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Abstract

This work contributes to theoretically optimal experiment design for the dis-
crimination of two structurally different ordinary differential equation models of the
same systems biological phenomenon that fit a set of experimental data equally well.
Optimal experiment here means the external stimulus profile which gives the max-
imal achievable difference between outputs of the two models in L2-norm, in other
words, the two models’ predictions of measured values are as different as possible.
Such experiments can then be used for model invalidation.

Linear model approximations are studied in the theoretical part. A frequency
domain based solution and a time domain based solution are presented. A numerical
implementation is also considered in which a more rudimentary experiment design
is applied to two models of the slug forming chemotaxis of starving Dictyostelium
amœbæ.

Although more theoretical work is needed until these results can be put to prac-
tical use, the progress is very encouraging, and we expect our methods to lead to
substantial savings of time, working hours and expenses in experimental biology.
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1 Introduction

‘During the past 30 years biology has be-
come a discipline for people who want to
do science without learning mathematics.’

Marvin Cassman et al. (2005)

Mathematical modelling has become an indispensable tool of modern systems bi-
ology. The meaning of understanding molecular biological phenomena, protein interac-
tions, metabolic pathways, or the regulation of gene expression is changing: the commu-
nity is less satisfied with qualitative descriptions, and increasingly searches for quanti-
tative, mathematical descriptions.

Given observed data from experimental measurements, scientists propose hypothet-
ical models that describe the behaviour of a biological system in terms of mathematical
equations. (In this work we investigate solely ordinary differential equation models.) Of
course a newly proposed model will fit the data at hand, bar small deviations that will
have been said to be caused by ‘noise’: external effects, the inherent discrete stochastic
nature of chemical reactions, and inaccuracies of measurements.

Other experiments carried out on the same system will unavoidably lead to new
data, and will potentially inspire the formulation of new models. Consequently, myriads
of models may be proposed to describe the same biological system.

The emergence of new data will certainly lead to the invalidation of some models if
they no longer fit all the data that has been produced. Still, several seemingly equally
good, but structurally different models may explain the data. If they were all intended
to describe the same phenomenon, then all but at most one of them is incorrect.

One cannot ever validate a model. A model can fit all the data we have, it can
be tested against its predictions, but still one can never be sure that it is the correct
model. For validation some evidence would be needed that the model will fit all possible
experimental measurements. This seems impossible: we have no idea how such evidence
could be found.

However, one can prove a hypothetical model incorrect by an appropriate experiment
(if it is incorrect indeed).

Hence the progress of systems biology follows a regular pattern: model identifica-
tion (model fitting) is followed by model discrimination and model invalidation. As the
proposal of new models may continue indefinitely, these steps close into a circle.

A basic form of model invalidation is the comparison of two competing models in
an experiment, when one wishes to reject the incorrect one and (at least temporarily)
accept the other one (which seems correct at the time of the experiment).

Traditionally these experiments are designed using heuristic approaches: experience,
expert knowledge, intuition, or simple analyses (Feng and Rabitz, 2004). As the devel-
opment of new measurement techniques and the conducting of experiments themselves
are often laborious and costly, it is well worth designing them more rigorously, such that
they are most informative, most discriminating.
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In this work we describe an approach to defining and designing optimal experiments,
that is, experiments that are the best (in some mathematically defined but practically
meaningful way) at discriminating between two competing models. The key idea, in a
control theoretical terminology, is to find an input profile which maximises the differ-
ence between the outputs of the two models. This remark immediately shows that our
methods require that the cellular system can be stimulated from outside.

As the reader could have gathered, our approach will be an abstract mathematical
one. We will try to contradict the hidden claim of the introductory quote, and prove
that mathematics can indeed give a lot of insight into biology. We believe that only
mathematical abstraction offers the generality we will be able to develop in this work:
our results apply to various settings, not only to one certain biological system as in a
case study.

The structure of this work is the following. Section 2 gives a quick review of the
related scientific literature. Section 3 gives our definition of optimal experiment. Then
in Section 4 we develop approaches to finding the optimal input profile. All our theo-
retical results are presented in this section. Computer implementation of these results
are considered in Section 5 on a case study. Conclusions are drawn in the final section,
where directions for further investigations are also given (Section 6).
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2 Previous work on optimal experiment design

2.1 Model identification

Model identification is a central topic in experiment design literature. It is concerned
with the question of what experiment is most informative about the model structure.
We do not consider this question in our work which focuses on model discrimination,
thus advise the interested reader to find references in the work by Chen and Asprey
(2003).

Kremling et al. (2004) identified three different problems in (metabolic or genetic)
network identification. Identifiability is concerned with the question whether model pa-
rameters are uniquely determined by the particular model and an input-output exper-
iment. Parameter estimation means the determination of certain parameters such that
the difference between measured and predicted output is minimal. The accuracy of pa-
rameters is usually derived from confidence intervals of the estimated parameters.

The third problem is sometimes also called practical identifiability to emphasise that
identifiability in itself does not necessarily imply that accurate estimates can be gained
from noisy measurements (Gunawan et al., 2006).

The standard method to solve this third problem uses the Fisher information matrix
(FIM). The FIM measures the informativeness of noisy measurement data for estimating
the model parameters. Its inverse provides a lower bound for the variances of parame-
ter estimates (or equivalently, the upper bound for accuracy) through the Cramer-Rao
inequality.

The two most successful FIM-based optimality criteria are called D-optimality and
A-optimality. D-optimality aims to maximise the informativeness of data by maximising
the determinant of the FIM, which corresponds to the volume of the information hyper-
ellipsoid. A-optimal design aims to reduce the hyperellipsoid of uncertainty in parameter
estimates, which is measured by the sum of parameter variances. (Gunawan et al., 2006)

Barrett and Palsson (2006) studied a specific experiment design question: what tran-
scriptional factors one should knock out in an organism such as Escherichia coli to
learn the most of the connections in the transcriptional regulatory network (TRN).
The increased interest in some automation in experiment design in TRN reconstruction
(or generally, biochemical network reconstruction) stems from the recent emergence of
metagenomics and environmental sequencing, which provides unprecedented amount of
raw data about such, so far unknown networks.

