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Abstract

This thesis is concerned with methodologies for the accurate quantitative modelling of

molecular biological systems. The first part is devoted to the chemical Langevin equation

(CLE), a stochastic differential equation driven by a multidimensional Wiener process.

The CLE is an approximation to the standard discrete Markov jump process model of

chemical reaction kinetics. It is valid in the regime where molecular populations are

abundant enough to assume their concentrations change continuously, but stochastic

fluctuations still play a major role. We observe that the CLE is not a single equation,

but a family of equations with shared finite-dimensional distributions. On the theoretical

side, we prove that as many Wiener processes are sufficient to formulate the CLE as there

are independent variables in the equation, which is just the rank of the stoichiometric

matrix. On the practical side, we show that in the case where there are m1 pairs of

reversible reactions and m2 irreversible reactions, there is another, simple formulation

of the CLE with only m1 + m2 Wiener processes, whereas the standard approach uses

2m1+m2. Considerable computational savings are achieved with this latter formulation.

A flaw of the CLE model is identified: trajectories may leave the nonnegative orthant

with positive probability.

The second part addresses the challenge when alternative, structurally different or-

dinary differential equation models of similar complexity fit the available experimental

data equally well. We review optimal experiment design methods for choosing the initial

state and structural changes on the biological system to maximally discriminate between

the outputs of rival models in terms of L2-distance. We determine the optimal stimulus

(input) profile for externally excitable systems. The numerical implementation relies on



sum of squares decompositions and is demonstrated on two rival models of signal pro-

cessing in starving Dictyostelium amœbæ. Such experiments accelerate the perfection

of our understanding of biochemical mechanisms.
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Preface

Mathematical modelling in molecular systems

biology

The past decade has brought many discoveries in molecular biological research. This has

been facilitated by novel quantitative, often high-throughput experimental methods and

research at the interface between the life and physical sciences that interprets these rich

data sets. The interaction of these disciplines has immensely improved the efficiency

with which we can interact with or modify intracellular biochemical processes. The

motivation for such experiments may be to understand these biochemical processes

better, and increasingly, to harness them for industrial purposes.

The mathematical modelling of biochemical reaction networks plays a central role in

these developments (Murray, 2003; Szallasi, Stelling, and Periwal, 2006). Simple quali-

tative descriptions are proving increasingly insufficient for understanding the intricate

dynamical complexity observed in biological processes. As a result, quantitative math-

ematical models are now routinely used in order to describe and analyse the complex

dynamics generated by protein interactions (Cornish-Bowden, 2004), metabolic path-

ways (Heinrich and Schuster, 1996; Fell, 1997), the regulation of gene expression (Bower

and Bolouri, 2004) and other biochemical processes. The study of the dynamics of
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these biochemical systems using a combination of experimental work and mathematical–

computational modelling is the remit of molecular systems biology.

The structure of the thesis

In this thesis we develop methodological results for two problems in the vast field of

systems biology. The first question we examine is how best to model biochemical reaction

kinetics by stochastic differential equations (SDEs). Part I of this thesis is devoted to

this problem. The second question we investigate is how to set up an experiment if

multiple dynamical models have been proposed for the same biochemical system and

one wants to discriminate between them with the aim of invalidating incorrect models

(Part II).

The introduction to Part I gives justification for our interest in stochastic models

for intracellular reaction kinetics. We postulate that the inherently probabilistic nature

of molecular collisions and interactions, especially in systems with low molecular popu-

lations (such as signal transduction pathways or gene regulatory networks, particularly

in small prokaryotic cells), must be reflected in our mathematical models. Chapter 1

shows examples where stochasticity is demonstrably present in such intracellular chem-

ical reaction networks. Chapter 2 discusses the most widely used stochastic models for

chemical reaction kinetics. The most fundamental one — which is the starting point for

all modelling efforts in this field — is a continuous time, discrete space Markov process.

Several other processes have been developed; their development was mainly motivated

by demand for faster numerical simulation, at a price of some loss of accuracy.

