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Abstract

In bone marrow transplantation finding a donor whose HLA genes are identical or
almost identical to those of the transplant recipient is immensely difficult due to the
high polymorphism of these genes, but is crucial to the success of the intervention.

A statistical meta-analysis of survival data for 1347 hematopoietic cell transplan-
tations is presented. In a newly developed parametric model of survival time dis-
tributions, prospects of recipients were described by a function of mismatch counts
between donor and recipient for six HLA genes (HLA-A, -B, -C, -DRB1, -DQB1,
-DPB1). Using the maximum likelihood framework to tune parameters to find the
best fit of a given model to the data, and also to compare different models, we
carried out exhaustive variable selection cycles for different model subtypes.

We have shown that under our modelling assumptions mismatches of HLA-C &
HLA-DPB1 alleles between donor and recipient have a negative effect on recipients’
survival prospects.

There have already been reports showing the importance of HLA-C matching,
but there have been no strong evidence for association between HLA-DPB1 mis-
matches and transplant-related risk increase. If other studies support the finding
that HLA-DPB1 allele mismatches have a negative effect on survival, it should have
an impact on clinical protocols for finding appropriate hematopoietic cell donors for
patients.
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1 Introduction

1.1 Hematopoietic cell transplantation

Hematopoietic cell transplantation (HCT) is a treatment option for more than twenty
different life-threatening diseases, including leukæmias and lymphomas, inherited im-
mune system disorders and inherited metabolic diseases4,29. It means the transplanta-
tion of bone marrow, peripheral blood, or umbilical cord blood stem cells.

The World Marrow Donor Association reported 7226 blood stem cell transplantations
and 1126 patients who were given cord blood units worldwide for the year 200431. World-
wide more than 50 000 patients have received allogeneic (i.e. genetically non-identical,
from an unrelated donor) hematopoietic cell transplantation so far, 5000 have received
allogeneic umbilical cord blood transplantation31, and since 1987 alone the US-based
National Marrow Donor Programr (NMDP) have helped more than 25 000 patients to
receive bone marrow or cord blood transplantation29. At any one time 7000 patients
throughout the world may be needing hematopoietic cell transplants30. The UK’s lead-
ing bone marrow register searches for donors on behalf of at least 3000 newly diagnosed
patients each year30. But the number of patients who could benefit from safer trans-
plants is much bigger: different reports and expert opinion both support the claim that
even today HCT therapy is broadly underused4,8.

Our well-established understanding is that a key determinant of the success of HCT is
the best possible matching of the human leukocyte antigen (HLA) genes between donor
and transplant recipient. Clinically, protein serotypes from at least five of these genes
are determined and compared to potential donors’ to find one whose genetic profile is
similar enough to the patient in need of a transplantation. Although there is substantial
linkage disequilibrium among the HLA genes7, one HLA gene does not determine others
on the same chromosome. Therefore a complete match of ten alleles for the five genes
(each of which allele is a sample from an imaginary pool of up to hundreds) between
patient and any one potential donor is very unlikely. Siblings and close relatives of the
patient are most likely to have identical types, but when they do not (which happens in
about 60–70% of the cases31), an unrelated donor has to be searched for.

This combinatorial variability implies the need for vast numbers of people to vol-
unteer to become donors if needed. Around the globe there is serotype data stored in
registries from more than 11.5 million volunteers or cord blood units28.

Despite this large number of registered potential donors it may happen that no per-
fectly matching donor can be found. If there is no alternative treatment option and the
patient urgently needs a transplant, clinicians have to choose a donor with an incomplete
match.

The aim of this study is to add to our knowledge how to choose the one donor. A
typical question may be whether there are genes for which the perfect match of both
alleles is necessary for the patients’ recovery or not, or whether there are any genes for
which a mismatch is more tolerable.

It might be the case that the key determinant is not the matches between single
alleles but a certain complicated notion of match between the system of genes in the
patient and the donor, or even that not the HLA genes themselves are important but
one or more regions which are in linkage disequilibrium with them.
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1.2 MHC region and the HLA genes

The human Major Histocompatibility Complex (MHC) is a large array of genes on
chromosome 6. MHC proteins are almost like military insignia or signalling flags helping
our adaptive immune system recognise self against non-self in the never-ending war
against pathogens.

In addition to the genomic organisation of the MHC region, the serological and
DNA sequence level characterization of most known alleles are known26, and allele,
haplotype and genotype frequencies in different populations are available6,23,24,25,12,14.
The functions and structure of MHC proteins are increasingly understood.

MHC proteins were first identified as the main antigens recognised in transplantation
reactions. Skin grafting experiments conducted in the 1950s with mice proved that graft
rejection is an adaptive immune response to the foreign antigens on the surface of grafted
cells.2

MHC proteins bind foreign protein products in the cytoplasm of cells infected by
microbes (class I MHC proteins) or in endocytosed extracellular fluid (class II MHC
proteins) and then present them on the cell surface. While class I MHC proteins (such
as those coded by HLA-A, -B, -C genes) are expressed in most nucleated cells, class II
MHC proteins (coded by HLA-DR, -DQ, -DP and some more other genes) are typically
found on antigen-presenting cells such as dendritic cells, macrophages and B cells.2,21

T cells are constantly surveying the surface of cells in our body searching for signs
of malfunction. A cytotoxic T cell with its receptors can interact with the complex
of a class I MHC protein and the protein fragment bound to it and in the meantime
its CD8 co-receptor can bind to the non-binding part of the MHC protein to ensure
the specificity of T cell recognition. Similarly, helper T cells recognise foreign peptide–
class II MHC protein complexes on antigen-presenting cells and use CD4 co-receptors
to enhance recognition specificity.2,21

Indeed, Zinkernagel & Doherty (1974) showed that a given T cell will only recognise
viral peptides when they are bound to a specific MHC protein33. This phenomenon is
called MHC restriction.

Variation in HLA types has been associated with variation in susceptibility and
variation in progression of various infectious diseases (e.g. HIV progression, susceptibility
to hepatitis B & C, malaria, pulmonary tuberculosis, leprosy)3,21.

As Klein put it in his 1987 paper16, the two most profound secrets of the MHC is
its true function, and the origin and significance of its polymorphism.

Although, as it has just been outlined, much is known about the MHC function,
there is still much left to be learned.

As to the question of polymorphism, the extreme diversity of the HLA genes is well
illustrated by the fact that up to 1st July 2007, 580 HLA-A, 921 HLA-B, 312 HLA-C,
501 HLA-DRB1, 86 HLA-DQB1, and 127 HLA-DPB1 alleles have been named including
synonymous and non-expressed types6,23,24,25,30.

Doherty & Zinkernagel (1975) were who first argued that heterozygosity at HLA loci
increases individual fitness because it results in successful responding to a wider range
of pathogens9.

There is wide agreement in the scientific community that on the population level
selection acts on MHC genes: there is compelling evidence that it is not neutral evolution,
but balancing selection which shapes the MHC region21, that is, selection which enhances
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polymorphism.
Pathogen driven mechanisms are strongly believed to be causes of balancing selec-

tion, in the form of overdominant selection (which is the advantage of heterozygotes),
frequency dependent selection (being a minority is an advantage, if a certain pathogen
adapts to individuals who have a frequent allele) or fluctuation in selection pressures
(when fitness changes as a function of frequency of pathogens, and not allele frequencies
across the population). Many observations suggest that reproductive mechanisms may
also play an important role in shaping HLA diversity: HLA types may have an effect on
mate choice or on the probability that pregnancy will be completed successfully 21.

The standard textbook view2 is that the role of MHC proteins in binding and pre-
senting foreign oligopeptides provides an explanation for the high MHC polymorphism.
To illustrate the difficulties in this field, let us mention that Klein (1987) disagreed both
with the claim that an arms race between the immune system and pathogens causes
the MHC variability, and the hypothesis that there is strong selection pressure on the
MHC16. More recent findings weaken his position21.