After skimming the surface of the model identification problem, we turn to previous
studies looking into the problem of having more than one model. This is the issue we
intend to study in the current work.

2.2 Model discrimination

In a relatively early work Bardsley, Wood, and Melikhova (1996) investigated the prob-
lem how one should space measurements through time to perform an optimal discrimi-
nating experiment. They compared uniform spacing to geometric progression of points in
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time, and to uniform spacing on the y-axis (and whatever time distribution this implies).
Kremling et al. (2004) presented three methods for optimal discriminating experi-

ment design, and compared them on a test example.
Their first method uses the largest possible change in system input. This rudimentary

approach compares the effects of abruptly changing one of several inputs at one time.
The optimal experiment is the one in which the change in one input channel leads to
the largest difference between output functions.

The second method replaces models with their linearised counterparts. It uses a
sinusoid input with a frequency that discriminates the phase shifts of the two models
the most, according to their Bode plots. We will consider very similar approaches in
Section 5.3.

The third one is based on a method developed by Chen and Asprey (2003). It aims
to bring the states of the two models as apart as possible, but in a way that if the mea-
surement error of a state variable is large, then the difference of these states contribute
less to the objective function.

They concluded that no single method can be recommended: the best choice strongly
depends on the circumstances (possibilities to stimulate the system and to make high
quality measurements).

Chen and Asprey (2003) reviewed different approaches to model discrimination be-
fore introducing theirs. The Bayesian approach assigns prior probabilities to each model
(such that they sum to one), and updates these after each experiment. When one prob-
ability becomes sufficiently large compared to others, then the corresponding model is
judged to be the best. A frequentist approach and a dynamic discrimination problem
are also discussed.

These methods are aimed at inferring the most from noisy measurements. Our inves-
tigation follows a slightly different direction. Our models are deterministic, that is, we
do not take account of measurement noise directly. Instead, we try to make the outputs
of the two models as different as possible to ensure that even a noisy measurement has
a good chance of discriminating between them.
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3 A control theoretical definition of optimal experiment

3.1 The control theory framework

Systems and control theory is an interesting and challenging application driven field of
mathematics, which builds on various other areas, including linear algebra, functional
analysis, complex analysis, Fourier integrals and ordinary differential equations (ODEs).

Control theory looks at systems as a triple of functions: the state of the system,
the input and the output. All of them are functions of time, and are dependent on one
another.

Throughout this work we assume continuous time (as opposed to discrete time), and
a fixed starting point (we do not allow the input function to be non-zero before this
starting time). We label the starting point with 0. The notation for the three functions
are

u : [0, ∞[ → Rq for the input,
x : [0, ∞[ → Rn for the state, and
y : [0, ∞[ → Rp for the output.

For each t we write the values as column vectors.
In our investigations the abstract mathematical notion system is the model of the

biological system, and the coordinates of the state function are some of the quantitative
characteristics of the biological system. The output function represents the measure-
ments the experimentalist would carry out. The stimuli or perturbations the experimen-
talist can introduce to the system during the experiment (e.g. influxes of nutrients) are
modelled by the input function.

The relations of these three functions are typically described by systems of ODEs,
which is in correspondence with many biological models.

In our simplest case these ODEs are time invariant linear systems, that is, for some
matrices A ∈ Rn×n, B ∈ Rn×q and C ∈ Rp×n,

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t).

(1)

For mathematical simplicity we assume that the input does not affect the output
directly through the usual +Du(t) term (y∗(t) = Cx(t) + Du(t)), because even if this
was the case in reality, such a measurement would inform us about y: with known u
and D,

y(t) = Cx(t) = y∗(t)−Du(t)

can easily be determined. The argument in other words is that even if the input influx
contains the same chemical agents that are measured as output, we can subtract the
known input from the measurement so we can infer the actual system output.
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We will need the 2-norm (or L2([0,∞[)-norm) of functions u and y which is defined
as the square root of the square integrals of Euclidean lengths of function values:

‖u‖2 =
(∫ ∞

0

q∑
i=1

ui(t)2 dt
) 1

2

,

‖y‖2 =
(∫ ∞

0

p∑
i=1

yi(t)2 dt
) 1

2

.

3.2 A definition of optimal experiment

The competing model discrimination problem can be formulated in the following way. We
have two system descriptions (the two models), the first one with matrices A1 ∈ Rn1×n1 ,
B1 ∈ Rn1×q and C1 ∈ Rp×n1 , the other one with A2 ∈ Rn2×n2 , B2 ∈ Rn2×q and
C2 ∈ Rp×n2 :

ẋ1(t) = A1x1(t) +B1u(t), x1(0) = 0,
y1(t) = C1x1(t),

and

ẋ2(t) = A2x2(t) +B2u(t), x2(0) = 0,
y2(t) = C2x2(t).

Most importantly, since we have only one experimental setup in reality, the input u is
identical in the two systems. Coordinates of the output are the experimental measure-
ments.

We assume that both A1 and A2 matrices are Hurwitz, that is, all their eigenvalues
have negative real part, hence they define asymptotically stable systems.

Note that in biological applications one typically cannot assume linearity; biological
systems are usually described by nonlinear ODEs. Keeping this in mind, we will treat
the linear model as an entry level to the really relevant nonlinear case.

Optimality of the experiment is defined by the criterion of greatest achievable dif-
ference between the outputs y1 and y2. More precisely, we assume that the two systems
have a common steady state. In the linear case this always hold with the steady state
zero. We aim to maximise the difference of y1 and y2 in 2-norm (‖y1 − y2‖2) over the
set of inputs u with some positive, fixed 2-norm. One can simply assume ‖u‖2 = 1 by
appropriate scaling.

