a reaction network is persistent and the concentration
trajectories are uniformly bounded, that is, there exists a constant ε > 0 such that

ε < lim inf
t→∞

ci(t) ≤ lim sup
t→∞

ci(t) < 1/ε for all i ∈ {1, . . . , N},

then the reaction network is permanent. So it is clear that from permanence persistence of
a reaction system immediately follows. Also, if we can prove that a complex balanced reac-
tion system is permanent, then by the uniqueness of the positive complex balanced steady
states in each positive stoichiometric compatibility class it follows the global asymptotic
stability of these steady states. Hence, the global attractor conjecture holds.
G. Craciun, F. Nazarov and C. Pantea, [9], were the first to prove permanence of a general
class of chemical reaction systems, precisely they proved that any two-species endotactic
κ-variable mass-action system is permanent. An earlier result by D. Anderson and A. Shiu
proved the global attractor conjecture for two-species mass-action systems, , [1]. In fact,
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4 Proven cases of the Global Attractor Conjecture

they showed the global attractor conjecture to be true for systems for which the associated
positive stoichiometric compatibility classes are two-dimensional, which include the sys-
tems with only two species. The main step of that proof is the demonstration that for each
co-dimension one face of a stoichiometric compatibility class there must exist a reaction
that pushes the concentration trajectory away from that face and that the corresponding
reaction rates dominates all others at this point. By face of a stoichiometric compatibility
class we mean the topological definition of a face of a polyhedron. In [2] and [8] it al-
ready has been proven that vertices of a positive stoichiometric compatibility class cannot
be ω-limit points of concentration trajectories with positive initial concentration even if
these points are steady states. With this idea of proof, that the boundary is somewhat
“repelling” to the concentration trajectories, G. Craciun, F. Nazarov and C. Pantea were
able to extended their result to a proof of the global attractor conjecture for three-species
mass-action systems, [9].

For the greater part of this section we will consider a two-species reaction network,
therefore we have S = {S1, S2} and V = R2. Moreover, we will consider a larger class of
reaction systems than the common mass-action systems. The systems under consideration
are κ-variable mass-action systems, which means that system is nonautonomous, but it
has bounded kinetics. That is, the kinetics is a function κ : (0,∞) → (η, 1/η)R for some
0 < η < 1, which is piecewise differentiable. The differential equation to the system can
then be described as:

ċ(t) =
∑

yi→yj∈R
κi→j(t)c(t)

yi(yj − yi). (36)

In addition we will consider endotactic networks, which are a larger class of networks
than weakly reversible networks. In order to define endotactic networks, we first have
to set some definitions. Let Cr denote the set of lattice points corresponding to reactant
complexes, that is Cr(R) = {(yi1, yi2) ∈ V̄ +| ∃yj ∈ C : yi → yj ∈ R}.
Consider the plane V and let A be a set of points and v a vector in the plane. We denote
by Ov(A)≥0 the minimal closed half-plane which contains A and the positive direction of v
and is bounded by a line perpendicular to v, which we will denote by ∂Ov(A)≥0. If A = ∅
then ∂Ov(A)≥0 = ∅.
Let Rv = R\{yi → yj | (yj − yi) · v = 0} , then we define the v-essential support of a
reaction network to be

esuppv(R) = ∂Ov(Cr(Rv))≥0. (37)

If Rv = ∅, which means that every reaction vector is orthogonal to v, then esuppv(R) = ∅.
We will also set:

esuppv(R)− = {(yj1, yj2) ∈ V | (yj − yi) · v < 0 for all yi ∈ esuppv(R)}
esuppv(R)+ = {(yj1, yj2) ∈ V | (yj − yi) · v > 0 for all yi ∈ esuppv(R)}.

A chemical reaction network {S, C,R} is called endotactic if for any vector v 6= 0 with
Rv 6= ∅ we have

{yi → yj | yi ∈ esuppv(R) and yj ∈ esuppv(R)−} = ∅. (38)

More visually, we say a chemical reaction network is endotactic if it passes the “parallel
sweep test” for any nonzero vector v. This test is made as follows. Sweep the plane V with
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4.2 Chemical reaction networks with 2 or 3 species

a line L, which is orthogonal to v in the positive direction of v and stop when L meets a
reactant complex participating in a reaction, whose arrow is not parallel to the line L. If
no reaction arrow with reactant complex on the stopped line L points to the swept region,
we say the reaction network passed the parallel sweep test for the vector v. Note that for
Rv = ∅ the line L sweeps the complete plane and never stops. In this case the network
also passes the “parallel sweep test” for the vector v. If the network passes the test for
every vector v then the network is called endotactic.
For any set of points A let conv(A) denote the convex hull of A. We also set G to be the
set of inward normal vectors to the sides of conv(Cr(R)). If conv(Cr(R)) is a line segment,
then both normal vectors are considered as inward.We denote by {±(1, 0),±(0, 1)} the
standard base of the cartesian plane V .

Proposition 4.2.1. A two-species chemical reaction network {S, C,R} is endotactic if and
only if (38) holds for any vector v ∈ G ∪ {±(1, 0),±(0, 1)}.

Proof. We only have to prove that if (38) holds for every vector v ∈ G∪ {±(1, 0),±(0, 1)}
then it also holds for every other vector as well. Let therefore w be any unit vector
with w /∈ G ∪ {±(1, 0),±(0, 1)} and let [yσ(1), . . . , yσ(k)], σ(k) ≤ n denote the polygon
∂conv(Cr(R)). Let us assume {yσ(j)} = esuppw(R).
First we consider the case where conv(Cr(R)) is not contained in a line. We set vj−1, vj
the inward normal unit vectors to [yσ(j−1)yσ(j)] and [yσ(j)yσ(j+1)] respectively. Then yσ(j)

is either contained in exactly one or both of the sets esuppvj−1(R), esuppvj (R).

(1) yσ(j) ∈ esuppvj−1(R) ∩ esuppvj (R): Applying (38) to vj−1 and vj implies that the
product complex yp ∈ C of any reaction yσ(j) → yp ∈ R must reside in the closed
positive cone generated by −−−−−−−−→yσ(j)yσ(j−1) and −−−−−−−−→yσ(j)yσ(j+1). Therefore it follows that
yp ∈ esuppw(R)+ since the generated cone is contained in esuppw(R)+.