Let us close this introductory part about the MHC and continue with necessary
preparations that will be needed to understand our investigations.

1.3 HLA nomenclature

Each HLA allele has a unique name (e.g. HLA-DRB1*1602). The letters HLA and
the specification of the locus are followed by a four-digit number. The first two digits
identify the type of the allele, which in most cases corresponds to the serological type.
The third and fourth digits refer to subtypes: these distinguish between different amino
acid sequences in coded MHC proteins of the same type.

In several cases further digits are used. Fifth and sixth digits are used to indicate
different but synonymous DNA sequences. Alleles that only differ by sequence polymor-
phisms in introns or in the 5′ or 3′ untranslated regions are coded with different seventh
and eighth digits.20,27

Reasons for no one-to-one correspondence between two-digit codes and serotypes
may be that there are more than 99 coding variants in one type, as in the case of the
HLA-B*15 family: new allele types of this family named after the HLA-B*1599 get
HLA-B*95 codes. (Similarly, the recently discovered HLA-A*02 alleles got A*92 codes.)
Another reason may be that there are more than 99 types in a family, like in the HLA-
DPB1 family: HLA-DPB1*0102 followed the sequence of DPB1*0101, DPB1*0201, . . . ,
DPB1*9901.20,26,27

1.4 Patient–donor matching guidelines

In this section we describe the currently implemented criteria for donor searching.
The Anthony Nolan Trust in its HLA Typing and Matching Guidelines30 recom-

mends patients and unrelated donors should be matched on high resolution HLA-A, -B,
-C and -DRB1 types. (High resolution in their definition means resolving polymorphisms
within exons 2 and 3 for HLA-A and -B, and the same within exon 2 for HLA-DRB1.)
HLA typing of the patient must be DNA typing, at minimum at HLA-A, -B, -C and
-DRB1 loci, desirably also at HLA-DRB3, -DRB4, -DRB5, and -DQB1, and optionally
at -DPB1.
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When needed, partially matched donors can be chosen, but all levels of mismatch
would be subject to review. In this case both patient and donor typing should be at
high resolution so that the degree of mismatch can be thoroughly assessed.

The NMDP requires matching of 5 of the 6 HLA-A, -B, and -DRB1 alleles as a
minimum13, the argument being that there is abundant data to show that this level of
matching can lead to successful transplantation outcomes. It is also added that trans-
plantation success can be improved by stricter matching criteria (e.g. matching for HLA-
C). The optimal matching criteria are given as allele-level match for HLA-A, -B, -C, and
-DRB1. (The criteria are less strict in umbilical cord blood transplantation.18,29)

Interesting to note that patients who know their HLA types can search the NMDP
registry themselves online to see their prospects for finding a matching donor29.

In addition to HLA matching, other factors are also considered when selecting the
donor: cytomegalovirus (CMV)–negative serology is recommended for patients with neg-
ative CMV–serology, larger donor body weight and male sex (on average such donors
provide more stem cells), ABO compatibility, matched race, and younger age.13

When multiple highly matched potential donors are available, as the NMDP Guide-
lines say, matching HLA-DQB1, -DPB1, and -DRB3/4/5 loci might be beneficial13. In
addition to this, it is pointed out that the association between HLA-DQB1 and -DPB1
mismatching and mortality is unproven, and the same has not been studied for HLA-
DRB3/4/5 loci.

The NMDP website gives information about each U. S. transplant centre in the
NMDP Network29, including the matching criteria used by them. The requirements
vary from centre to centre.

For bone marrow or peripheral blood stem cell (PBSC) transplants, in a typical
example 10 of 10 matches are required at HLA-A, -B, -C, -DR and -DQ antigens with
an unrelated donor, but a mismatch might be allowed on a case-by-case basis.

Some centres only allow mismatches at the C or DQ loci (e.g. Hawaii Medical Center).
On the other hand, some allow mismatches only at the A, B or DR loci (e.g. Loma Linda
University Medical Center)!

Some centres set 8 of 8 matches at A, B, C and DR antigens (others: alleles) as
standard, potentially with one mismatch at any locus, or allow mismatches only at A,
B or C loci.

The standard match level in the UCSF Medical Center is 8 of 8 matches at A, B, C
and DR alleles for bone marrow, 10 of 10 matches at A, B, C, DR and DQ alleles for
PBSC transplants.

Some centres only disclose that the required level of matching varies depending on
treatment protocol.

To conclude this section, we may say even if we assume that these standards are
constantly revised at each centre, and that they were valid only at the moment of
communicating them to the NMDP, the variance clearly shows that our knowledge
about genetic determinants of HSC transplant success is limited.

1.5 Research underpinning patient–donor matching standards

Many statistical analyses of transplant outcomes have focused on dependence from dis-
ease, disease stage, origin of transplant (whether autologous or from HLA-identical sib-
ling or allogeneic), or transplant patients were compared with patients receiving different
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treatment. (For an overview of these topics see the NMDP website29.)
There have also been many studies to evaluate the role of HLA matching in transplant

outcome.
The aforementioned NMDP commentary (2003)13 focused on recent large studies

by three groups. It expressed that the effect of specific HLA mismatches on specific
outcomes, such as graft failure, acute and chronic graft-versus-host disease (GVHD),
should be secondary to expected survival times in donor selection, instead they should
be used to choose a specific risk-adapted treatment strategy for the patient.

It is now widely accepted that 4-digit matches (that is, allele, instead of only sero-
logical) should be sought for.

Flomenberg et al. (2001) reported 8–12% reduction in survival at 5 years after trans-
plant for patients with a single allele mismatch at HLA-A, -B, -C or -DRB1 compared
to no mismatch, in a pool of recipient–donor pairs who were matched at the 2-digit level
for HLA-A, -B, and -DRB110.

Greinix et al. (2004) showed significant (P = 0.03) decrease in three-year survival
for patients who had at least two allele mismatches in the HLA class I region compared
to those with zero or one mismatch, and concluded that selection of unrelated donors
should be based on high-resolution HLA class I typing11.

NMDP data suggests that a single allele-level mismatch is preferable to an antigen-
level mismatch, but for instance no such rule has been inferred to decide between a single
antigen mismatch and two allele-level mismatches13. There are studies suggesting that
multiple mismatches may pose cumulative or even synergistic risk on recipients. But
beyond these guidelines, the NMDP did not rank the relative importance of matching
at particular HLA loci (HLA-A, -B, -C or -DRB1) or could not predict permissible
mismatches. These questions remain open.

In real life the physician should consider the patient’s clinical status very carefully
before deciding on the length of time it is feasible to search for a donor, if only par-
tially matched donors are available. For instance, newly diagnosed chronic myelogenous
leukæmia can be relatively stable, allowing for a search time of 4 months, while for an
acute leukæmia patient transplantation may be feasible for only a brief period. Waiting
for a better matching donor may expose patients to further toxic chemotherapy, an in-
creased risk of infection or relapse. Besides differences in life expectancy, the quality of
life achievable with HCT from the best available donor should be compared to what the
patient can expect from other therapies.13

Further investigations of effects of HLA mismatches on HCT outcome are still needed,
because this is the only way to reduce risks to patients if transplantation is the best
treatment option for them, and to increase the availability of HCT treatment to a wider
range of patients.
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2 Data source

For the current meta-analysis we have been using the dbMHC database12, which was
generated by the Hematopoietic Cell Transplantation component of the International
Histocompatibility Working Group (IHWG) through data contribution from fifteen
countries. The database was last updated on 1st November 2004.

For each 1347 recipient–donor pair the data matrix has the following entries:

• Day: time after transplant in days.

• Died: a binary variable.

• Diagnosis.

• Recipient and donor ages at transplantation/donation in years.

• Recipient and donor genders.

• Recipient and donor HLA alleles at HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1
loci (4-digit codes). (The genetic information contributes 2× 2× 6 = 24 entries.)