The rationale behind this definition is that we assume measurements can be made
periodically during the experiment thus they yield a measurement curve by interpolation.

Our aim will be to derive a method to find such an optimal u input function given
the two system descriptions.

Experiments can only be done on a bounded time horizon, so u should ideally have
compact support, but we sometimes ease this requirement, and only require that u is
‘very small’ after a positive time bound.
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Our assumption of identical steady states incorporates that we do not intend to
observe differences between the two potential descriptions on the long run, after they
have reached their respective (in the nonlinear case potentially new, and different) steady
states, but during the transient period before their return to the common steady state.

An important observation is that one can fuse the two alternative models to get one
system of the form (1), of which the state is the concatenation of x1 and x2, the input
is the common input, and the output is the difference of the two outputs:

x =
(
x1

x2

)
, A =

[
A1 0
0 A2

]
, B =

[
B1

B2

]
, C = [C1 − C2]. (2)

Trivially, if A1 and A2 are Hurwitz matrices, so is A.
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4 Theoretical results

We start our investigations with two simpler problems. First, we discuss optimal input
for discrete time linear systems. Then we move on to continuous time, but initially will
only look for optimal initial state with zero input. The second one is a good starting
point from a theoretical viewpoint, however one has to be aware that it is not easily
applicable in practice.

4.1 Optimal input for discrete time linear systems

Discrete time description can be used as an approximation to continuous time models. It
is in standard textbooks how one can rewrite a continuous time linear system in discrete
time. For example, the work by Franklin, Powell, and Emami-Naeini (1994) explains
this technique (p 634).

The linear system in discrete time takes the form

x(k + 1) = Ax(k) +Bu(k), x(0) = 0,
y(k) = Cx(k),

(3)

with the hidden internal structure given by (2). Here the output can be explicitly written
down as a function of the input: for any positive integer N ,

y(N)
y(N − 1)

...
y(2)
y(1)

 =


CB CAB . . . CAN−2B CAN−1B

CB CAN−2B
. . .

...
CB CAB

0 CB




u(N − 1)
u(N − 2)

...
u(1)
u(0)

 ,

or
y = Gu

for short (here we do not indicate dependency on N). The optimal input problem has to
be formulated on a finite time horizon, and it becomes a finite dimensional optimisation
problem,

max
u

yT y,

uTu = 1,

and obviously,
yT y = uTGTGu.

It will turn out that finding the optimal initial state in continuous time involves a
very similar optimisation. It will be shown in the forthcoming section how this optimum
can be found, therefore we spare the discussion here.
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4.2 Optimal initial state

Now we wish to find the best common initial state for the two systems, that is the one
which differentiates the outputs of the two models as much as possible in case of zero
input (u = 0).

This is rather straightforward using standard theory (see e.g. Dullerud and Paganini
(2000)). We use the formulation of (2): for some x0 ∈ Rn initial value

ẋ(t) = Ax(t), x(0) =
(
x0

x0

)
y(t) = Cx(t).

(4)

Here we have to assume that the sizes of A1 and A2, and C1 and C2 are equal.
One defines the observability gramian of (C,A) by

Yo :=
∫ ∞

0
eA

T τCTCeAτ dτ.

It is almost trivial that Yo is positive semi-definite, and the 2-norm of the output y
(the so-called energy) is given by

‖y‖22 =
(
x0

x0

)T
Yo

(
x0

x0

)
.

Hermitian complex (or symmetric real) matrices can be diagonalised with base trans-
formations with unitary (respectively, orthogonal) matrices. The diagonalisation paves
the way to the definition of the square root of such matrices.

Now let us consider the observability ellipsoid

E :=
{
Y

1
2
o

(
x0

x0

) ∣∣∣∣ x0 ∈ Rn, |x0| = 1
}
.

Since Yo is positive semi-definite, this set is an ellipsoid indeed. Let

µ1 ≥ µ2 ≥ · · · ≥ µ2n ≥ 0

be the eigenvalues of Y
1
2
o , and

v1, v2, . . . , v2n

be their corresponding unit-length eigenvectors. Then the vi give the directions of the
principal axes of the ellipsoid, and the µi the length of each axis.

Ideally, the eigenvector corresponding to the biggest non-zero eigenvalue (v1) would
give the optimal initial state. In our case we have to restrict the observability ellipsoid E
to the n-dimensional subspace {

(
y
y

)
| y ∈ Rn}, which restriction gives an ellipsoid again.

Although we do not give further details, this idea can be followed to derive the
solution (Papachristodoulou and El-Samad, 2007).

Finding the optimal initial state is an incomparably easier task than finding the
optimal input. This optimisation is done over Rn, while the input problem requires
optimisation over an infinite dimensional function space.
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4.3 Optimal input for linear systems based on frequency domain
investigations

It is now time to turn to our main concern, finding the input which maximises

‖y‖L2([0,∞[)

‖u‖L2([0,∞[)
,

for the system outlined in (2). (Note that the results of this section apply to any system
of form (1).)

This is the system gain (more specifically, the 2-norm/2-norm system gain) which is
defined by

sup
{
‖y‖2

∣∣∣ ‖u‖2 ≤ 1
}

= sup
{
‖y‖2

∣∣∣ ‖u‖2 = 1
}
.

For this section, where we build on frequency domain characterisation, we assume
that systems are single-input/single-output type (q = 1, p = 1).

From a state space description one goes to the frequency domain by taking the
Laplace transform of the state, input and output functions: for a function f in the time
domain its Laplace transform is

f̂(s) =
∫ ∞

0
f(t)e−st dt.