(2) yσ(j) belongs to only one of the sets, let us assume yσ(j) ∈ esuppvj−1(R)\esuppvj (R).
Every reaction yσ(j) → yp are along the line yσ(j−1)yσ(j) and in direction of −−−−−−−−→yσ(j)yσ(j−1),
this follows by applying (38) to vj . So we have yp ∈ esuppw(R).

Let us now assume that conv(Cr(R)) is a line segment, set conv(Cr(R)) = [yσ(1)yσ(2)]. If
we apply (38) to both normal vectors, then we get that all product complexes lie on the
line yσ(1)yσ(2). By applying (38) to the basis vectors {±(1, 0),±(0, 1)}, then we have that
all product complexes have to be contained in the segment [yσ(1)yσ(2)].
Consequently (38) holds for every vector.

Proposition 4.2.2. Every weakly reversible two-species reaction network is endotactic.

Proof. Since in a weakly reversible reaction network every complex is a reactant complex,
we have Cr(R) = C. It follows immediately from the definition that for every vector v ∈ V
all reactions originating in esuppv(R) have their product complexes in esuppv(R)+.

In order to prove permanence, it is essential to be able to construct a compact subset of
the positive orthant such that the concentration trajectory stays inside this subset for any
positive initial concentration. We will have to prove that this compact subset is forward
invariant for the concentration trajectories. For this we use Nagumo’s theorem and its
application of the Bouligand tangent cone. This tool to prove forward invariance will also
be used in the Petri net case, which follows afterwards.
For a set S ⊂ RN we denote
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4 Proven cases of the Global Attractor Conjecture

• int{S } the interior of the set,

• ∂S the boundary of S .

We will say that the set S ⊂ V is forward invariant for a system ċ(t) = f(c(t)) if for every
initial condition c(0) ∈ S the concentration trajectory c(t) ∈ S for t > 0.
If S ⊂ V is a compact set and x ∈ V then we define the Bouligand tangent cone as

TCS (x) = {z ∈ V |∃kn ∈ S , kn → x and λn ↘ 0 as n→∞ :
1

λn
(kn − x)→ z}. (39)

It should be clear that

x ∈ int{S } ⇒ TCS (x) = RN

x /∈ S ⇒ TCS (x) = ∅.

This makes clear that the Bouligand tangent cone is only non-trivial for x ∈ ∂S . Geomet-
rically the Bouligand tangent cone for x ∈ ∂S is a cone having center in the origin and
which contains all the vectors, like ẋ, whose directions point from x inside or are tangent
to the set S .

Theorem 4.2.3 (Nagumo’s theorem, Aubin and Cellina [5], Blanchini [7]). Consider the
system ċ(t) = f(c(t)) and for initial conditions in a set H , the system admits a unique
trajectory. Moreover, let S ⊆ H be a closed convex set. Then, S is positively invariant
for the system if and only if

f(c) ∈ TCS (c) for all c ∈ S . (40)

We are not going to prove this theorem, because it would exceed the subject of this
thesis. However, the interested reader can look it up in Aubin and Cellina [5].
Property (40) is often referred to as sub-tangentiality condition and is only non-trivial for
c ∈ ∂S since for c ∈ int{S } TCS represents the whole space RN . Thus, condition (40)
can be replaced by

f(c) ∈ TCS (c) for all c ∈ ∂S . (41)

In geometric terms, the theorem states that if c ∈ ∂S ċ “points inside or is tangent to S ”
then the trajectory c(t) remains in S .
In fact the theorem holds for more general classes of sets which are not necessarily convex.
Conversely, the requirement of the uniqueness of the trajectory is fundamental.
An equivalent characterization can be given in terms of the first order normal cone, or
simply normal cone which is the polar cone to the Bouligand tangent cone,

NS (x) = {p ∈ V | p · (y − x) ≤ 0 for all y ∈ S }. (42)

We can reformulate Nagumo’s theorem as follows

Corollary 4.2.4. S is forward invariant for the system ċ(t) = f(c(t)) if and only if
f(c(t)) · (−n) ≥ 0 for all n ∈ NS (c(t)) and all c(t) ∈ ∂S .
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Figure 6: Graph of an example of a reversible reaction network

Construction of a forward invariant polygon The construction of the polygon is based on
comparing reactant monomials up to a constant. For (yi1, yi2) ∈ Cr(R) we say c1(t)yi1c2(t)yi2

is the reactant monomial. Since the theoretic construction of this polygon is hard to follow
graphically, we start by demonstrating the setup by use of a simple example. Consider a
κ-variable reversible reaction network as depicted in figure 6 with ki(t) ∈ (η, 1/η) for all
i ∈ {−3,−2, . . . , 3} and all t ≥ 0.
From the graph of the reaction network we can easily deduce the corresponding differ-

ential equation:(
ċ1(t)
ċ2(t)

)
= (k1(t)c1(t)2 − k−1(t)c2(t))

(
−2
1

)
+ (k2(t)c1(t)− k−2(t)c2(t)

(
−1
1

)
(43)

+ (k3(t)c1(t)− k−3(t)c1(t)2c2(t))

(
1
1

)
.

The aim is now to construct a polygon P such that if at any time T ≥ 0 where c(T ) ∈ P
then ċ(T ) points inside P. To do so we want every component of ċ(T ) corresponding to a
reaction in the network, to point inside the polygon.
Let us analyze the first component of our example (43) (k1(t)c1(t)2−k−1(t)c2(t)

(−2
1

)
, which

corresponds to the first reversible reaction 2S1 
 S2 in Figure 6. This reaction drives the
concentration trajectory along

(−2
1

)
with a rate (k1(t)c1(t)2 − k−1(t)c2(t). Depending on

which side of the curve c2 = (k1(t)/k−1(t))c2
1 the concentration trajectory is residing at a

time t > 0 the trajectory will follow the vector
(−2

1

)
or
(

2
−1

)
. Since k1(t)/k−1(t) ∈ (η2, 1/η2)

the component of ċ(t) corresponding to this first reaction is in direction
(

2
−1

)
for c(t) ∈

{(c1, c2) ∈ V +| c2 > (1/η2)c2
1} and in direction

(−2
1

)
for c(t) ∈ {(c1, c2) ∈ V +| c2 < η2c2

1},
which is illustrated in point (a) of figure 7 where δ = η2. In the region between the
two curves Λ := {(c1, c2) ∈ V +| (1/δ2)c2