Chapter 3 contains the main results of Part I. We examine thoroughly a diffusion ap-

proximation, the so-called chemical Langevin equation (CLE), a multidimensional SDE,
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to the previously mentioned discrete stochastic process. We formulate other SDEs which

share the same finite-dimensional distributions and thereby achieve computational im-

provements and a better geometrical understanding of this continuous stochastic process.

We observe that the CLE predicts negative molecular concentrations in many cases, even

in simple ones. We do not attempt to define a new CLE which is free of this fault, but

we discuss in great detail how this issue affects the validity of our preceding derivations.

Chapter 4 summarises and interprets the results of Part I. Appendix A closes this part

by giving a few proofs that were deferred from the main text.

Part II takes us from the study of the computational modelling ‘infrastructure’ for

molecular biology to the model development stage, to the situation when one needs to

pick the best from seemingly equally good models of similar complexity. We show how

to design optimal experiments that provide the most information to help distinguish

between the models. We will also make a transition in our modelling framework of

choice from stochastic to deterministic dynamical systems. This problem has a rich

structure even in the deterministic framework, and such a study is an informative first

step towards any treatment of the problem in the stochastic setting.

Chapter 5 reviews earlier approaches to the design of optimal experiments and iden-

tifies our approach through our chosen mathematical definition of optimality. Chapter 6

is the immediate precursor to our results: it summarises how to choose the initial state

and what systemic changes to introduce to the system of interest for a maximally dis-

criminating experiment.

The main new theoretical developments of Part II are given in Chapter 7. We find

that the optimal external stimulus function takes a sinusoidal profile. Practical consid-

erations, such as how to modify the theoretically optimal input profile to be applicable

in practice, are discussed in Chapter 8, which is a case study on the application of our
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optimal experiment design techniques to a signal transduction pathway. We find that

when a sinusoidal input cannot practically be applied, then a square wave input of the

same frequency is still superior to a step input. The conclusion in Chapter 9 reiterates

how this work fits into the wider landscape of the model design, analysis and redesign

cycle. It also gives a reference to a study where our newly developed experiment de-

sign techniques were successfully implemented in practice. Appendix B introduces the

concept of sum of squares (SOS) decompositions, a central technical tool for our solu-

tions, and collects in one place its applications in the three discussed experiment design

approaches.

Chapter 10 recapitulates the main findings of both parts and signposts directions for

possible future research. The thesis is concluded with acknowledgements, a list of the

abbreviations used in the text and the bibliography.

Statement of the author’s original results

Part I of this thesis is concerned with the justification, the form and shortcomings of

the CLE. Its core is the peer-reviewed article Mélykúti, Burrage, and Zygalakis (2010).

The author of this thesis developed the theory, did the calculations for the examples,

and wrote the paper with the exception of the literature review. The motivation for the

work came from Prof. Kevin Burrage’s observation, that the first two moment equations

derived from the chemical master equation, Eqs. (2.2.3) and (2.2.4), should impose

constraints on the CLE. It was Dr. Konstantinos C. Zygalakis’ observation that the

original CLE meets these constraints (Section 3.3.1) and he conducted the numerical

simulations for this paper. Section 3.6 of this thesis contains new insights and arguments

that were not part of the article.
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In Part II, we discuss three approaches to the optimal design of experiments aimed at

model discrimination. This part is based on the peer-reviewed article Mélykúti, August,

Papachristodoulou, and El-Samad (2010). The main novelty, the Input design for model

discrimination, was developed by the author of this thesis. The first approach, the Initial

condition design for model discrimination, originally appeared in conference proceedings

(Papachristodoulou and El-Samad, 2007). It was subsequently generalised by Dr. Elias

August, a member of Dr. Papachristodoulou’s group, to include optimised modifications

of the biological system (Design of structural changes for model discrimination).
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Part I

Stochastic modelling for biochemical

reaction kinetics

13





Chapter 1

Stochastic phenomena in molecular

systems biology

Activities and the observed behaviour of cells most often reflect ongoing intracellular bio-

chemical processes. Therefore it is impossible to understand the behaviour of microbes

or the subcellular basis of physiological processes of complex multicellular organisms

without understanding the underlying biochemistry.