If x(0) = 0, for the transformed functions the input-output relationship becomes

ŷ(s) = Ĝ(s)û(s),

where
Ĝ(s) = C(sI −A)−1B

is called the transfer function of the system. (Doyle, Francis, and Tannenbaum (1990),
Dullerud and Paganini (2000))

The ∞-norm of the transfer function Ĝ is defined by

‖Ĝ‖∞ := sup
ω∈R
|Ĝ(iω)|,

where i ∈ C is the imaginary unit.
The Bode magnitude plot is the standard tool to visualise the function ω 7→ |Ĝ(iω)|.

In the most common form it uses decibel units on the y-axis, hence its definition is

ω 7→ 20 log10 |Ĝ(iω)| = 20 log10 |C(iωI −A)−1B|

for each ω ∈ R.
A related definition is the Bode phase plot, which plots the argument of the complex

number Ĝ(iω) as a function of ω ∈ R. This is the phase-shift between input and output.
The Bode plot is the pair of the Bode magnitude and phase plots. The x-axis is

usually logarithmical in both plots.
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The importance of this is that the system gain is the∞-norm of the transfer function:

sup
{
‖y‖2

∣∣∣ ‖u‖2 = 1
}

= ‖Ĝ‖∞.

The proof can be found in Doyle et al. (1990).
They also give the Laplace transform of an input function for which ‖y‖2/‖u‖2

arbitrarily approximates the maximum: if ω0 ∈ R maximises |Ĝ(iω)|, that is,

‖Ĝ‖∞ = |Ĝ(iω0)|,

then for ω ∈ R and an appropriately small ε > 0,

û(iω) :=
{ √

π/2ε, if |ω − ω0| < ε or |ω − (−ω0)| < ε,
0, otherwise,

is the sought input function in the frequency domain.1

By taking the inverse, the Fourier transform of û one can calculate the corresponding
time domain form of this almost optimal input: with A normalising constant

u(t) =
A

t
cos(ω0t) sin(εt). (5)

If ε � ω0, then this formula gives a cosine wave (cos(ω0t)) which is multiplied by a
sinc = sin/id function whose main role is to ensure the 2-norm is finite by making the
amplitude of the cosine wave tiny outside a zero-centred interval (Figure 1).

Figure 1: A plot of the almost optimal input u and the x-axis. The solid black areas are filled with the
very high frequency cosine wave.

There are obvious problems with this input: ) the frequency might be too high to be
implemented in an experimental setting, ) negative input values might be meaningless

1The real optimal solution would be the mean of two Dirac-deltas at ±ω0, but this would give a
cosine wave of which the 2-norm is infinity, what we do not allow.
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in reality, ) the support of the input function is the whole real line (the function is
even).

Without the genuine biological systems at hand we do not know whether any of the
first two problems arises. We cannot tell how dense the cosine wave is. On a practically
reasonable time span one may need to finish the input at a time within the support of
the central black patch. Even the dense wave might not be felt, but the input could seem
to be a roughly constant function (the cosine in a very small neighbourhood of zero).

There are mathematical results which can help with the third problem. Theorem 4.3.1
would ensure that the input is zero in the past, while Theorem 4.3.2 would provide an
input with compact support. A version of the first theorem is included in Dullerud
and Paganini (2000), but one rather finds these theorems in standard complex analysis
textbooks (e.g. Halász (2001)). (The original work is R. Paley and N. Wiener. Fourier
Transforms in the Complex Domain. Amer. Math. Soc., New York, 1934.)

Theorem 4.3.1. If Φ is holomorphic in the right open complex half plane, and there
exists some M > 0 such that for all σ > 0∫ +∞

−∞
|Φ(σ + it)|2 dt ≤M,

then there exists an f ∈ L2(R), for which f(x) = 0 if x < 0 almost everywhere, and

Φ(s) =
∫ ∞

0
e−sxf(x) dx.

Theorem 4.3.2 (Paley–Wiener). Assume that there exists some A > 0 and ∆ > 0 such
that for a Φ entire function

|Φ(s)| ≤ Ae∆|s|

holds. Then there exists an f ∈ L2(R), for which f(x) = 0 if |x| > ∆ almost everywhere,
and

Φ(s) =
∫ ∆

−∆
esxf(x) dx.

These theorems give directions how one should construct a holomorphic input func-
tion û in the frequency domain which has strong peaks at ±iω0, thus approximates the
optimal input well. If ‖Ĝ‖∞ < ∞, then the multiplication of û by Ĝ is a continuous
operator in L2, so inputs that are close in L2-norm to the optimal input in the frequency
domain will be mapped to outputs that are close in L2-norm to the optimal output in
the frequency domain. As the Fourier transform is continuous in L2 (even isometric,
if appropriately normalised), an output which is close in the L2 sense to the optimal
output in the frequency domain will be close to the optimal output in the time domain,
too. We did not pursue this direction any further because of the apparent numerical
difficulties.

The ∞-norm of the transfer function Ĝ can be computed by a search procedure
based on its definition, or based on the following theorem (Doyle et al., 1990).
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Theorem 4.3.3. For a γ > 0,
‖Ĝ‖∞ < γ

if and only if

Hγ :=
[

A 1
γ2BB

T

−CTC −AT

]
has no eigenvalues on the imaginary axis.

We implemented the latter search method in Matlab, but the built-in norm(G,inf)
routine proved superior: it was faster and numerically more stable than our script.

In the next section the KYP Lemma will give a third alternative way of comput-
ing ‖Ĝ‖∞.

4.4 A bridge between frequency and time domain characterisations

A linear matrix inequality (LMI) in the variable X is an inequality of the form F (X) < Q
(in the usual definiteness sense), where X is a real matrix, F is a linear (or affine) map-
ping to the set of symmetric matrices (or to the real vector space of complex Hermitian
matrices), and Q is a symmetric or Hermitian matrix.

Their importance stems from two facts: many problems can be reduced to LMIs, and
they can be solved efficiently with semidefinite programming.

The seminal KYP Lemma made a link between system descriptions in the frequency
and time domains. The following version is proved in e.g. Dullerud and Paganini (2000).
The proof uses the deepest relationships of linear systems theory: the dissipation of
storage functions, Hamiltonian matrices and Riccati equations.