1 < c2 < δ2c2
1} the concentration trajectory

corresponding to the first reaction can follow both directions, hence, Λ∩P must be parallel
to
(−2

1

)
, so that ċ(t) points inside the polygon. Point (b) and (c) of figure 7 illustrate ċ(t)

for the two other components of the complete reaction network. We then combine the
conditions for the three components of ċ(t) to obtain a forward invariant polygon depicted
in point (d) of figure 7.
The polygon needs to be close enough to the axes and large enough to contain c(0) in the
interior and to allow for cuts in regions where c2 = δcm1 , c2 = (1/δ)cm1 , for m ∈ {1, 2} are
ordered with respect to m. In our example we need in the corner of (0, 0) that the edges of
the polygon are in a region where δc2

1 < (1/δ)c2
1 < δc1 < (1/δ)c1 and at the opposite corner

of the polygon we need δc1 < (1/δ)c1 < δc2
1 < (1/δ)c2

1. We require this arrangement so
that the edges do not intersect with more than one Λ-region and additionally it is necessary
for the convexity of the polygon.
We now are going to describe the theoretical construction of the polygon. Our aim is to
show that at time T with c(T ) ∈ P there is a complex that is reactant to a reaction that
dictates the direction of ċ(T ) inside the polygon P (up to a small enough perturbation)
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4 Proven cases of the Global Attractor Conjecture

Figure 7: Setup of the invariant polygon P for an example of a reversible reaction network.
Picture taken from [9]

and whose reactant monomial therefore has to be larger than the monomials corresponding
to all other reactant complexes. So we need to compare monomials c(t)yi and c(t)yj for all
pairwise combinations of reactant complexes yi and yj . We set:

{r1, . . . , re, s1, . . . , sf} :=

{
yi1 − yj1
yj2 − yi2

∣∣∣∣ yi, yj ∈ Cr, yi1 6= yj1, yi2 6= yj2

}
with s1 < . . . < sf < 0 < r1 < . . . < re. Then (1, r1), . . . , (1, re) and (1, s1), . . . (1, sf )
represent normal vectors of edges in the complete graph with vertices Cr(R).
Fix 0 < δ < 1. The pairwise comparison of reactant complexes yi and yj up to a constant
leads to c(t)yi − δc(t)yj = 0 and c(t)yi − (1/δ)c(t)yj = 0, or c2(t) = δ1/(yi2−yj2)c1(t)m and
c2(t) = (1/δ)1/(yi2−yj2)c1(t)m, where m ∈ {r1, . . . , re, s1, . . . , sf}. We set

δ′ = min{δ1/(yj2−yi2)| (yi1, yi2), (yj1, yj2) ∈ Cr(R), yi2 6= yj2}.

Moreover let ri+.5 and sj+.5 for all i ∈ {1, . . . , e}, j ∈ {1, . . . , f} be such that ri−.5 < ri <
ri+.5 and sj−.5 < sj < sj+.5.
Let 0 < ξ < 1 be small enough and M > 1 be large enough so that they have the following
properties:

(P1) c(0) ∈ (ξ,M)2;

(P2) all intersections of the curves

• c2 = δ′cri1 , c2 = (1/δ′)cri1 for i ∈ {1, . . . , e},
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4.2 Chemical reaction networks with 2 or 3 species

• c2 = δ′c
sj
1 , c2 = (1/δ′)c

sj
1 for j ∈ {1, . . . , f},

• c2 = c
ri+.5
1 for i ∈ {1, . . . , e} and

• c2 = c
sj+.5
1 for j ∈ {1, . . . , f}

lie in the square (ξ,M)2;

(P3) (0, ξ)2 and (M,∞)2 lie below, respectively above all negative-exponent (sj or sj+.5)
curves mentioned in the previous point.On the other hand, (0, ξ) × (M,∞) and
(M,∞)× (0, ξ) lie above, respectively below all positive-exponent curves (ri or ri+.5)
mentioned before;

(P4) All negative-exponent curves intersect the line segments (0, ξ)×{M} and {M}×(0, ξ);

(P5)

ξ <min{δ1/(yj2−yi2)| (yi1, yi2), (yj1, yj2) ∈ Cr(R), yj2 6= yi2},
ξ <min{δ1/(yj1−yi1)| (yi1, yi2), (yj1, yj2) ∈ Cr(R), yj1 6= yi1},
M >max{(1/δ)1/(yj2−yi2)| (yi1, yi2), (yj1, yj2) ∈ Cr(R), yj2 6= yi2},
M >max{(1/δ)1/(yj1−yi1)| (yi1, yi2), (yj1, yj2) ∈ Cr(R), yj1 6= yi1}.

We want to construct a polygon P = A1 . . . Ae+1B1 . . . Bf+1C1 . . . Ce+1D1 . . . Df+1 such
that the curves c2 = δ′cm1 and c2 = (1/δ′)cm1 for m ∈ {r1, . . . , re, s1, . . . , sf} intersect the
two sides of P that are orthogonal to the vector (1,m) for m ∈ {r1, . . . , re, s1, . . . , sf} and
only these two sides. This will be assured by the properties (P1)-(P5). We construct P one
vertex at the time. For α > 0 we begin with A1 = (α, αs.5) and go on counterclockwise.
So, every vertex will lie on a curve c2 = c

ri+.5
1 or c2 = c

sj+.5
1 and the sides AiAi+1, CiCi+1

are orthogonal to (1, ri) whereas the sides BjBj+1, DjDj+1 are orthogonal to (1, sj). In
addition, we want the sides Ae+1B1, Ce+1D1 to be horizontal and Bf+1C1 to be vertical.
The polygon constructed this way is unique.
Note that P(α) varies continuously with α and conv(P(α)) is decreasing in α ∈ (0, α0)
and

⋃α0
α=0 conv(P(α)) = V +.