Many cell colonies, in a somewhat puzzling manner, exhibit substantial phenotypic

variation even when the cells share an identical genetic background and the same envi-

ronment. Mounting evidence points to the role of stochasticity in biochemical reaction

outcomes as the source of such diversity. There is uncertainty in the frequency and tim-

ing of biochemical reactions involved in gene expression and its control, and inevitably

there are minuscule differences between individual cells in the concentrations of cellular

components and in their local environments. The cumulative effect of these differences

is sufficient to result in different cell fates.

The first experimental proof that stochastic fluctuations are a prevalent phenomenon
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in gene expression was published by Elowitz et al. (2002). The authors expressed cyan

and yellow alleles of green fluorescent protein (gfp) controlled by identical promoters

in Escherichia coli cells. The cell colonies were observed by microscopy imaging with

a magnification that allowed the measurement of fluorescence in individual cells. The

authors compared the relative fluorescence levels of these two proteins in various ex-

periments. They showed that at strong constitutive expression of both proteins, both

the relative difference between the two fluorescence intensities and the overall cell–cell

variation were low. On the other hand, in wild-type (lacI+) E. coli strains, where the

artificial lac-repressible promoters are repressed, the gfp expression fell to 3–6%, and

noise rose approximately fivefold. (The measure of noise was defined as standard devi-

ation divided by the mean.) This effect was reversible: with the addition of saturating

amounts of isopropyl β-D-thiogalactopyranoside (IPTG), which binds and inactivates

the lac repressor, both the levels of fluorescent proteins and the noise therein returned

to the levels observed in the first experiment. This and further experiments with dif-

ferent levels of added IPTG, and the lac repressor expressed from plasmids or by a

synthetic oscillatory network (the Repressilator; Elowitz and Leibler, 2000), prove that

noise increase in gene expression is directly correlated to the repression of transcription.

Whether a bacteriophage λ infection of an E. coli cell results in lysis or lysogeny

has long been suspected to be decided by stochasticity in the regulation of viral gene

expression. Lysis is the outcome when the nucleic acid and the structural proteins of

the virus are replicated and assembled into complete viruses within the E. coli cell,

and the infected cell eventually bursts (lyses) and releases these new, infectious viruses.

The other possibility is lysogeny, when the viral genome is integrated into the bacterial

chromosome. At cell division it is also replicated and passed on to the daughter cell.

Certain events can trigger the release of the viral genome, initiating its proliferation via
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the lytic cycle. Arkin, Ross, and McAdams (1998) developed a stochastic model of this

genetic circuit, relying on many studies that had built up a good understanding of the

underlying biology. Their simulation results support the view that, broadly, competition

between two mutually repressing regulatory proteins, Cro and CI, determine the outcome

of the phage λ infection. If CI concentration reaches a high enough level soon after

infection, then the cell will most probably continue to lysogeny. However, if the Cro

feedback loop is established, then CI production will be repressed and the cell will follow

the lytic path. It is ultimately chance influenced by the circumstances that determines

the outcome. But this paradigm has been challenged. St-Pierre and Endy (2008) showed

in experiments that preexisting variation, in particular the cell volume at infection, has

a great impact on the ratio between lytic and lysogenic outcomes. They speculate that

variability between host cells may be sufficient to provide variability in the outcome

even under a deterministic model. However, there is still room for stochasticity to have

a decisive role in determining infection outcome: first, the finding about the importance

of cell volume is not inconsistent with the quantitative stochastic kinetics model which

can incorporate volume (and thus concentration) information, and second, as of yet,

the infection outcome cannot be completely controlled in experiments. Quantifying the

contribution of stochasticity of reaction kinetics to the lysis–lysogeny decision circuitry

remains an open question.