Lemma 4.4.1 (Kalman–Yakubovich–Popov). If Ĝ(s) = C(sI − A)−1B, then the fol-
lowing are equivalent conditions.

(I) The matrix A is Hurwitz and
‖Ĝ‖∞ < γ.

(II) There exists a matrix X > 0 such that[
ATX +XA+ CTC 1

γXB
1
γB

TX −I

]
< 0.

We mention that the applications of this fundamental result go far beyond the com-
putation of ‖Ĝ‖∞.

In the next section we reformulate the optimal discriminating experiment problem
as an optimal control problem in order to use this developed theory.
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4.5 Optimal experiment as an optimal control problem

As we have just suggested we now formulate our optimal experiment problem in the
well-known LQ framework (l inear state equation, quadratic cost functional). With x, A,
B and C given in the usual way by our competing models in (2), the problem is

max
u

∫ ∞
0

yT (t)y(t) dt,

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t), (6)
x(0) = 0,∫ ∞

0
uT (t)u(t) dt = 1.

Our cost functional to be minimised is

J :=
1
2

∫ ∞
0
−yT (t)y(t) dt

in the standard formulation (see e.g. Bryson and Ho (1975)). We impose no penalty on
the limiting state lim∞ x (or indeed on any of the states).

By adjoining the system ODEs and the constraint on the input to J , it becomes

J̄ =
∫ ∞

0
−1

2
yT (t)y(t) + λT (t)

(
Ax(t) +Bu(t)− ẋ(t)

)
dt+

λ0

2

(∫ ∞
0

uT (t)u(t) dt− 1
)

=
∫ ∞

0
−1

2
yT (t)y(t) + λT (t)

(
Ax(t) +Bu(t)− ẋ(t)

)
+
λ0

2
uT (t)u(t) dt− λ0

2
,

with some λ : [0,∞[→ Rn continuously differentiable function and λ0 > 0 scalar. Now
the corresponding Hamiltonian is

H(x(t), u(t), λ(t), λ0, t) = −1
2
yT (t)y(t) + λT (t)

(
Ax(t) +Bu(t)

)
+
λ0

2
uT (t)u(t).

For optimality the Euler-Lagrange equations must hold:

λ̇T = −∂xH,
lim
∞
λ = 0,

∂uH = 0,

which in our case means

λ̇ = CTCx−ATλ,
lim
∞
λ = 0,

BTλ+ λ0u = 0.
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From the last one we get the optimal input as a function of λ:

u = − 1
λ0
BTλ.

The constraint ‖u‖2 = 1 yields the value of λ0 once we have λ:

λ0
2 =

∫ ∞
0

λT (t)BBTλ(t) dt.

At the end we have this system of ODEs to solve:(
ẋ

λ̇

)
=
[

A − 1
λ0
BBT

CTC −AT
](

x
λ

)
,

x(0) = 0,
lim∞ λ = 0.

(7)

We could have derived the same following a slightly different way. One may say they
want to maximise ‖y‖2 and minimise ‖u‖2 simultaneously: with an appropriate λ0 > 0
scaling factor let J be

J :=
1
2

∫ ∞
0
−yT (t)y(t) + λ0u

T (t)u(t) dt.

Then

J̄ =
∫ ∞

0
−1

2
yT (t)y(t) +

λ0

2
uT (t)u(t) + λT (t)

(
Ax(t) +Bu(t)− ẋ(t)

)
dt,

which is the same J̄ what we had previously, apart from the missing constant term at
the end.

The system (7) is not easy to solve even numerically, because it has boundary con-
ditions at the initial point for half of the coordinates, and at the end for the other half.
Moreover, we do not know the value of λ0 in the system matrix beforehand.

One can use a trial and error (so-called shooting) algorithm with some λ(0) values,
which are then iteratively updated according to the resulting lim∞ λ. (We shoot from
λ(0), and adjust after each shot until we manage to hit lim∞ λ = 0.) Unfortunately the
value of λ0 is unknown in (7) beforehand. (We may have merely missed to note a detail
which would tell us the value.) Therefore a further search among different λ0 values is
also needed in the solver algorithm.

We remark that the similarity between the matrices Hγ of Theorem 4.3.3 and the
one in (7) is apparent.

If γ2 = λ0, then the eigenvalues of the two matrices are identical. Simply consider
that under this assumption a change of basis (which conserves the spectrum) with trans-
formation matrix [

I 0
0 −I

]
transforms one matrix into the other.

In addition to its applicability in the linear case, the optimisation framework has
further strengths.
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First, this is the obvious way to follow in the nonlinear case. No doubt the algebra
and the algorithmic implementation will become more difficult compared to the linear
case, but there is no theoretical obstacle to progression.

Second, the optimisation framework gives means to incorporate additional limita-
tions, such as constraints on the input function, into the experiment design. For instance,
we understand that demanding a sinusoid input may be unrealistic in a laboratory set-
ting, and experimentalists may want to find the optimal input from a smaller input
function space. If such constraints can be expressed in an appropriate mathematical
formulation, then they can be added to the optimisation criteria.
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5 Applications

To illustrate our methods with applications, two biological systems were considered.

5.1 A biochemical engineering application

The first one is from Kremling et al. (2004), and is an invented bioreactor where some
organism grows in a well-mixed chemostat.

This benchmark problem seemed very attractive at the beginning, partly because
its authors developed an online simulation environment for it, where users can specify
a piecewise constant input profile and see how good it is at discriminating between the
two proposed models.

However, as it turned out — unfortunately relatively late — this pair of models
has serious drawbacks as an example. The most prominent is that the two models have
different steady states, so they violate one of our starting assumptions. This does not
mean that we cannot differentiate between them. On the contrary, it is easier than what
we assumed in our theoretical work.