Lemma 4.2.5. Let {S, C,R, κ} a κ-variable mass-action system with κ : (0,∞)→ (η, 1/η)R.
Furthermore let y0 → yp ∈ R and let v be a vector such that (yp − y0) · v > 0. Also let
U ⊆ Cr(R)\{y0}. There exists a constant δ such that if for some t0 ≥ 0 we have c(t0) ∈ V +

and c(t0)yi < δc(to)
y0 for all yi ∈ U then(

κ0→p(t0)(yp − y0)c(t0)y0 +
∑

yi→yj∈R
yi∈U

κi→j(t0)(yj − yi)c(t0)yi

)
· v > 0.

Proof. By setting

δ =
η2(yp − y0) · v

‖v‖
∑

yi→yj ,yi∈U ‖yj − yi‖

we get the desired result.

Theorem 4.2.6 (Craciun et al. 9). A κ-variable endotactic chemical mass-action system
{S, C,R,K(t)} with S = {S1, S2} is persistent.
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4 Proven cases of the Global Attractor Conjecture

We are not going to prove the theorem in detail, but we are going to outline the important
steps.

Proof. Let n ∈ G ∪ {±(1, 0),±(0, 1)} be a inward normal vector of conv(Cr(R)). We
denote yn → yn′ a fixed reaction such that yn ∈ esuppn(R) and yn′ ∈ esuppn(R)+,
which is ensured since the network is endotactic. Furthermore we denote by δn the con-
stant corresponding to the reaction yn → yn′ defined in lemma 4.2.5, where we set
U = Cr(R) ∩ esuppn(R)+. Then, we set δ = min{δn|n ∈ G ∪ {±(1, 0),±(0, 1)}} <
1. With this constant we are able to construct the convex polygon as described above
P(α0) = A1 . . . Ae+1B1 . . . Bf+1C1 . . . Ce+1D1 . . . Df+1 which we will denote by P for sim-
plicity. If we can prove that the polygon is forward invariant for the dynamics (36), so
that every concentration trajectory c(t) with c(0) ∈ conv(P), then the reaction system is
proven persistent.
Since by construction c(0) ∈ conv(P) we have to prove c(t) ∈ conv(P) for t > 0. By using
corollary 4.2.4, this amounts to proving that if c(T ) ∈ P for some T > 0, then ċ(T ) ·n ≥ 0,
where −n is a generator of the normal cone NP(c(T )) defined in (42). Hence, we have to
prove ( ∑

yi→yj∈Rn

κi→j(T )(yj − yi)c(T )yi

)
· n ≥ 0 whenever c(T ) ∈ P. (44)

If Rn = ∅, then the inequality holds. If otherwise, let yn → yn′ ∈ Rn and yn ∈ esuppn(R).
We separate the summation by isolating the term over yn → yn′ and by separating the
sums over the reactions where the reactant complex lies in esuppn(R) and those where the
reactant complex does not lie in this set. For yi → yj ∈ Rn and yi ∈ esuppn(R) we have
(yj − yi) ·n ≥ 0 and for the fixed reaction yn → yn′ the inequality is strict. It follows, that
we only have to prove that(

κn→n′(T )(yn′ − yn)c(T )yn +
∑

yi→yj∈Rn
yi /∈esuppn(R)

κi→j(T )(yj − yi)c(T )yi

)
· n ≥ 0.

This follows from lemma 4.2.5 if we set U = Cr(R)∩ esuppn(R)+ and if we can prove that
δc(T )yn > c(T )yi for all yi ∈ U . This is done by a proof by cases, where the cases are the
sides where c(t) may reside on. Through the properties of the constructed convex polygon
this can easily be deduced.

Remark

(1) Since we have proven that the constructed polygon is forward invariant, we can also
imply that every two-species κ-variable endotactic chemical mass-action system has
bounded trajectories. Especially conjecture 4 holds for this special case of reaction
networks, since every weakly reversible reaction network is also endotactic (Proposi-
tion 4.2.2)

(2) Not only does this theorem prove the persistence conjecture for two-species reaction
networks, but it also implies the validity of the global attractor conjecture in this special
case of reaction networks. As we have seen in section 3.1 do complex balanced mass-
action systems already imply bounded concentration trajectories and more importantly
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4.2 Chemical reaction networks with 2 or 3 species

uniqueness of the positive steady state in each positive stoichiometric compatibility
class and, hence, the missing element to a proof of the global attractor conjecture is
the persistence of these reaction systems.

Theorem 4.2.7 (Craciun et al. 9). Any two-species endotactic κ-variable mass-action
system is permanent.

Proof. Let α0 > 0 and ε > 0 small, then we construct the polygon P(α0 + ε). Recall that
by definition we have conv(P(α)) ⊃ conv(P(α′)) for α < α′ < α0 + ε. Our goal is to prove
that any concentration trajectory with positive initial concentration c(0) > 0 eventually
ends up inside the polygon P(α0), which means permanence of the system.
Since the union of all polygons constructed upon 0 < α < α0 + ε is a covering of V +, there
exists α1 ∈ (0, α0) such that c(0) ∈

⋃
α∈[α1,α0+ε] conv(P(α)). We define a function Φ by

Φ :
⋃

α∈[α1,α0+ε]

P(α)→ [α1, α0 + ε]

(c1, c2) 7→ α if (c1, c2) ∈ P(α)

Then the proof will be complete if we can show that Φ(c(t)) ≥ α0 for t ≥ T and some
T > 0.
Let us assume the contrary, that is Φ(c(t)) ∈ [α1, α0] for all t > 0 since Φ−1[α0,∞) =
conv(P(α0)) and Φ−1[α1,∞) = conv(P(α1)) are forward invariant for the system. We can
easily see that Φ is differentiable on its domain except at the vertices of a polygon, that
is on the curves c2 = cp1 where p ∈ {r.5, . . . , re+.5, s.5, . . . , sf+.5}. Let c̄ ∈ V + be such a
point on one of the curves and Φ1,Φ2 the smooth curves that represent Φ on either side
of this curve in a neighborhood of c̄. To complete the proof, we are going to use some
notations and theory of variational analysis by Rockafellar and Wets [20]. A subgradient
of a map f : Rn → R at a point x̄ is a vector v ∈ Rn if there exists a sequence xµ → x̄,
f(xµ)→ f(x) and a sequence vµ → v with

f(x) ≥ f(x̄) + vµ · (x− x̄) + o(|x− x̄|) for x ∈ Rn.