Patient age was unknown for 134 pairs, donor age for 569 pairs, patient gender for
170 pairs, and donor gender for 271 pairs.

There were five pairs for whom one of four HLA-C alleles was known to 2-digit
resolution only, and one pair in which both the recipient and the donor had one allele
typed for 2 digits only.

HLA-DRB1 types were missing completely for one pair.
HLA-DPB1 types were missing completely for 293 pairs. There were further three

pairs with one donor, and one pair with one patient and one donor HLA-DPB1 type
missing.

The observation that there were two transplants both with exactly 92.97-year-old
donors (who had different HLA types) raises doubts about the reliability of the dataset.
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3 Basic statistical tools

3.1 Survival analysis

The data we have been working with is so-called survival data. Such time-to-failure data
often arises in medical (patient follow-up) and engineering (product testing) studies17,19.

Event times measured from the day of transplantation, and an indicator variable are
given for each patient, the latter telling whether the event was death or census. In our
dataset census always means right censoring : it is known that the patient was alive on
that day, or equivalently, the day is a lower bound of actual survival time.

Different causes might lead to censoring, for example the patient might lose contact
with the transplant centre, the centre might finish the follow-up, or census might simply
mean that when the centre communicates its follow-up data, the patient is alive.

3.2 Survival and hazard functions

Suppose that survival time Z is a positive random variable with a continuous cumulative
distribution function (cdf) F . In our parametric models we will always assume that it is
absolutely continuous, and its probability density function (pdf) will be denoted by f .

We need to introduce some mathematical notions. Detailed explanations of these
can be found in standard survival data analysis textbooks, such as the work by Klein &
Moeschberger (2003)17.

The probability of surviving to time t as a function of t is often called the survival
function: S(t) = 1− F (t).

The instantaneous rate of death is the hazard function (or hazard rate) h. More
precisely, it is defined by

h(t) = lim
∆t↘0

P
(
t ≤ Z < t + ∆t

∣∣∣ t ≤ Z
)

∆t
,

or, assuming absolute continuity,

h(t) =
f(t)
S(t)

= −
(

log S(t)
)′

.

A related quantity, the cumulative hazard function H is given by

H(t) =
∫ t

0
h(x) dx = − log S(t).

Consequently, the distribution (given by cdf or pdf or survival function) uniquely
determines the hazard function, and vice versa: by the formula

S(t) = e−H(t) = exp
(
−

∫ t

0
h(x) dx

)
the hazard uniquely determines the distribution. Moreover, any g : [0, ∞[→ [0, ∞[
function is a valid hazard function if∫ ∞

0
g(x) dx = ∞,
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in the sense that it uniquely defines a distribution.
For the reader who knows the exponential distribution, the hazard function ‘is the

thing which is constant in the exponential distribution’ : if the exponential distribution
has mean 1/λ, then the hazard is h(t) = λ.

3.3 Non-parametric estimation of basic quantities for right-censored
data: Kaplan–Meier estimator, Nelson–Aalen estimator

The standard estimator of the survival function from survival-type data, the Kaplan–
Meier estimator (KME) or Product-Limit estimator, was first proposed by Kaplan &
Meier (1958)15.

Let t1 < t2 < . . . < tK be the distinct event times (census or death), allowing
multiple events happening at the same time. The idea is that the survival function can
be written as a product of a chain of conditional probabilities: if tk−1 < t ≤ tk for some
2 ≤ k ≤ K, then

S(t) = P
(
Z > t

∣∣∣ Z > tk−1

)
P

(
Z > tk−1

∣∣∣ Z > tk−2

)
. . . P

(
Z > t1

∣∣∣ Z > 0
)
P

(
Z > 0

)
.

Under our assumptions P (Z > 0) = 1.
Let Yi denote the number of people at risk just before time ti, that is, the number

of those whose event time is not less than ti. Further assume that di failures happen at
time ti. A natural estimator of one such conditional probability is

P
(
Z > ti

∣∣∣ Z > ti−1

)
≈ Yi − di

Yi
.

This motivates the definition of the Kaplan–Meier estimator:

Ŝ(t) =

{
1, if t < t1,∏

ti≤t

(
Yi−di

Yi

)
, if t1 ≤ t ≤ tK

.

The resulting function is a step function with jumps at the uncensored event times. In
Kaplan–Meier plots census events are often indicated by tick marks.

It is not well defined what the estimate should be after tK . As one will see, in our
data the very last observation is a death, which makes the Kaplan–Meier estimator jump
down to zero. This single observation might be treated as an outlier19.

Although the formula H(t) = − log S(t) motivates an estimator for the cumulative
hazard function: Ĥ(t) = − log Ŝ(t), there is an alternative which performs better on
small sample sizes.

The Nelson–Aalen estimator of the cumulative hazard was first suggested by Nelson
in 197222, then it was reinvented by Aalen in 19781. Its definition is as follows:

H̃(t) =
{

0, if t < t1,∑
ti≤t

di
Yi

, if t1 ≤ t ≤ tK
.

Based on the Nelson–Aalen estimator one can derive an alternative approximation
of the survival function: S̃(t) = exp(−H̃(t)).

The hazard function h can be estimated by the jumps of H̃, but one always needs to
smooth this crude estimate by some weighted averaging over neighbourhoods. (See e.g.
Klein & Moeschberger17, Section 6.2 to learn about smoothing with parametric kernels.)
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3.4 Model choice

We summarise some methods used in model selection which we will later rely on.
Our investigations will be based on comparisons of maximum (log-)likelihoods (ML)

achievable with different models. Bigger likelihood generally means better fit of model
to data, but one must never forget that a better fit might be a worse explanation if it
is driven by unnecessary variables that are only good at fitting to the random variation
in data instead of to the underlying relations.

In the case of nested models, when the simpler model is a special case of the more
complex one (that is, constraining some parameters to certain values yields the simpler
model), the addition of a new parameter almost always increases the maximal likelihood.
Therefore the likelihood in itself cannot tell whether the introduction of the new variable
improved the model. Let us introduce the three criteria for assessing the goodness of a
model which we will later use in model selection.

Let M1 ⊂ M2 be two nested models with parameter vectors θ1 and θ2 (their dimen-
sions are p1 and p2), respectively.

The likelihood ratio test (LRT) is a statistical hypothesis test. Under M1, which is
the null hypothesis, if the maximum likelihood estimates (MLE) of parameters are θ̂1

and θ̂2, then

Λ = 2 log
P

(
data

∣∣∣ θ̂2,M2

)
P

(
data

∣∣∣ θ̂1,M1

)
follows (in most cases) a chi-square distribution: Λ ∼ χ2

p2−p1
. Therefore if Λ is bigger

than the upper quantile corresponding to a pre-set p-value, then we can reject the null
hypothesis M1 in favour of the more complex M2. (See — among very many alternatives
— the review by Whelan, Liò & Goldman (2001)32.)

The other two criteria penalise the inclusion of new parameters, and simply choose
the bigger penalised log-likelihood value as the better model. For sample size n, models
i = 1, 2, the Akaike information criterion (AIC) uses the expression

Si = log P
(
data

∣∣∣ θ̂i,Mi

)
− pi,

the Bayesian information criterion (BIC) uses

Si = log P
(
data

∣∣∣ θ̂i,Mi

)
− 1

2
pi log n.
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4 Patient population

The most fundamental information about the 1347 hematopoietic cell recipients in our
study is summarised in Table 1. (An index of abbreviations can be found in Appendix A.)

Mean age of patients (years) 33.0
Range 0.7–65.7

Mean age of donors (years) 37.3
Range 19.9–92.97

Gender (patient)
Male 682
Female 495
Unknown 170

Gender (donor)
Male 650
Female 426
Unknown 271

Gender (patient/donor)
Male/male 410
Male/female 215
Female/male 238
Female/female 211
Either unknown 273

Diagnosis
CML 988
ALL 138
AML 134
MDS 44
AA 18
NHL 8
MPS 4
MDS/MPS 3
CLL 2
Autoimmune disease 1
Myeloma 1
Other or not specified 6

Table 1: Characteristics of donors and patients.