Although this system will not be cited in the section on numerical simulations, we
introduce it in order to give one more example of the type of systems we are interested
in.

Inputs of this system are flow rates qin and qout, and feed concentration cin. Typically
the volume is held constant, so qin = qout.

State variables are concentrations of biomass B, substrate S and intracellular concen-
trations of metabolites M1, M2 and M3. Metabolite 1 is the first substance synthesised
after uptake, with a Michaelis–Menten mechanism. Metabolite 3 acts as an enzyme
(hence we will call it E instead of M3), and converts Metabolite 1 to Metabolite 2 irre-
versibly. Metabolite 2 degrades under the Michaelis–Menten reaction law. It is assumed
that the flux from Metabolite 2 is responsible for the entire biomass.

Both proposed models of the biochemical network include dilution of intracellular
components by growth rate µ = YXS r1max S / (KS + S).

Under Model A the conversion of Metabolite 1 to 2 is given by noncompetitive
inhibition of the enzyme by Metabolite 2. Enzyme synthesis is supposed to proceed
with a constant velocity.

Ḃ = µB − qin

V
B,

Ṡ = −r1max
S

KS + S
mw B + qincin − qinS,

Ṁ1 = r1max
S

KS + S
− k2AE

M1

KM1 +M1

KIA

KIA +M2
− µM1,

Ṁ2 = k2AE
M1

KM1 +M1

KIA

KIA +M2
− r3max

M2

KM2 +M2
− µM2,

Ė = ksynmaxA − µE.

19



In Model B the enzyme behaviour is different. Here the enzymatic conversion of
Metabolite 1 follows a Michaelis–Menten kinetic rate law. For the enzyme synthesis, a
formal kinetic rate law representing an inhibition is used. The equations for Ḃ and Ṡ
are the same, but the other three change:

Ṁ1 = r1max
S

KS + S
− k2BE

M1

KM1 +M1
− µM1,

Ṁ2 = k2AE
M1

KM1 +M1
− r3max

M2

KM2 +M2
− µM2,

Ė = ksynmaxB
KIB

KIB +M2
− µE.

We do not detail any further what the different parameters mean, because with this
example we only intended to give a flavour of a pair of competing biochemical ODE
models.

As we have already mentioned, in this example model discrimination can be based
on the difference of steady states. If one measures a state of which the values in the
two models differ at equilibrium, then without any stimulation (that is, with zero input)
arbitrarily big difference of outputs in L2-norm is achievable on a finite time horizon. So
even if the steady states are close to each other, with fine enough measuring techniques
and multiple sampling one can differentiate between the models.

5.2 Chemotaxis of starving Dictyostelium discoideum

The example of Papachristodoulou and El-Samad (2007) is based on the chemotactic
social amœba Dictyostelium discoideum. Under starvation these amœbæ secrete cAMP,
thus attract other Dictyostelium amœbæ to aggregate and form a multicellular slug, then
a fruiting body. This then produces spores, that is, inactive cells, capable of starting
their lives when food is abundant again.

The authors compared two models of the adaptation mechanism observed when
amœbæ encounter a step function input of chemoattractant cAMP. Both proposed mod-
els have three variables. (See Figure 2.)

The response regulator is either in active (R∗) or in inactive (R) state. The sum
of these two is a constant: RT = R∗(t) + R(t). The regulator is activated through the
action of enzyme A, and inactivated through the action of enzyme I. In both models Ṙ∗

is given by the equation

Ṙ∗ = −k−r I R∗ + kr AR

= −
(
k−r I + kr A

)
R∗ + kr ART ,

with forward and backward rate constants kr and k−r. (The parameters are given in
Table 1.)

In Model A both enzymes are regulated by an external signal S (the input, starting
from the reference value S(0) = S0), which is proportional to cAMP concentration. With
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Figure 2: Two models of the chemotaxis system of Dictyostelium amœbæ from Papachristodoulou and
El-Samad (2007).

kr = 1 k−r = 1
ka = 3 k−a = 2
ki1 = 1 k−i = 0.1
ki2 = 2/3
S0 = 0.2 RT = 0.7667

Table 1: Parameter values of the two models in Papachristodoulou and El-Samad (2007).

rate constants ka, k−a, k−i and ki1 ,

Ȧ = −k−aA+ ka S,

İ = −k−i I + ki1 S.

In Model B the inhibitory molecule I is activated through the indirect action of
activator A instead of direct activation by ligand binding: with some rate constant ki2 ,

Ȧ = −k−aA+ ka S,

İ = −k−i I + ki2 A.

A step input of chemoattractant triggers a transient response, after which the chemosen-
sory network described by either model returns to its pre-stimulus values (to its steady
state), such as was observed in experiments with Dictyostelium.

In this example both models have the same steady state.
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5.3 Numerical simulations

Two different numerical solutions were developed and implemented in the programming
environment Matlab using the Simulink package.

As all our theoretical work was concerned with linear systems, both numerical meth-
ods will approximate nonlinear systems with their numerical linearisations around their
steady states, which are chosen as initial states.

The main problem with linearisation is that its accuracy degrades as the system
evolves and departs from the state around which the linearisation was done. Two po-
tential solutions can be easily proposed.

First, to keep the system close to its steady state by applying low energy input.
Although this will result in low energy output, the gain (the ratio of the two energies)
will not necessarily be much smaller than the nonlinear system gain.

Second, as the two systems evolve, if they are too far from their initial states, then
to linearise them again around the points where they are. And to do this repeatedly.

Our most refined solution was derived in Section 4.5, namely the ODE given in (7).
As it was pointed out there, this ODE can be solved by a shooting method, but imple-
menting it would have probably taken too long, and was not sensible under the given
time constraints.

We rewrote the systems of Papachristodoulou and El-Samad (2007) to single-input/
single-output form to adhere to the format which was assumed during our earlier inves-
tigations. This only means the assumption that only one input function is allowed to
be changed, the others (if there are any) have to be kept constant. The other change is
that only one state variable could be measured (and it could be measured directly).