We then will write v ∈ ∂f(x̄). With Φ1 and Φ2 the subgradient of Φ at c̄ can be written
as

∂Φ(c̄) = {a∇Φ1(c̄) + (1− a)∇Φ2(c̄)| a ∈ [0, 1]}. (45)

So Φ is strictly continuous at c̄, which means that

lim sup
c,c′→c̄
c 6=c′

|Φ(c′)− Φ(c)|
|c′ − c|

<∞.

For single-valued mappings, strict continuity is equivalent to the better known local Lips-
chitz continuity. Even for points c̄ not residing on a curve of the form c2 = cp1, the subgra-
dient (45) holds, since for these points ∇Φ(c̄) = ∇Φ1(c̄) = ∇Φ2(c̄). Also, the composition
Φ ◦ c(t) is strictly continuous since the concentration trajectory is a smooth function. By
the theorem 10.48 in Rockafellar and Wets [20], an extension of the mean-value theorem,
there exists a τt ∈ [0, t] for all t > 0 such that Φ(c(t)) − Φ(c(0)) = stt for some scalar
st ∈ ∂(Φ ◦ c)(τt). By the chain rule for subgradients (Theorem 10.6,Rockafellar and Wets
[20]), which connects the subgradient of Φ ◦ c to that of Φ, we have

∂(Φ ◦ c)(t) ⊆ {v · ċ(t)| v ∈ ∂Φ(c(t))}.
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4 Proven cases of the Global Attractor Conjecture

We can modify lemma 4.2.5 so that for any compact set in V + there exists a constant ζ > 0
such that ∇Φ1(c(t)) · ċ(t) > ζ and ∇Φ2(c(t)) · ċ(t) > ζ for c(t) in this compact set. It then
follows with both formulations of the subgradients ∂Φ and ∂(Φ◦c) that inft ∂(Φ◦c)(t) > ζ.
From the extension of the mean-value theorem we get Φ(c(t)) > Φ(0) + ζt for all t > 0.
This is in contradiction to Φ(c(t)) ∈ [α1, α0] for all t ≥ 0. Hence, Φ(c(t)) > α0 for large
enough t > 0, which implies that the system is permanent.

Theorem 4.2.8 (Craciun et al. [9], Global Attractor Conjecture for three-species net-
works). A complex balanced three-species mass-action system {S, C,R, k} has one and only
one globally attractive steady state in each stoichiometric compatibility class.

Proof. We are going to prove the global attractor conjecture in the three-species mass-
action system case by proving that there does not exist any ω-limit points on the boundary
of the positive orthant V̄ + = R3

≥0. At the end of chapter 2 we deduced that the Lyapunov
function implies that concentration trajectories are bounded for complex balanced systems.
Furthermore, the concentration trajectories do not pass the neighborhood of the origin.
Let c(t) = (c1(t), c2(t), c3(t)), then there exists ε > 0 such that

c1(t) + c2(t) + c3(t) > 3ε and c1(t) < 1/ε, c2(t) < 1/ε, c3(t) < 1/ε for all t ≥ 0.

We will construct a compact set K ⊂ V + and prove that every trajectory with positive
initial concentration, once it has entered K, does not leave K for all time t. For a complex
yi ∈ C we set π12(yi) = (yi1, yi2, 0), where π12 denotes the projection onto the coordinate
plane v1v2. So we have[

ċ1(t)
ċ2(t)

]
=

∑
yi→yj∈R

ki→jc3(t)yi3(c1(t), c2(t))π12(yi)π12(yj − yi).

In the last section (4.1) we already used this method of projecting the dynamics on a
subset of variables and embedded the dynamics of the remaining variables into the kinet-
ics. Let kmin = min{k, 1/k| k is a rate constant of some reaction in R} and let smax =
max{yij | yi ∈ C, Sj ∈ S}, we set η = kminε

smax < 1. So we get the following κ-variable
mass action system:[

ċ1(t)
ċ2(t)

]
=

∑
yi→yj∈π12(R)

κi→j(t)(c1(t), c2(t))yi(yj − yi), (46)

where κ(t) ∈ (η, 1/η) for all t ≥ 0. As we saw in the last section in proposition 4.1.2
(only there we called it a reduced reaction network), the projection of a weakly reversible
network is also weakly reversible. In particular the projection of an endotactic network
is also endotactic. Similar to the previous proof, we construct the convex polygon for
the projected system. Although we are going to make a slight difference to the original
setup. For the previous construction we set the vertices of P on the curves c2 = c

ri+.5
1 and

c2 = c
sj+.5
1 , i ∈ {0, . . . , e}, j ∈ {0, . . . , f}, which is not necessary for the polygon to be

invariant for the system. For the polygon of the projected system, which we will denote
by P12, we want the edge A1Df+1 to be parallel to the c2-axis and to maintain the same
distance to this axis as Ae+1B1 to the c1-axis. Let us set d > 0 to denote this distance.
We assume furthermore that [ε, 1/ε]2 lies within [ξ,M ]2. We construct the polygons for
the other projected systems the same way and denote them by P23 and P31. We set

K = {(c1, c2, c3) ∈ [0, 1/ε]3| (c1, c2) ∈ conv(P12), (c2, c3) ∈ conv(P23), (c3, c1) ∈ conv(P31)}.
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4.2 Chemical reaction networks with 2 or 3 species

Evidently this set is compact in V + and includes c(0). If we can prove that the concen-
tration trajectory does not leave K, then the theorem is proven. Suppose at a time T the
concentration trajectory reaches the boundary of K. Using corollary 4.2.4 we only need
to prove n · ċ(T ) ≥ 0 for −n ∈ NK(c(T )) a generator of the normal cone of K at c(T ).
Let L12 denote the polygonal line Df+1A1 . . . Ae+1B1 of the polygon P12 and L23, L31 the
similar polygonal lines of P23, respectively P31. Since c(t) ∈ (0, 1/ε)3 for all t > 0 it follows
that

c(T ) ∈ [0, 1/η]3 ∩
(
(L12 × (0,∞)) ∪ (L23 × (0,∞)) ∪ (L31 × (0,∞))

)
. (47)

From c1(T ) + c2(T ) + c3(T ) > 3ε it follows that at least one component of c(T ) is larger
than ε. Let this component be c3(T ), then it follows from (47) that c(T ) ∈ P12 × (0,∞)
and therefore the third component of n must be zero. So, we have

n · ċ(T ) ≥ 0

⇐⇒ π12(n) ·

( ∑
yi→yj∈R

ki→jc3(T )yi3(c1(T ), c2(T ))π12(yi)(π12(yj)− π12(yi))

)
≥ 0,

where −π12(n) is a generator of the normal cone of P12 at (c1(T ), c2(T )). Since we have
chosen η such that ki→jc3(T )yi3 ∈ (η, 1/η) the last inequality holds by earlier argumenta-
tion.