Most studies on HCT survival data use non-parametric methods (like the Kaplan–
Meier analysis) and semiparametric methods (like the Cox proportional hazards model5,17)
to assess the effects of allele or serotype mismatches10,11,13,18. We present some Kaplan–
Meier plots for illustration purposes (Figures 1, 2 and 3), but we will not do the formal
statistical tests that would be needed to use these for rigorous inference. We will instead
develop a fully parametric model.

4.1 Non-parametric descriptions

Figure 1 clearly shows that different diagnoses give differing prospects for survival. One
may think this is not necessarily directly related to disease, but it may be a consequence
of the slower progression of CML, which allows more time to search for a highly matched
donor. This does not seem to be the case: among the 1050 pairs for whom DPB1 types are
known, on average the 787 CML patients had 1.42 2-digit and 2.08 4-digit mismatches,
while the other 263 patients had a mean of 1.36 and 1.87 2- and 4-digit mismatches,
respectively.

This finding will lead us to the stratification of the data by diagnosis in some in-
stances. When large sample volumes are important, we will not differentiate between
different diseases.
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Figure 1: Kaplan–Meier estimates of the survival function for different diseases.

The busy Figure 2 gives some assessment of the detrimental effects of HLA mis-
matches on patients’ prospects. We restricted the plotting to the 787 CML patient–donor
pairs who had been HLA-DPB1 typed to obtain a homogeneous cohort of patients. Ta-
ble 2 gives the ranking among strata with different numbers of matches at certain times
after transplant.

A trend is palpable — more mismatches mean higher risk. This holds both for 2-digit
and 4-digit mismatches.

It is now a straightforward idea to plot something similar for each six typed HLA
gene. In order to assess the effect of mismatches at one locus, one should restrict the
investigation to those pairs, who had no mismatches at other HLA genes. Otherwise the
random occurrence of mismatches at other loci would have an effect on survival that
might well be greater than the one of the locus under consideration. We cannot even
assume uniform distribution of mismatches at other loci (see Table 3).

Unfortunately, choosing pairs who were typed for all six genes, picking one gene
whose effects we want to study, and further restricting the population to those who had
no mismatches anywhere but (potentially) at this gene can only be done for the HLA-
DPB1 gene, if one wants a sensible population size (Figure 3). The reason is in Table 3:
if any other gene is picked, it is likely, that there will be a mismatch at HLA-DPB1,
and additionally, there might be a few elsewhere. Indeed, for HLA-C there are only 12
pairs (5 of which is uncensored) that had at least one 4-digit mismatch at C, but none
elsewhere. Similarly, for HLA-DQB1 there are 7 pairs (4 uncensored) with at least one
4-digit mismatch at DQB1 and none elsewhere, and even less for the remaining sites,
HLA-A, -B and -DRB1.

If one is not so cautious and uses data from every pair without considering disease
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Figure 2: Kaplan–Meier estimates of the survival function for HLA-DPB1 typed CML patient–donor
pairs stratified by number of matches (2-digit, 4-digit). A curve is drawn if there were at least 15 different
days after transplant on which uncensored event occurred. The vertical lines are at years 1/2, 1, 3, 6,
12.

and the number of mismatches at genes that are different to the one on which the strat-
ification is based, one gets plots in which one 4-digit mismatch gives worse probability
of survival than zero mismatch, except for loci HLA-A and -DQ, where differences are
marginal. Two allelic mismatches are either too rare to base inference on those few pa-
tients (HLA-A, -DRB1, -DQB1), or show roughly the same effect as one mismatch, or
only marginally worse (HLA-B, -C, -DPB1). (Data not shown.)

Figure 3 shows the effect of allelic mismatches on survival at HLA-DPB1 among the
homogeneous CML diagnosed group (787 patients), and it also compares it to the effect
of one mismatch elsewhere. It suggests that no mismatch is certainly better for a patient
than any DPB1 mismatch. We get the same for AML patients (108 patients, graph not
shown). On the CML plot 2 mismatches seem to give a better chance of survival than
1 mismatch, but on the whole DPB1 typed population (1050 patients), among AML
patients, and among the 85 ALL patients the difference vanishes (graphs not shown).

Surprisingly, in the AML group no mismatch seems to be an omen of bad luck
compared to one or two HLA-DPB1 allelic mismatches (graph not shown) — this might
be due to the small sample size and random fluctuations.

Both among CML patients and more pronouncedly for the whole population (graph
not shown) one allelic mismatch at DPB1 might give worse prospects until about 3 years
after transplant than a mismatch elsewhere. After three years this difference disappears.

These observations are for information only, without statistical testing they do not
form a basis for conclusive claims.
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Years 1/2 1 3 6 12
Ranking (12,12) (12,12) (12,12) (12,12) (12,12)

(11,11) (12,11) (11,9) (11,11) (12,11)
(11,10) (11,11) (12,11) (11,9) (11,11)
(11,9) (11,10) (11,11) (12,11) (10,10)
(10,10) (10,10) (10,10) (10,10) (11,10)
(12,11) (11,9) (11,10) (11,10) (10,9)
(9,9) (10,9) (10,9) (10,9) (9,8)
(10,9) (9,9) (9,9) (9,9) (11,9)
(9,8) (9,8) (9,8) (9,8) (9,9)

Table 2: Ranking with respect to estimated probability of survival until 1/2, 1, 3, 6, 12 years after
transplant of nine strata of HLA-DPB1 typed CML patients, stratified by the number of matches with
donor HLA types (2-digit, 4-digit).

HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1 HLA-DPB1
0 93.9%/86% 96.9%/83.8% 70.5%/65.4% 99.6%/93.8% 95.4%/89.3% 22.9%/16.2%
1 5.9%/13.2% 3.1%/14.8% 26.3%/29.8% 0.4%/5.9% 4.5%/9.8% 56.6%/53.9%
2 0.1%/0.7% 0%/1.4% 3.2%/4.8% 0%/0.2% 0.1%/0.9% 20.5%/29.9%

Table 3: Empirical distribution of the number of mismatches in a transplantation in our full dataset
for each typed HLA gene (2-digit mismatches/4-digit mismatches). At each locus only the transplants
for which at least 2-digit codes were known are taken into account. Where third and fourth digits were
missing we assumed no match with that gene. For this table where third and fourth digit types were
ambiguous (that is, it was AB, meaning either 01 or 02), we assumed match with the other individual’s
AB or 01 or 02 allele.

4.2 Steps towards a parametric model

711 patients were censored and 636 were registered as deceased. Figure 4 shows the dis-
tributions of these event times. While censored observations are broadly scattered with
a heavy tail (mean=1490 days, median=1200 d, standard deviation=1205 d, range=1–
5841 d), uncensored observations are mainly concentrated to the first year (mean=278 d,
median=128 d, st dev=503 d, range=2–6051 d).

4.3 Some thoughts on mismatches

Little is known about how to look at the structure of mismatches to find a good
hematopoietic cell donor. Throughout our investigations we simply count the matches
or mismatches at each locus and use these as explanatory variables.

Having a certain allele at a certain locus might mean that missing an allele at another
locus is not harmful since the functional protein product of the former is so similar to
the latter. Consequently, there might be (almost surely there is) some match-mismatch
notion across HLA loci, even for the whole MHC of patient and donor. Discovering this
would be the ultimate target, but today it seems beyond our reach.

We do not know much about symmetricity in tissue compatibility in the sense that
if, for instance, Tweedledum has a genotype such that the Mad Hatter could poten-
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Figure 3: Kaplan–Meier estimates of the survival function for HLA-DPB1 typed CML patient–donor
pairs stratified by number of 4-digit mismatches at the HLA-DPB1 locus: the first three strata had no
allelic mismatch at other loci, the last stratum consists of all who had one allelic mismatch anywhere
but at HLA-DPB1.

tially recover from a HCT with Tweedledum’s cells, can Tweedledum live with the Mad
Hatter’s hematopoietic cells, if this reverse direction transplant is carried out?