Figure 3: Bode plot of the linearised difference system of the two models with output R∗ from Pa-
pachristodoulou and El-Samad (2007). The shape of the Bode plot for output I is very similar, but
magnitudes are bigger.
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The first program which we implemented applies an input which can be chosen from
a number of options, such as constant, cosine, cosine with exponential decay, sinc, or the
function given by Equation (5) of Section 4.3. Where needed, the frequency is determined
by finding the frequency corresponding to the maximum amplification using the Bode
magnitude plot of the linearised difference system of the two models (Figure 3). This
input is fed to the systems between time zero and a user-defined future time, then zero
input is applied until the end of the simulation to allow the two systems to return to
steady state. The amplitude is defined only after the shape and time span of the input
has been fixed, to give ‖u‖2 = 1 (or some fixed small value).2 This program linearises
the nonlinear difference system to find the optimal frequency only once at the beginning.

Table 2 shows gains for different input functions, input energies and output variables.

‖u‖2 = 1 R∗ I

Cosine or (5) 0.0216 0.473
Sinc 0.0191 0.451
Cosine w. exp. decay 0.0214 0.452
Constant 0.0070 0.197
‖u‖2 = 0.01 R∗ I

Cosine or (5) 0.0208 0.484
Sinc 0.0195 0.457
Cosine w. exp. decay 0.0193 0.456
Constant 0.0085 0.198

Table 2: Numerical estimates of maxu ‖y1 − y2‖2/‖u‖2 with different input profiles for the models
of Papachristodoulou and El-Samad (2007). Here maximisation is over different frequencies, for inputs
where frequency makes sense. The first table shows values for ‖u‖2 = 1, the second for ‖u‖2 = 0.01. In
the first column the output variable is R∗, while in the second column it is I. (A values are always equal
for the two models.) Input is fed between 0 and 60 time units, the whole simulation time spans 180 time
units. At the steady state ‖Ĝ‖∞ = 0.0204 for output R∗, and ‖Ĝ‖∞ = 0.476 for output I. (Ĝ is the
transfer function of the linearised difference system.)

One can notice that the cosine input gives the same gains as the function (5) of
Section 4.3. This is easily explained by the fact that they were almost the same: with
very small ε one can hardly distinguish (5) from cosine in the [0, 60] interval, because
in this case the interval lies well within the central black patch of Figure 1.

The table clearly shows that the cosine (or (5)) input is far superior to a constant
input, and is somewhat better than the sinc or the exponentially decaying cosine input.

One can also see that the linear system gain can be closely approximated by ‖y1 −
y2‖2/‖u‖2, and sometimes it can even be surpassed as an effect of steering the systems
to a region where the linear approximation is no longer accurate enough.

Figure 4 compares differences between state variables with output R∗. (Note that
discriminating between the two models based on output I is much easier.) In the first

2The input L2-norm ‖u‖2 is defined as the L2-distance from a constant input with the reference
value S0.
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plot the input between 0 and 60 time units is a constant function, in the second one it is
cosine. The cosine input yields a visibly bigger difference between R∗ values of the two
models. One has to note that one measurement may not be enough to the discrimination,
but a series of measurements is needed. This is in correspondence with the founding of
our definition of optimality on L2-distance.

Figure 4: Differences between state variables of the two competing models applying constant input
(left) or cosine input (right) until time 60 (states of Model A minus states of Model B). Here the output
variable (on which the choice of frequency depends) is R∗, and ‖u‖2 = 1.

In the introductory Section 2.2 we have already mentioned the work of Kremling et al.
(2004), who (among other methods) used the algorithm that we call here first program.
Both our and their methods use the Bode plots. The only difference between the two
is that when they maximise difference between phase shifts, we maximise difference
between gains. We think that our choice is more sensible, because measuring differences
between gains is easier than between phase shifts.

The second program has all the features of the first one except that there is no
choice of input profile. This second program linearises the systems around where they
are sequentially, that is, every time they leave a user-specified spherical neighbourhood
of the point around which the last linearisation happened.

After each linearisation the optimal frequency is determined again by the maximum
amplification according to the Bode magnitude plot.

In the implemented code a cosine wave input is fed starting from phase zero, with
the amplitude that gives unit energy input if this input is kept until the end and no
further linearisations happen. When there is a new linearisation, a new cosine is started
with phase zero and with the amplitude that will give unit total input energy if no new
linearisations happen.

This method results in a broken input profile (Figure 5), where jumps often occur
more frequently than what the wavelength is. These inputs give far inferior gains than
the first program, which linearises only at the beginning (Table 3).
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Figure 5: Input profile generated by the second program, and the respective phase of the cosine. Vertical
lines mark linearisations, where the input function is modified. Here ‖u‖2 = 1, the output variable is
I, and square distance threshold for new linearisation between current state and state around which
linearisation was done is 0.1.

As the remaining input energy is consumed, the remaining time is also decreasing, but
still the amplitude of the input decreases at each linearisation. (This happens because
the cosine wave starts from its maximal value, hence uses more energy per time unit in
the beginning than what the average is for the whole time interval in which the stimulus
is non-zero.)

An enhanced version of the second program saves the previous phase of the input
at each linearisation, and starts the new input with this phase, changing the frequency
and amplitude only (Figure 6). Table 3 shows that this method gives better, but still
dissatisfactory gains.