Example: Thomas mechanism We are going to apply this last result to a substrate-
inhibition model, specifically on the Thomas mechanism. In all organisms, from bacteria
to mammals (except humans), uric acid and oxygen react in the presence of the enzyme
uricase to form allantoin and carbonic acid gas. Uricase is harvested from pigs’ livers and
serves in the clinical diagnostics as an indicator for elevated uric acid concentration in
humans, which is the case for the gout disease.
Substrate-inhibition is a type of feedback control. Essentially feedback is when the product
of one step in a reaction sequence has an effect on other reaction steps in the sequence.
The effect is generally nonlinear and in this case it inhibits reactions. Substrate-inhibition
is the inhibition of an enzyme activity by a substrate of the reaction catalyzed by that
same enzyme; often, this type of inhibition occurs at elevated substrate levels in which the
substrate is binding to a second, non-active site on the enzyme.
Since an enzyme is a biological catalyst it is not consumed during the reaction, hence
the concentration of the free enzyme plus the concentration of the combined enzyme is
a conservation relation. So there is no change in the total concentration. Moreover the
differential equation for the resulting product is uncoupled from the others.
Through experimental research, Thomas D. proposes the following system of differential
equations for oxygen, denoted by v and uric acid u in the reaction network described above:

du

dt
= a− u− T (u, v)uv,

dv

dt
= α(b− v)− T (u, v)uv,

where T (u, v) = ρ(1 + u + Ku2)−1 describes the substrate inhibition and a, b, α, ρ are
positive constants. Note that, T is continuous and does not vanish on a compact K ⊃
[0, a]× [0, b]. Hence, for t ≥ t0 and for some η > 0 we have η < T (u(t), v(t)) < 1/η.
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Figure 8: Thomas model

As we can clearly see in Figure 8 the reaction network of the Thomas model is endotactic.
So Theorem 4.2.7 implies that the system is permanent. Hence, for this model the reaction
system is persistent.

4.3 Persistence in Petri nets

With the concepts and tools of Petri net theory D. Angeli, P. De Leenheer and E. D.
Sontag provided checkable necessary and sufficient conditions for persistence in chemical
reaction networks, [4]. Modeling of reaction networks using Petri net formalism is often
used with biochemical applications, in particular in the context of metabolic pathways.
A species-reaction Petri net, or SR-net for short, is a graphical description of a chemical
reaction network. It consists of two types of nodes, species and reactions, and of weighted
edges represented as a quadruple (VS , VR, E,W ). The set VS of nodes represents the
different species in the reaction network and the set VR of nodes represents the reactions
of the network under consideration. Let yj → yj′ ∈ R be a reaction in the reaction network.
We will associate to the reaction yj → yj′ the node Rjj′ ∈ VR. For every species Si ∈ VS
contained in the support of the reactant complex yj , Si ∈ supp yj , we draw a directed
edge from species Si to Rjj′ and for every species Sl ∈ VS contained in the support of the
product complex yj′ , Sl ∈ supp yj′ , we draw a directed edge from Rjj′ to the species Sl.
E represents the set of edges in the SR-net, so we have (Si, Rjj′), (Rjj′ , Sl) ∈ E. Note
that there are no edges drawn between two species or two reaction nodes. W represents a
function W : E → N, which associates to each edge the stoichiometric coefficient that the
respective species takes in the complex of the reaction:

W (Si, Rjj′) = yji W (Rjj′ , Sl) = yj′l.

Let us define Ỹ ∈ ZN×r the stoichiometric matrix with entries Ỹ = (yj′ − yj)yj→yj′∈R.
Furthermore we set K(c(t)) ∈ Rr be the column vector with the entries representing the
kinetics of the respective reaction at the time t for a concentration c(t) ∈ V̄ +. We are going
to enumerate the reactions: for every reaction yj → yj′ ∈ R we will associate a number
q ∈ {1, . . . , r}, then we can formulate the vector K(c(t)), t ≥ 0, as follows

K(c(t)) = (Kq(c(t)))1≤q≤r

With these definitions we can reformulate the reaction rate function as follows:

ċ(t) = ỸK(c(t)). (48)
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For the reaction diagram, let I ∈ Zn×r be the incidence matrix, where the rows represent
the complexes and the columns the reactions. That is, for every q ∈ {1, . . . , r} representing
each a specific reaction yi → yj ∈ R in the chemical reaction network, we will set Ii,q =
−1, Ij,q = 1 and all other entries in the qth column are 0. If Y ∈ NN×n0 is the matrix
defined in (1), then we have:

Ỹ = Y I. (49)

Recall that for a vector v ∈ RN we defined:

• v ≥ 0 if vi ≥ 0 for every 1 ≤ i ≤ N and

• v > 0 if v ≥ 0 and v 6= 0.

Additionally, we will write v � 0 if vi > 0 for every 1 ≤ i ≤ N .
A P-semiflow is a row vector v ∈ RN , v > 0 such that vỸ = 0. For the system (48)
a P-semiflow means, that there exists a non-negative linear first integral v such that
(d/dt)vc(t) = 0 along all concentration trajectories c(t). We say that a Petri net is con-
servative if there exists a P-semiflow v � 0.
A conservative SR-net has the same meaning as a conservative mass-action system, which
we defined in chapter 2. However here we demand the conserved linear quantity to be
strictly positive.
A T-semiflow is a column vector w ∈ Rr, w > 0 such that Ỹ w = 0. A Petri net is
consistent if there exists a T-semiflow w � 0.