In blood donation we know the answer for ABO groups: it is asymmetric. We know
how this follows from which phenotype makes which antibodies, or rather, which anti-
bodies are not made in certain types.

In HCT every allele type is expressed, so one does not expect similar asymmetries.
Let us introduce the notion of non-detrimental (non-deleterious) mismatches. If one

looks at the recipient–donor pairs with a survival time more than, say, ten years, one
may say that the mismatches these pairs had are tolerable. One could collate a list of
these non-detrimental mismatches and count them as no mismatches.

Again, this approach is based on the assumption that effects of mismatches at dif-
ferent HLA loci are independent, and alleles at one site do not have an effect on how
tolerable mismatches are at other sites. The idea could be further developed by assign-
ing weights to each pair or quadruplet of alleles for any gene for a patient–donor pair:
instead of having 0, 1 or 2 scores as mismatch counts, one could assign continuous values.

Note that the notion of non-deleterious mismatch is not time-symmetric. Mismatches
from patients who died very early are not necessarily harmful, because those patients
might have died from other transplant-related complications, or from their original dis-
ease.

Unfortunately, in the few instances when we tried using the idea of non-detrimental
mismatches in model fitting, it did not improve our results, but made them worse.
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Figure 4: Distribution of time until event. The observed event is either census (top), or death (bottom).
Note the different scaling on y axes.

If we use the non-detrimental mismatch approach to investigate recipient–donor
symmetry, we can find pairs of recipient–donor pairs where the same mismatch occurred
‘in both directions’: once recipient had alleles (a1, a2) and the donor had (b1, b2), on
the other occasion the donor had (a1, a2) and the recipient (b1, b2). This never happens
in blood donation. There are examples for symmetric mismatches at HLA-A, -C and -
DPB1 genes where both patients were censored after more than 5 years post-transplant:
A*0201, A*6801 and A*0201, A*6901 (1 match); Cw*0304, Cw*0401 and Cw*0401,
Cw*0702 (1 match); DPB1*0201, DPB1*0301 and DPB1*0401, DPB1*0401 (0 match).

4.4 Partitioning to training and testing data

In order to be able to assess the predictive power of any statistical model we will have
proposed, we made preparations for cross-validation. The data was partitioned into a
training and a testing set. Later some homogeneous cohorts were partitioned as well,
such as patients with same disease, patients with DPB1 types. The ratio of the sizes of
the two sets is always two to one.

Two partitioning strategies were used which we call P1 and P2. In both cases the
censored and uncensored patients were treated separately. In P1, after sorting each
group by the time to event, starting from the smallest, two patient–donor pairs from
every successive three were randomly chosen and put into the training set, while the
third was assigned to the testing set. Under P2 simply two thirds of both the censored
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and uncensored pairs were randomly picked and put into the training set.
These single random choices were then fixed to form a basis for future model com-

parisons.
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5 Statistical modelling of the data generating process

We assume that survival times of patients are independent random variables which are
all realisations of a parameterised, but otherwise single distribution family. For each
individual, parameters of this distribution are planned to be estimated by modifying a
general description of the whole sample with a function of individual covariates (diag-
nosis, age, gender, HLA matching between donor and patient).

Note that some further important factors are unknown and cannot be used among
the explanatory variables. Probably some stratification by disease progression (pre-
transplant risk status) would have been useful, similarly stratification by pre- and post-
transplant regimens, or by year (or decade) when transplantations were carried out (the
last two are obviously connected).

5.1 Competing risks model

Understanding and modelling the censoring process are crucial to make good use of
the survival-type data. According to Klein & Moeschberger17 (Section 3.2), the most
common right censoring strategies are

• censoring after a fixed time has passed since the subject had entered the study,

• censoring at a fixed terminal point, in which case subjects may enter the study at
different times,

• censoring at the time when the failure number reaches a predetermined proportion
of subjects.

As we did not know anything about the censoring used in generating our dataset, we
assumed random censoring. Under this assumption census is a competing risk to death.

Generally, competing risks models are used to describe that a subject may encounter
different failures (e.g. an individual may contract heart disease or cancer). Here we as-
sume every recipient had an unknown random time to census, and an independent,
unknown time to death. Whichever is first is observed and recorded. Hence the observa-
tion is the minimum of two independent random variables and the indicator which one
was actually observed.

Note the symmetry here. Under this competing risks model the death can be seen as
a censoring event too: it hides the actual time of the census. We will exploit this duality
in the next section.

5.2 Reference distributions of the time until either of the events

At this stage we try to find two families of distributions that mimic the distribution of
the observed census and death times reasonably well. We write FC for the cdf of our
approximation to the time until census, and FD for the cdf of the time until death.
We search for these distributions among the absolutely continuous distributions, and we
denote their pdfs by fC and fD, respectively. At present we suppose every patient has
the same universal FC and FD.

In order to find these distributions, the respective hazard functions were estimated
from the observed data by the non-parametric Nelson–Aalen estimator (which was intro-
duced in Section 3.3). Figure 5 shows these estimates after smoothing. With the same
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technique, estimates of the two pdfs can be drawn as well (graph not shown). These
visualisations guided us to find appropriate parametric distributions for our statistical
model.

Figure 5: Nelson–Aalen estimates of hazard functions smoothed with an Epanechnikov kernel. Band-
widths of the smoothing (in days) is given in the legend.

The maximum likelihood approach is used to find well fitting distributions. Ci (i ∈
{1, . . . , I}) denoting the days when census happened, Dj (j ∈ {1, . . . , J}) the days of
uncensored events, the likelihood∗ of the data is

L ∝
I∏

i=1

fC(Ci)
(
1− FD(Ci)

) J∏
j=1

fD(Dj)
(
1− FC(Dj)

)
.

By reorganising,

L ∝

 I∏
i=1

fC(Ci)
J∏

j=1

(
1− FC(Dj)

)  I∏
i=1

(
1− FD(Ci)

) J∏
j=1

fD(Dj)

 . (1)

Because the first factor only depends on FC , while the second one only on FD, the
likelihood can be maximised by independently maximising the first and the second
factors.

In order to ascertain that forthcoming calculations would be kept simple, we were
looking for distributions that have at most two parameters.

∗We write proportionality instead of equality because we omit a constant factor which comes from the
time ordering of our observations and which does not depend on Cis, Djs or any unknown parameters.
An explanation of this with further references can be found in Maller & Zhou (1996)19, pp 98–99.
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Maximal log-likelihood values for a few different distributions are presented in Ta-
ble 4. We found that from our proposed distributions the log-normal distribution gave
the best fit for the time until death, and the one with linear hazard function for the day
of census.

Distribution of C Value for 1st factor Value for 1st factor, P1 tr. set
hC(t) = at + b -5979 -3987
Gompertz(α,β) -5980 -3987
Weibull(k,λ) -5982 -3989
hC(t) = at2 + b -5984 -3990
hC(t) = at3 + b -5988 -3993
Gamma(α,β) -5988 -3993
Exponential(λ) -6016 -4011
Log-logistic(α,µ) -6044 -4031
Log-normal(µ,σ) -6084 -4061

Distribution of D Value for 2nd factor Value for 2nd factor, P1 tr. set
Log-normal(µ,σ) -5075 -3383
Log-logistic(α,µ) -5107 -3405
Weibull(k,λ) -5156 -3437
Gamma(α,β) -5192 -3462
hD(t) = at + b -5357 -3572
Exponential(λ) -5452 -3635

Table 4: Maximum log-likelihood values of the two factors of Equation 1 with different distributions
assumed. The first table gives max log(

Q
i fC(Ci)

Q
j(1 − FC(Dj))) values, while the second one gives

max log(
Q

i(1 − FD(Ci))
Q

j fD(Dj)) values. In rows with hC or hD the respective distributions are
derived from the given hazard functions which uniquely determine them, as it was stated in Section 3.2.
The middle column gives these values for the whole dataset, while the last column only uses the data of
the P1 training set (as explained in Section 4.4).