Di Talia et al. (2007) studied the variability in cell cycle length in budding yeast,

and how much of it is attributable to stochasticity in gene expression. They found that

compared to haploid cells, diploids and tetraploids exhibit ever lower noise in the time

from division to budding (G1 phase). If cell cycle timing is dependent on some protein

concentration, then decreasing fluctuation in this concentration will decrease relative

fluctuation in cell cycle length. Therefore their experimental finding is consistent with
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the hypothesis emerging from stochastic modelling, that protein noise should decrease

with the square root of the copy number of genes (ploidy). The authors decomposed the

G1 phase into two stages, which are separated by the exit of the transcriptional repressor

Whi5 from the nucleus. The length of the first stage is primarily size dependent: for

smaller birth cell volume it lasts for longer. But there is further unexplained variability

in the first stage, and also in the second stage, which together decreases with increasing

ploidy as we have just seen. The authors conclude that their analysis demonstrates that

stochasticity in chemical reactions has a role in generating variability in the timing of

cellular transitions.

But it is not only gene expression, and the related areas of development and differen-

tiation, where the importance of stochasticity in reaction outcomes has been recognised;

ion channel dynamics is also heavily influenced by it. For particulars, see Brennan, Fink,

and Rodriguez (2009) and references therein.

The next chapter discusses in detail how to interpret and capture the stochasticity

at the molecular level of which we have seen examples. The conceptual tool in this effort

will be, no doubt, mathematical modelling, that will give an unambiguous language to

define and analyse noise in chemical reaction networks.
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Chapter 2

Stochastic models for biochemical

reaction kinetics

Mathematical modellers of intracellular reactions justifiably view cells as closed contain-

ers in which reactions occur in the cytoplasm in the same way reactions occur in other

solvents. This stance is usually extended with three assumptions, whose role is made

clear in Gillespie (1992). The first is that the cytoplasm is a well-stirred solution, that is,

it is spatially homogeneous with random fluctuations; the position of a randomly selected

molecule is a uniformly distributed random variable. The second assumption states that

the biological system is in thermal equilibrium, that is, at a constant absolute tem-

perature; the velocity of a randomly selected molecule follows the Maxwell–Boltzmann

distribution with a fixed temperature. The third assumption is that cell volume is con-

stant. Over short time periods this is a reasonable assumption, although over their life

cycle from birth until division, cells grow to roughly double their initial size. However,

if needed, this change in volume and the corresponding dilution of macromolecules can

be easily accounted for in a model. This will be discussed in Section 2.2.1. Under these
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assumptions, mathematical models that are widely used in chemistry and chemical en-

gineering directly apply to biochemistry. In the entirety of this work, these assumptions

will be made.

One shortcoming of this framework is that by assuming well-stirredness, the spatial

structure of a cell is ignored. In reality, there are molecules confined to certain loca-

tions (e.g. transmembrane proteins), and in eukaryotic cells, there is a complex internal

membrane structure which hinders the free diffusion of molecules (Alberts et al., 2008).

There is also evidence that a previously unbound enzyme that has not had the time

to diffuse away from a substrate molecule can rebind with a higher probability, and

that this effect can give a markedly different dynamic behaviour to that predicted by

the reaction rate equations (Takahashi, Tănase-Nicola, and ten Wolde, 2010). Even the

cell membrane has considerable lateral structure and is compartmentalised on multiple

scales. Lipid rafts and cytoskeletal structures impede the diffusion of membrane pro-

teins; and the heterogeneous collection of these compartments, of the microdomains,

is thought to selectively concentrate proteins, for the assembly of signalling complexes

(Burrage et al., 2007).

Since it is not a focus of this work, we mention it here that the modelling of spatially

structured biochemical processes is a vibrant area of computational biology. Reaction–

diffusion equations have been the traditional tool for this; these are partial differential

equations that describe the spatially varying concentration of reacting molecular species

(Murray, 2003). Models that are more similar in spirit to the ones that we will study

are stochastic in nature. Some of them partition the reaction volume into subvolumes;

each such subvolume is assumed to be well-stirred and molecules can diffuse between

neighbouring subvolumes (Hattne, Fange, and Elf, 2005; Drawert, Lawson, Petzold, and

Khammash, 2010). A different strategy is to keep track of the location of each individual
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molecule as it diffuses in the cytoplasm. In terms of computational cost, probably the

most applicable implementation is the so-called Green’s function reaction dynamics (van

Zon and ten Wolde, 2005; Takahashi et al., 2010). Transforming the standard kinetic

rates for use in these spatial models is a delicate task (Erban and Chapman, 2009;

Fange et al., 2010). While keeping the importance of spatial structure in mind, we note

that an enormous body of research over several decades has shown that for reactions

that involve freely diffusing molecules in the cytoplasm, well-stirredness is a reasonable

modelling assumption that gives vastly useful models.