Proposition 4.3.1. Every weakly reversible reaction network is consistent.

Proof. From Corollary 2.1.8 it follows from weak reversibility of the reaction network that
there exists a v � 0 such that Iv = 0. Since Y is a linear transformation it follows
immediately Y Iv = 0. With equation (49) we have Ỹ v = 0. Hence, the reaction network
is consistent.

Remark Note that the reverse statement does not hold in general – not every consistent
reaction network is weakly reversible.

A set Σ ⊂ S is called a siphon if for every reaction for which there is an element of Σ
in the product complex, there is an element of Σ in the reactant complex. We will say a
siphon is minimal if it does not contain any other siphons. In the following we will often
use the set of concentration vectors with 0 in those entries which correspond to a species
in the siphon: LΣ := {c ∈ V̄ +|ci = 0 ⇐⇒ Si ∈ Σ}.
We are now able to state the necessary conditions for persistence of a chemical reaction
network.

Theorem 4.3.2. Let {S, C,R} be a conservative and persistent chemical reaction network.
Then, the associated Petri net is consistent.

Proof. Let c0 ∈ V + be any initial concentration. Since the reaction network is conservative,
the concentration trajectories with initial concentration c0 satisfy vc(t) = vc0 for a v ∈ V +

and therefore are bounded. This implies that the ω-limit set is nonempty and compact.
From the persistence of the reaction network it follows that ω(c(·)) ∩ ∂V̄ + = ∅, hence,
K(c̄)� 0 for all c̄ ∈ ω(c(·)). Moreover, it follows from the compactness of the ω-limit set
and the continuity of K that there exists a w � 0 such that K(c̄) ≥ w for every c̄ ∈ ω(c(·)).
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4 Proven cases of the Global Attractor Conjecture

For any c̄ ∈ ω(c0) we have K(c(t)) ≥ w for c(t) ∈ (c̄+ S ) ∩ V + and all t ∈ [0,∞) because
of the invariance of the ω-limit set. By taking time averages it then follows:

lim
T→∞

1

T

∫ T

0
ỸK(c(t))dt = lim

T→∞

c(T )− c̄
T

= 0, (50)

where the right-hand equation is a consequence of the bounded concentration trajectories.
We also have

1

T

∫ T

0
K(c(t))dt ≥ w for all T > 0.

Hence, by taking any subsequence Tn →∞, it follows that

lim
n→∞

1

Tn

∫ Tn

0
K(c(t))dt = w̄ ≥ w.

With (50) it follows then that Ỹ w̄ = 0 with w̄ ≥ w � 0. Hence, the network is consistent.

Having seen a necessary condition for a persistent reaction network we will now deduce
some sufficient conditions to ensure persistence in a reaction network. To prove the main
theorem of this section 4.3 we will need some technical tools from differential equation
theory, which we will present in the following.
Let sign(a) := 1, 0,−1 if a > 0, a = 0, or a < 0 respectively be the sign function for real
numbers a ∈ R. We define for a vector v ∈ V sign(v) = (sign(v1), . . . , sign(vN ))T .

Lemma 4.3.3. Let O ⊃ V̄ + be an open neighborhood of V̄ + and f a real-analytic vector
field defined on O. Let us further suppose that V̄ + is forward invariant for the flow of f .
If c(t) is a trajectory following ċ = f(c) and if c(t) is defined on some interval J then
sign(c(t)) is constant on J .

The main argumentation of the proof is that the coordinate functions of the vector field
f are also real-analytic and forward invariant. For a detailed proof we refer to Angeli et al.
[4].

Lemma 4.3.4. Let Ω ∈ V̄ + be a closed set and invariant for (48). If for some set Z ⊂ S
we have Ω ∩ LZ 6= ∅, then Ω ∩ LZ is also invariant for (48).

Proof. Let c0 ∈ Ω ∩ LZ . Since Ω is invariant, we have c(t) ∈ Ω for every concentration
trajectory c(t) with initial concentration c0 and with t ∈ J , J open domain of definition
of c(t). Hence, c(t) ∈ V̄ +. By the previous lemma it follows that sign(c(t)) is constant for
all t ∈ J and, hence, c(t) ∈ LZ .

Let K ⊂ V̄ + be any set. We defined the Bouligand tangent cone TCK(ζ) at a point
ζ ∈ V̄ + as follows:

TCK(ζ) = {v ∈ V |∃kn ∈ K, kn → ζ and λn ↘ 0 as n→∞ :
1

λn
(kn − ζ)

n→∞−−−→ v}.

Through this notation we can check invariance of closed sets. If K is a closed set in V̄ +

then K is invariant for (48) if and only if ỸK(ζ) ∈ TCK(ζ) for all ζ ∈ K by theorem 4.2.3.
However we will also consider the Bouligand tangent cone for the not closed set LZ for
S ⊂ S at a point ζ ∈ LZ , which can be written as: TCLZ (ζ) = {v ∈ V |vi = 0 ∀Si ∈ Z}.
Also we have cl[LZ ] =

⋃
X⊇Z LX with X ⊂ S.
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Lemma 4.3.5. Let Z ⊂ S with Z 6= ∅. If there exists ζ ∈ LZ such that ỸK(ζ) ∈ TCLZ (ζ),
then Z is a siphon.

Proof. For some ζ ∈ LZ we have ỸK(ζ) ∈ TCLZ (ζ), that is [ỸK(ζ)]i = 0 for all Si ∈ Z.
Since ζ ∈ LZ it also follows that ζi = 0 for all Si ∈ Z, so every reaction in which Si
is contained in the reactant complex are shut off at ζ. From [ỸK(ζ)]i = 0 it then also
follows that all reactions in which Si is contained in the product complex are shut off at
ζ. Let yj → yl ∈ R be a reaction in the network with yli 6= 0, then there exists a species
Sk in the reactant complex yj , yjk 6= 0 with ζk = 0. Hence, Sk ∈ Z. By repeating this
argumentation, it follows easily that Z is a siphon.

Lemma 4.3.6. If for some Z ⊂ S there exists a c̄ ∈ V̄ + such that ω(c̄) ∩ LZ 6= ∅, then Z
is a siphon.