Figures 6 & 7 show Kaplan–Meier estimates of the survival function against the sur-
vival functions of the two best and some other approximations when census or death is
the uncensored event type, respectively. Parameters for the distributions are the maxi-
mum likelihood estimates.

The model fit to time-to-census data is very good, but this turns out to be unimpor-
tant: as we believe that genetic information only affects time-to-death, and not time-to-
census, we will no longer work with the first factor of Equation 1.

The fit of our models to survival time is poor yet, therefore we have to carry on
searching for a better model.
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Figure 6: Kaplan–Meier estimate of the survival function for the whole patient population when the
census plays the role of death and actual death is treated as census. Survival functions of some parametric
models of the random time until census.

Figure 7: Kaplan–Meier estimate of the survival function for the whole patient population and some
of its parametric approximations.
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5.3 Mixture models for survival time: mixture model with immunes

The Kaplan–Meier curves that describe the surviving proportion of the patient popu-
lation seem to level off after some years, modulo we exclude the last patient from our
data. This observation suggests there are (as Maller & Zhou call them) immunes in the
population19, that is, patients who are cured. This assumption leads to a mixture model
with immunes.

Mathematically, this means that only a p proportion of the population is mortal
(0 < p < 1) and, under this model, 1− p proportion of the patients are immortal: they
will never die, or equivalently, their survival time is ∞. As a consequence, the new cdf
F ∗

D will specify a subdistribution, which is almost the same as a distribution, with the
exception that

lim
t→∞

F ∗
D(t) < 1.

Given any cdf FD we have been working with so far and a p (0 < p < 1), one can easily
derive the new F ∗

D by setting F ∗
D = pFD. It follows that there exists a pdf, and it is

f∗D = pfD. The likelihood to maximise is

L ∝
I∏

i=1

(
1− F ∗

D(Ci)
) J∏

j=1

f∗D(Dj) =
I∏

i=1

(
1− pFD(Ci)

) J∏
j=1

(
pfD(Dj)

)
.

Now there is the extra p variable in the maximisation in addition to the parameters of
FD.

If one does the log-likelihood maximisation for all the distributions which have been
tested so far, one will find that the one with maximum log-likelihood is the log-normal
distribution again (log-likelihood of the whole dataset: −4968), followed by the log-
logistic distribution (−4970), the improper Gompertz mixture model with immunes
(−5003), the Weibull distribution (−5035), the improper Gompertz distribution without
immunes (−5038), and others. (The improper Gompertz is already a subdistribution
even without introducing immunes to it.19) p is estimated 0.53–0.54 unanimously.

The fit of these models to the data is shown in Figure 8. This result is still not
satisfactory, particularly because of the existence of immortals, which is an assumption
one is reluctant to make.

5.4 Mixture model with two distributions

The best description of the random time until death we found is a mixture model, which
models the distribution of the time-to-event as a mixture of early failure and late failure
distributions. Let FE and FL denote their cdfs, both having pdfs: fE and fL. Here we
assume that a q (0 ≤ q ≤ 1) proportion of patients die from early, and 1 − q die from
late failure.

At this low level of complexity it is probably not essential to define what we model
with early and late failures. However, we can still say some words about it: early should
mean lethal complications from the transplantation (e.g. sinusoidal obstruction syn-
drome, transplantation-related lung injury, transplantation-related infections, immun-
odeficiency caused by acute GVHD and its treatment with corticosteroids might lead to
life-threatening fungal infection, graft rejection, relapse), while late failure might mean
both transplant-related causes (immunodeficiency caused by prolonged corticosteroid
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Figure 8: Kaplan–Meier estimate of the survival function for the whole patient population and some
of its mixture model approximations with immunes.

treatment of potential chronic GVHD, secondary cancers)4,8, and other causes of death
that occur independently of the transplant.

Under this model the cdf of the random survival time is FD = qFE + (1− q)FL, the
pdf is fD = qfE + (1− q)fL. We now typically have five parameters: two for each of FE

and FL, and q. The likelihood of the data under this model is

L ∝
I∏

i=1

(
1− qFE(Ci)− (1− q)FL(Ci)

) J∏
j=1

(
qfE(Dj) + (1− q)fL(Dj)

)
.

We assume that both the early and the late failure distributions are one of the
following distributions: log-normal, log-logistic, Weibull, gamma, normal, exponential.

Looping through the 36 possible early/late distribution combinations tells us that
under the mixture model the maximum achievable log-likelihood of the whole dataset
is −4953, and about seven combinations can reach this. We picked the log-normal/log-
normal (which was the best with a log-likelihood value of −4952.8, q = 0.40, meanE =
188 days, meanL=9700 years) and the log-normal/exponential models (which was sev-
enth with −4953.8, q = 0.47, meanE=238 d, meanL=62 y) based on their previous
performance and their simplicity.

Figure 9 shows their fit to the Kaplan–Meier estimate of the global survival function.
A comparison of our four best models (the log-normal, the log-normal mixture model

with immunes, and the two latest mixture models) based on LRT (Section 3.4) shows
that the introduction of new parameters with the mixture models gave a significant (P <
0.001) improvement in model fit over the non-mixture model, and AIC and BIC values
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Figure 9: Kaplan–Meier estimate of the survival function for the whole patient population and two
mixture model approximations. (The legend gives early failure/late failure distributions, in this order.)

also strongly support the mixture models. With the AIC the log-normal/log-normal,
with the BIC the log-normal/exponential is the optimal choice. (Data not shown.)

Assessing predictive performances by estimating the parameters on the training set
with MLE, and using these parameters to calculate the log-likelihood of the test set,
shows that the mixture models are always better than the basic model, both on the
whole dataset and on the three biggest patient cohorts (CML, ALL, AML), when using
either P1 or P2 partition. One cannot set an unequivocal ranking among the mixture
models based on their predictive performances. (Data not shown.)

These tests and the advantage of no need for the modelling assumption of immunes
made us use the two latest mixture models.
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6 Modelling genetic effects

We reduced the modelling of individual genetic background to counting the number of
4-digit mismatches for each patient–donor pair at each HLA locus and deriving a single
value from these.

For pair k the number of mismatches at the six loci are Xk,1, Xk,2, . . . , Xk,6 ∈
{0, 1, 2}†. When all types are missing at a locus, it is treated as zero mismatch. Apart
from early experiments we always assumed the linear model

β0 +
6∑

r=1

βrXk,r

to describe the effect of mismatches for patient k, because this formula resulted in the
greatest ML values.

In our mixture models a successful transplant is the one after which the patient dies
from late failure (the transplant gives years to their lives). Hence we made our model
such that mismatches push patients towards early failure by increasing their individual
q through the well-known logistic model:

qk =
1

1 + exp
(
− (β0 +

∑6
r=1 βrXk,r)

) .

We did not include other covariates such as gender or age in our models.
Now our model is wholly defined. This is what was used in a variable selection

process to find the genes whose mismatches contribute the most to early deaths of HCT
recipients.

Putting a variable into a model means we let its βr coefficient vary. Leaving it out
means we fix βr = 0. As there are 6 loci, there are 26 − 1 = 63 possibilities to include
at least one variable. We tried fitting each alternative model by letting the chosen βrs
and the parameters of FE and FL vary. We then compared the resulting log-likelihood
values by the LRT, AIC and BIC methods.

Before sharing these results, we describe a test which showed that it is not only noise
we are fitting our models to.