‖u‖2 = 1 R∗ I

Remembers phase of input 0.0176 0.457
Always starts from phase 0 0.0159 0.410
‖u‖2 = 0.01 R∗ I

Remembers phase of input 0.0178 0.421
Always starts from phase 0 0.0153 0.381

Table 3: Numerical estimates of ‖y1 − y2‖2/‖u‖2 achieved by the second program for the models
of Papachristodoulou and El-Samad (2007). The first table shows values for ‖u‖2 = 1, the second for
‖u‖2 = 0.01. The criterion for new linearisation was that the squared distance between (R∗, A, I) and
the point around which the last linearisation happened reached 0.1 for the first table, and 0.00001 for the
second one. In the first column the output variable is R∗, while in the second column it is I. (A values
are always equal for the two models.) Input is fed between 0 and 60 time units, the whole simulation
time spans 180 time units. At the steady state ‖Ĝ‖∞ = 0.0204 for output R∗, and ‖Ĝ‖∞ = 0.476 for
output I. (Ĝ is the transfer function of the linearised difference system.)
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Figure 6: Input profile and the respective phase of the cosine generated by the enhanced version of
the second program, which saves and reloads pre-linearisation phases. Vertical lines mark linearisations
where the input function is modified. Here ‖u‖2 = 1, the output variable is I, and square distance
threshold for new linearisation between current state and state around which linearisation was done
is 0.1.

It seems probable that low gain is a result of the loss of periodicity of the cosine during
the many new linearisations. The jumps of the discontinuous, broken input profile may
have an effect which acts contrarily to that of the wave, and thus practically annihilate
its beneficial effect.

The second program could be improved upon in at least two ways.
The less important modification would be that linearisations should happen ev-

ery time when the actual linearisation of the system is too far from its last fixed lin-
earised version, instead of when the state is too far from the state around which the
last linearisation happened. So, with temporary but self-explanatory notation, instead
of having a relinearisation criterion for |x(t)− xlast lin.|, one should have a criterion for
‖Ĝt − Ĝlast lin.‖∞.

A more important improvement is expected from keeping the amplitude (and also the
phase) of the cosine input at new linearisations, and only changing its frequency. This
would give a continuous input profile without the problematic jumps. Here the stopping
of the stimulation would be triggered by the input energy reaching the pre-specified
value.
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6 Discussion and directions for future research

As we have discussed, the currently available version of the second program gives results
which are inferior to those of the simpler first program.

If low energy inputs are allowed, then a single linearisation may well be justified.
This gives way to the application of inputs based on frequency domain investigations
(Section 4.3) or on the most refined and sophisticated solution we have developed, the
ODE (7) of Section 4.5. Some pondering is needed how the search for the parameter λ0

could be included in the shooting method.
Sequential linearisation along the trajectory might lead to a good input profile if the

proposed modifications to the second program prove useful.

6.1 The nonlinear case

The treatment of the nonlinear case would be the ultimate task, but this is substantially
more difficult than the linear case. Here we formulate the problem without studying it.
Given more time, the optimal control formulation of Section 4.5 would be the way to
start its investigation.

Let us assume that each system is of the form

ẋ(t) = f(x(t)) + g(x(t))u(t),
y(t) = h(x(t)),

(8)

with functions f and g that ensure the existence of a unique solution. (It is enough that
f is locally Lipschitz, g and h are continuous.) Note that the system is nonlinear in x,
but affine dependency on the input u is assumed.

As one can expect, we define optimal experiment as an input u with ‖u‖2 ≤ 1 which
meets the requirement that for the two models of the form (8), ‖y1 − y2‖2 is maximal.

The problem can be formulated in more detail as follows. Given locally Lipschitz
functions f1 and f2, continuous functions g1, g2, h1 and h2, and a common steady state
x0 ∈ Rn, we are looking for the input function u that solves the following optimisation
problem:

max
u

∫ ∞
0

(
y1(t)− y2(t)

)T(
y1(t)− y2(t)

)
dt,∫ ∞

0
u(t)Tu(t) dt ≤ 1,

ẋ1(t) = f1(x1(t)) + g1(x1(t))u(t),
y1(t) = h1(x1(t)),
ẋ2(t) = f2(x2(t)) + g2(x2(t))u(t),
y2(t) = h2(x2(t)),
x1(0) = x2(0) = x0.

27



6.2 A different problem formulation with the Hankel operator

So far we have been looking at and been stimulating systems from time zero, apply-
ing input and measuring output simultaneously. In fact, one could consider a different
approach, in which input is applied before a fixed time, say 0, no input is applied after-
wards, and output is taken only once this fixed time has passed.

In addition to the state space description one can use the input-output operator
G : L2(]−∞,∞[) → L2(]−∞,∞[), for which y = Gu.

The Hankel operator ΓG : L2(]−∞, 0]) → L2([0,∞[) of G is defined by

ΓG = P+G|L2(]−∞,0]) ,

where P+ : L2(]−∞,∞[) → L2([0,∞[) is the projection by truncation. So the Hankel
operator connects input

u : ]−∞, 0] → Rq

with output
y : [0, ∞[→ Rp.

Equivalently, ΓG = ΨoΨc, where

• Ψc is the controllability operator, which maps u to x(0),

• Ψo is the observability operator, which maps x(0) to y with no input after time 0.

Indeed, as the support of input u is in the past, it only affects future output y through
the state at time 0, x(0).

The introductory results of this theory are about the norm of the Hankel operator,
which marks a good starting point for potential investigations of optimal experiment
design (Dullerud and Paganini, 2000).

6.3 Conclusion

After setting a definition of optimal experiment, this piece of work engaged with the
design problem from multiple directions. The assumptions, for instance on the dimen-
sion of input and output, were sometimes changed in order to enable the derivation of
strongest results.

During the project a new and promising idea formed, the Hankel formulation, which
we could not track down because of the lack of time. This would be an interesting
direction for future research.

The optimal control approach applied to the nonlinear case is worth just as much
consideration. Its flexibility in incorporating constraints makes it a very promising tool
in experiment design.

The mathematical apparatus of our designs may be challenging to biologists, so
often collaborations will become necessary between experimentalists and people with
mathematical sciences background to implement these and future experiment design
techniques.
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If we turn to the motivating practical biological problems once again, we can see
that our results are not mature yet, but very importantly, applications are not beyond
reach.
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