Proof. ω(c̄) is a closed and invariant set in V̄ +, so it follows with lemma 4.3.4 that LZ∩ω(c̄)
is also invariant. Since for all X ⊂ S with LX ∩ ω(c̄) 6= ∅ LX ∩ ω(c̄) is invariant, the set

cl[LZ ] ∩ ω(c̄) =
⋃
X⊇Z

(LX ∩ ω(c̄))

is also invariant. By Nagumo’s theorem 4.2.3, we know that, for any ζ ∈ cl[LZ ]∩ ω(c̄) we
have

ỸK(ζ) ∈ TCω(c̄)∩cl[LZ ](ζ) ⊂ TCcl[LZ ](ζ).

Especially, for ζ ∈ LZ ∩ ω(c̄) we have ỸK(ζ) ∈ TCLZ (ζ). So it follows with lemma 4.3.5
that Z is a siphon.

Lemma 4.3.7. Z 6= ∅ is a siphon if and only if cl[LZ ] is invariant for (48).

Proof. Let cl[LZ ] be invariant for (48) and set ζ ∈ LZ . It then follows immediately
ỸK(ζ) ∈ TCcl[LZ ](ζ). Since ζ ∈ LZ we have TCcl[LZ ](ζ) = TCLZ (ζ). With lemma 4.3.5
it follows then that Z is a siphon.
Let Z ⊂ S be a siphon and let ζ ∈ cl[LZ ]. This means that ζi = 0 for all Si ∈ Z ∪ Z ′,
where Z ′ ∈ S and not necessarily nonempty. By Nagumo’s theorem 4.2.3 we only need to
prove that

[ỸK(ζ)]i =

{
= 0 for all Si ∈ Z
≥ 0 for all Si ∈ Z ′ for Z ′ 6= ∅.

By the differential system (48) we have

[ỸK(ζ)]i =
∑

q:yj→yj′∈R
1≤q≤r

yj′iKq(ζ)−
∑

p:yj→yj′∈R
1≤p≤r

yjiKp(ζ) =
∑

q:yj→yj′∈R
1≤q≤r

yj′iKq(ζ)− 0 ≥ 0, (51)

where the second sum is 0 because if yji > 0, then Si is contained in the reactant complex
of the pth reaction and, consequently, Kp(ζ) = 0 since ζi = 0. From (51) it already follows
that [ỸK(ζ)]i ≥ 0 for Si ∈ Z ′.
Assume that Si ∈ Z. If yj′i > 0 for a term on the right hand of equation (51), then this
term is equal to zero since Z is a siphon. Hence, [ỸK(ζ)]i = 0 for all Si ∈ Z.
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4 Proven cases of the Global Attractor Conjecture

Theorem 4.3.8 (Angeli et al. [4]). A chemical reaction network that satisfies the following
conditions:

(1) the associated Petri net is conservative and

(2) each siphon contains the support of a P-semiflow

is persistent.

Proof. Let c̄ ∈ V + and let Ω = ω(c̄) denote the corresponding ω-limit set. Let us assume
that Ω ∩ ∂V̄ + 6= ∅, then Ω ∩ LZ 6= ∅ for some ∅ 6= Z ⊂ S. By lemma 4.3.6 it then follows
that Z is a siphon. Because of condition (2) of the theorem there exists v > 0 whose
support is contained in Z. So there exists a sequence tn → ∞ such that vc(tn) → 0 for
c(tn) ∈ (c̄+S )∩ V̄ +. This is in contradiction to vc(t) = vc̄ for all t ≥ 0. So, we necessarily
have Ω ∩ ∂V̄ + = ∅. Hence, the network is persistent.

Example A substrate S0 ultimately reacts to the product S2, in a reaction catalyzed by
an enzyme E, and, simultaneously, S2 is transformed back into the substrate S0 catalyzed
by a second enzyme F .

S0 S1 S2

E E

FF

S0 + E ↔ ES0 → E + S1 ↔ ES1 → E + S2 (52)
F + S2 ↔ FS2 → F + S1 ↔ FS1 → F + S0

As a concrete example, it may represent one of the mechanisms in the signaling by mitogen-
activated protein kinase cascades, short MAPK cascades. MAPK cascades is a chain of
proteins communicating a signal from a receptor on the surface of the cell to the DNA in
the nucleus of the cell. This pathway of reactions include phosphorylations of neighboring
proteins. These reactions act as an on or off switch. The reaction network depicted in
(52) could represent such a phosphorylation reaction in which the enzyme E reversibly
adds a phosphate group to a certain specific amino acid in the protein S0, resulting in a
single-phosphorylated protein S1. Afterwards E can then bind to S1 so as to produce a
double-phosphorylated protein S2, when a second amino acid site is phosphorylated. A
different enzyme F reverses the process. In MAPK cascades, several more steps as in this
example are arranged in a cascade, with the protein S2 serving as an enzyme for the next
stage.
It can be verified that the Petri net in figure 9 is consistent. To verify this, we order
the species and reactions by reading (52) from left to right and from top to bottom (e.g.,
S1 is the fourth species and the reaction ES0 → E + S1 is the third reaction). The
construction of the matrix Ỹ is then obvious, and it can easily be proven that Ỹ w = 0
with w = (2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1)T .
The network itself, however, is not weakly reversible, since neither of the linkage classes of
(52) is strongly linked. By computations we can see that there are three minimal siphons:

{E,ES0, ES1}, {F, FS1, FS2} and {S0, S1, S2, ES0, ES1, FS2, FS1}.
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4.3 Persistence in Petri nets

There are three independent conservation laws:

E + ES0 + ES1 = constant1,
F + FS2 + FS1 = constant2 and
S0 + S1 + S2 + ES0 + ES1 + FS2 + FS1 = constant3,

whose supports coincide with the tree mentioned siphons. Hence, each one of the minimal
siphons contains the support of a P-semiflow. The network is conservative, because the
sum of the three mentioned conservation las is in itself a conservation law. Therefore, by
theorem 4.3.8 it can be implied that the network is persistent.

F

FS1 FS2

S0 S1 S2

ES0 ES1

E

Figure 9: Petri net graph of a two sequential step reaction
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