Before developing our mixture models we were using the most basic log-normal
model. Genetic effects were introduced to the model by multiplying the hazard function
of the log-normal distribution by the individual-dependent factor

1 +
6∑

r=1

βrXk,r.

Using all six βrs one can determine the ML value of the survival time for the whole
patient population and compare this to the ML value with no βrs, based on AIC or BIC
comparison. The AIC values from the MLEs on both the whole set and the training set
(P2 in this case) is in favour of introducing the six new variables, such as the AIC on
the whole dataset. (The BIC comparison, which puts more penalty on new variables,
prefers no βrs on the training set.)

†More precisely, between the ambiguous type AB (which is either 01 or 02) and AB or 01 or 02 we
counted 0.5 mismatch.
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Using partition P2 to assess the predictive performance on the test set‡ we get that
the prediction with βrs that were optimised for the training set only is much better than
a prediction without βrs.

The trick was that we carried out the same investigations trying to predict the time
until census from HLA information. As we expected, it gave poor results: both the AIC
(modestly) and BIC (very pronouncedly) showed that the variables did not improve the
fit significantly. Prediction on the test set based on training on the training set improved
with the introduction of the βrs, but only marginally, and we think this has happened
by chance. (Data not shown.)

6.1 Computational methods

We ran the variable selection loop through the 63 possibilities for the training set of
the whole dataset. Later we did this for the training sets of strata of the whole data
(patients stratified by diagnosis).

In each such loop we fitted the model to the training set by each partitioning strategy,
P1 and P2.

As we did not decide between them, we fitted both the log-normal/log-normal and
the log-normal/exponential mixture models.

To increase our chance of finding the real maximum of the log-likelihood, we ini-
tialised the iterative numerical optimisation with two slightly different parameter set-
tings (β0, βrs and parameters of the early and late failure distributions) for two separate
runs.

Altogether, for each studied patient cohort and each 63 variable combinations we
ran 2 × 2 × 2 = 8 optimisation algorithms. For the whole population this took about
30 hours on a desktop computer.

For each 63 combination of variables, for each of the two mixture models and two
partitions the smaller ML value from the two runs was discarded. Within the results
of each four set of variable selection loops, the 63 variable combinations were listed in
order of their AIC or BIC values on the respective training sets separately.

For each of the two mixture models, and for each of the two ranking aspects (AIC
or BIC) separately, a consensus ranking was compiled from the two partitions.§

Then compared these results between the two different mixture models, chose vari-
able combinations which were among the best for both models, and collated a list of
these best variable combinations for both AIC and BIC separately.

Typically, there was not much difference between rankings with log-normal/log-
normal versus log-normal/exponential mixture models, but there was considerable vari-
ation between the rankings with P1 or P2 partitions.

Running the numerical optimisation with different initialisations proved very im-
portant, because the differences for the same computation with different initial values
differed with a quantity comparable, or just slightly less than the breadth of the interval

‡This is the test for which we defined P2; P1 would have probably been too homogeneous for these
tests to show strong results.

§We chose the best combinations by starting from the best ML values for either P1 or P2, and the
variable combinations which were among the best with respect to their ranking in both partitions were
selected. With this method we collected roughly the best five variable combinations, or we searched
through the best 10 of 63 for both P1 and P2, and selected all which appeared in both.
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spanned by the 63 ML values in some instances (but always for a minority of the 63
combinations only).

The probable effect of this numerical issue is that in a few cases a few good combi-
nations of explanatory variables ended up with worse ML values than what they really
had, and at worse positions in the ranking than what they had deserved. These combi-
nations might have evaded our attention, but this almost certainly does not mean that
what we believe the best combinations are, are poor in reality.

Further, we will compare the predictive performance on the test set of the best
models with that of the model without genetic effects. This assessment does not rely on
maximisation, so it is free of its pitfalls.

6.2 Results

In presenting our results about which combinations of covariates describe the variation
in survival times best, we will first look for trends instead of an ultimate solution.

The variable combinations selection method presented in the previous section gave
these as best combinations for the whole dataset, roughly in this order:

AIC (B,C,DP), (B,C,DR,DP), (B,C,DQ,DP), (B,C),

BIC (C), (B,C), (C,DP), (C,DR), (B).

(For brevity we omit the B1 from DRB1, DQB1 and DPB1.)
The most interesting thing is the frequent appearance of the DPB1 variable, since

it is not known to have an effect on survival13. It is important to note that in this case
pairs without their HLA-DPB1 types were assumed they had complete match at this
locus.

A glimpse at Table 3 suggests that assuming one mismatch for them is more sensible.
The results of the combination selection process with this assumption are the following:

AIC (B,C,DP), (B,C,DR,DP), (B,C,DQ,DP),

BIC (C), (B,C), (C,DP), (C,DR),

that is, the rankings of the best are the same, but in models with variable DPB1 log-
likelihood values improve in almost all instances for P2, although only marginally. For
P1 it is not so clear: more improve than how many decrease, and the mean change is
positive.

We can make three general observations.
First, the best models under BIC have less variables than the best under AIC. This

is simply explained by the fact that BIC puts more penalty on the inclusion of new
covariates than AIC.

Second, B and C are the covariates with the most appearances. At least one is always
among the variables, but C seems to be more important. It is known that there is strong
linkage disequilibrium between HLA-B and -C genes7, and a Pearson’s chi-squared test
shows contingency between the existence of mismatches at these two loci in our data
(P < 0.00001). So we may well expect if mismatches at one locus show a negative effect
on patients’ survival, mismatches at the other will as well, because one mismatch at the
other locus makes a mismatch (and a negative effect) more likely at the first locus.
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Third is the surprising observation that HLA-A is not among the important variables.
Actually, (A,B,C,DP) would be the next best combination under the AIC, but with β1 <
0 — that is, a mismatch at HLA-A would improve patients’ prospects. We immediately
rejected this model.

A closer inspection tells us that in more than half of the 32 combinations where
A appears, it has a negative coefficient, and independent of the sign the coefficient is
about one order of magnitude smaller than the other βrs. This does not imply that
HLA-A matching is not an important determinant of tranplant outcome, but it does
not seem to have much effect in our data. Table 3 shows that there are few pairs with
A disparity, particularly few with two mismatches. This might explain why A is in such
a controversial role.

To further investigate the effect of DPB1 mismatches, we restricted our attention to
the 1050 pairs who had this gene typed. The best covariate combinations now are

AIC (B,C,DP), (B,C,DR,DP), (B,C,DQ,DP),

BIC (C), (C,DP), (B,C), (B,C,DP), (B),

very similarly to previous results. (A,B,C,DP) would be the next in the AIC line, now
with β1 > 0 (but small). Anyway, it is never entirely clear where to end the list.

At last in this series, in order to filter the potentially distorting factor of diagnosis,
results for the homogenised CML patient cohort are given (787 patients who were DPB1
typed):

AIC (B,C,DP),

BIC (C,DP), (B,C), (C).

The rankings are not shown for the 108 DPB1 typed AML and the 85 ALL patients
because it turned out that the optimisation led to model overfitting: predictions on the
test set were inferior to predictions without taking account of genetic variation. A closer
inspection showed that the β values are unrealistically big.

Values for the β0 intercept term are usually between (−0.5)–(−0.1), the βrs (r =
1, . . . , 6) are about 0.2–0.5, and the patient-specific q is typically between 0.3–0.8.

Among the ALL and AML patients βr values were often hundredfold greater, and
qks were distributed throughout the whole [0, 1] interval.

The optimisation can be modified to keep βrs under control by penalising their
absolute values with formulæ like in ridge regression or lasso. Given more time, these
investigations should be carried out.

6.3 Assessment of predictive power

A critical part of our model selection process is the testing of covariate combinations
(and the complete model) in predicting transplant outcomes in the test set. For this,
one determines the MLE of all parameters using data solely from the patients in the
training set. Once this is done, one applies these parameters and the genetic covariates
of patients of the test set to calculate the log-likelihood of the test set data.

If these log-likelihoods are consistently bigger then log-likelihoods derived from pre-
dictions made by the model which does not use individual genetic variation data, then
one can be reasonably confident that the covariates increase the predictive power.
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Figure 10: Log-likelihood landscape on the test set for all DPB1 typed recipient–donor pairs, for both
mixture models and partitions P1 and P2: histograms of the 63 log-likelihood values for the test set
using mismatch counts and parameter values from the training. Coloured blobs represent the value
for the combinations (B,C,DR,DP)—green, (B,C,DP)—dark blue, (B,C)—yellow, (C,DP)—light blue,
(C)—magenta. Log-likelihood of the prediction without mismatch covariates is in red for reference.

Figure 10 and 11 shows log-likelihood values of the test set of predictions from five
of our best covariate combinations: (B,C,DR,DP), (B,C,DP), (B,C), (C,DP) and (C).
Figure 10 uses the whole DPB1 typed population, and Figure 11 restricts this to the
CML patiens.

Each five combination predicts reasonably well. More covariates typically mean more
extreme behaviour compared to others: they are sometimes the best among the five,
sometimes the worst, even falling below the reference without covariates. This behaviour
indicates slight overfitting with too many parameters.

However, starting from the simplest, (C) is always better than the reference, such as
(C,DP). These two are the most robust combinations of variables to describe the effect
of genetic variation in our data.

If one has to choose only one, then (C,DP) seems to be the best compromise between
good fit on training set, small number of covariates, and reasonable predictive power on
the test set.
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Figure 11: Log-likelihood landscape on the test set for all DPB1 typed CML patients, for both mixture
models and partitions P1 and P2: histograms of the 63 log-likelihood values for the test set using
mismatch counts and parameter values from the training. Coloured blobs represent the value for the
combinations (B,C,DR,DP)—green, (B,C,DP)—dark blue, (B,C)—yellow, (C,DP)—light blue, (C)—
magenta. Log-likelihood of the prediction without mismatch covariates is in red for reference.

A LRT shows that the inclusion of the C or the (C,DP) covariates brings significant
improvement over the basic model. The p-values for the training set of the patients who
were DPB1 typed are 0.00013 for C, 0.00007 for (C,DP). For the training set of DPB1
typed CML patients these values are 0.0016 and 0.0008, respectively. (All these numbers
are the worst cases among the four different cases: two distributions, two partitions.)

The CML population is a very large subset of the whole population; it is not sur-
prising that we get similar results on both sets. Therefore it would be very interesting
to carry out these tests for ALL and AML patients with more attention to good penalty
schemes.
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7 Discussion and directions for future research

Our final model was a competing risk censoring model where census time and survival
time are independent random variables, time-to-census has a distribution with an in-
creasing linear hazard, and survival time is drawn from a mixture of an early log-normal
and a late log-normal or exponential failure distribution. For each patient–donor pair the
affine combination of the number of allelic mismatches at each locus gives the probability
that the patient will die from an early failure through a logistic model.

Variable selection analyses repeated for different partitions to training and test data,
and for the two slightly different probabilistic models, indicate that HLA-C is the most
important genetic determinant of survival time after a hematopoietic cell transplant in
the studied patient population.

Surprisingly, the second most important gene seems to be HLA-DPB1 (barring HLA-
B, which is correlated with HLA-C both in the human genome and in their effect on
HCT success).

Our results did not give a strong case for the importance of HLA-A or -DRB1
matching, but this is probably explained by bias in the data (Table 3). Hence we do not
claim these loci are not important, but rather we say that HLA-DPB1 should get more
attention from the scientific community. Figure 3 of Section 4.1 also supports our claim.
As we have already expressed, given more time, this should be investigated with more
rigour.

Similarly, the ALL and AML populations in the variable selection analysis should
get attention once again.

At this low level of complexity one should not see any of these models as ends in
themselves. Their predictive power is not good enough to rely on them on a case-by-case
basis, but one should rather focus on the genes that were picked up by these models.

In correspondence with our finding, Greinix et al. (2004) cite five papers by four
research groups which found that HLA-C exerts significant effect on graft failure and
survival11.

The NMDP’s recommendations also include the matching of patient and donor HLA-
C types, but they do not require matching HLA-DPB1 types.29

Continuing our investigations is particularly important because the negative effect
of HLA-DPB1 disparities on survival after HCT (if there really is one) is overlooked.

7.1 Assessment of bias caused by differing mismatch distributions
among HLA loci

The effects of the bias caused by the differences between the distribution of mismatch
counts at different loci in our data could be investigated by simulation.

Assuming our mixture model (either the log-normal/log-normal or the log-normal/
exponential), setting its parameters and the β0 coefficient to values borrowed from our
model fits, and setting all other βr coefficients equal to each other (to simulate a hy-
pothesis that all considered HLA loci have the same effect on survival time), we could
generate survival (and census) times for patients based on the actual mismatch counts,
either by bootstrapping or taking all patient–donor pairs’ mismatch counts. Now, using
these simulated event times and event types (census or death) we could do the usual

32



variable selection loop through the 63 possibilities and see which variables are picked
most often as the ones which describe the individual variability best.

If HLA-C and -DPB1 are picked up among the most significant contributors much
more frequently than they were in our investigations, it would suggest that the bias in
mismatch counts in the data had much distortive effect on our findings. Consequently,
although C and DPB1 may be important in determining transplant outcome, they would
appear less important than A, B or DRB1 in the light of previous studies11,13.

On the other hand, if C and DPB1 are chosen less frequently or with about the same
frequency as they were in our previous variable selection loops, then it would suggest
that C and DPB1 are as important factors as A, B or DRB1. According to the literature
this latter case seems unlikely.11,13

A serious drawback of such a simulation would be the difficulty of interpreting its
results, and the quantification of the effects caused by the bias in the mismatch distri-
butions.

7.2 Future research

A much more complex study could be carried out by building our mismatch notion
on amino acid sequences instead of allelic types. Much insight might be gained from
comparing similarities and differences of proteins, even across genes, in understanding
averse effects between graft and host. Our knowledge about the linkage disequilibrium
pattern in the MHC region7 could be used to search for potential further determinants
of transplant success which are hidden between the typed HLA genes.

From a methodological point of view, future statistical investigations should be pref-
erentially done in the Bayesian framework.

A most ambitious target would be the detailed mathematical modelling of the com-
plex host–leukæmia–graft system4,8, probably in a differential equations framework. Our
current understanding of the underlying processes is insufficient to carry out such a ven-
ture, but modelling always helps to understand what is exactly what we do not know
about a complex biological system yet.
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A Abbreviations

A list of common abbreviations of the field of this study is presented for reference.

AA Aplastic anemia

AL Acute biphenotypic leukæmia

ALL Acute lymphoblastic leukæmia (Acute lymphoid leukæmia, Acute lymphoblastic
anemia)

AML Acute myelogenous leukæmia

BMT Bone marrow transplantation, often more broadly includes cord blood transplan-
tation

CLL Chronic lymphocytic leukæmia

CML Chronic myelogenous leukæmia

GVHD Graft-versus-host disease

HCT Hematopoietic cell transplantation

HLA Human leukocyte antigen

HSC Hematopoietic stem cell

HSCT Hematopoietic stem cell transplantation

MDS Myelodysplastic syndromes

MHC Major histocompatibility complex

MM Multiple myeloma

MOF Multiorgan failure

MPS-I Mucopolysaccharidosis I, Hurler’s Syndrome

NHL Non-Hodgkin’s lymphoma

PBSC Peripheral blood stem cells

SAA Severe aplastic anemia

TRM Transplant-related mortality

UCB Umbilical cord blood

UCBT Umbilical cord blood transplantation

URD Unrelated donors
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B Methods

All calculations and graph plotting were done using the R statistical software package
(version 2.5.1). The built-in optim function with the Nelder–Mead method was used to
maximise log-likelihoods.
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