2.1 Intrinsic noise

The standard reaction kinetics models used in chemistry are multidimensional ordinary

differential equations (ODEs) that describe the time evolution of the concentrations of

molecular species as they interact and react with each other. However, living cells are

much smaller than the reactors for which traditional chemistry developed its models,

hence the population sizes of interacting molecules are significantly lower than was the

case in traditional applications. Certain proteins are present in a cell in numbers in the

order of magnitude of hundreds or only dozens. Particular genes are usually present in

even lower numbers. There has been a report (Brenner and Tomizawa, 1991) of an aver-

age level of only 3–11 unbound RNA II regulatory molecules of the ColE1 system present

in a single Escherichia coli cell (7 nM concentration; cell volume can be estimated as

0.6–2.7×10−15 `, hence 0.6–2.8 nM concentration corresponds to one molecule per cell).

For such chemical species a model in which their concentrations change continuously

is clearly inaccurate. Instead, a discrete model where integer molecular counts are the

variables is preferable.
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The well-stirredness assumption implicitly entails that the model does not track

molecules individually; therefore their collisions and reactions are random events under

the model. The model is not meant to describe and predict when and what kind of

reaction occurs, only their average intensities. The numbers of firings of separate reac-

tion channels and the population sizes may broadly, on average, follow trajectories of

deterministic ODE models, but only with random fluctuations. Importantly, there is the

possibility of major divergences from the deterministic trajectory. These considerations

motivate the use of stochastic models for biochemical reaction networks. Wolkenhauer

et al. (2004) discuss the justification for choosing either the continuous deterministic or

the discrete stochastic model, and clarify common misconceptions about the ranges of

their applicability.

This fluctuation in molecular counts around average values that is inherent to the

system due to the above phenomena is called intrinsic (or internal) noise. It is well

understood, and it is known how to model it. Also, it is distinct from fluctuations

caused by environmental changes and interference with other unmodelled intracellular

processes, collectively called extrinsic (or external) noise (Gillespie, 2000; Paulsson and

Ehrenberg, 2001; van Kampen, 2007). Extrinsic noise is more elusive than intrinsic,

perhaps because its sources are nondescript and diverse, and its modelling is in its

infancy.

The review paper by Wilkinson (2009) gives an alternative introduction to these

issues. It provides further examples to motivate the need for stochastic modelling of bio-

chemical networks: stochasticity leads to phenotypic diversity even in a uniform genetic

and external environment, and this improves the overall survival chance of a bacterial

population; stochastic events lie at the heart of cellular ageing. The paper discusses

different modelling approaches and the statistical challenges in fitting a model to exper-
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imental data. An introductory textbook by the same author is also available (Wilkinson,

2006).

We think that to capture and model extrinsic noise accurately, its different sources

need to be identified, and these different types need to be treated with due separation.

It is naive to search for a universal form of extrinsic noise for mathematical models.

The nomenclature also needs to be enriched to reflect separation between the sources of

extrinsic noise.

Some types of extrinsic noise, such as thermal or pH fluctuations, or fluctuations in

the availability of unmodelled enzymes, impact on the propensities directly. We specu-

late that some other types of extrinsic noise should be seen as duals to intrinsic noise,

following the duality between molecular population sizes and numbers of reaction fir-

ings. The second duality means that the system state can be identified not only by the

molecular population sizes, but an equivalent description is to use the initial state and

how many reactions occurred in each reaction channel separately — these two uniquely

determine the population sizes. The latter formalism is called degree of advancement

(or extent of reaction) coordinates (Goutsias, 2005). The duality we propose between

intrinsic and specific types of extrinsic noise is the following. Intrinsic noise is the un-

certainty in the mapping from the population sizes to how many reactions of different

kinds actually occur in a given time interval. Then these other types of extrinsic noise

could be dually defined as the uncertainty in the mapping from the number of reactions

dictated by the core model to how population sizes actually change. This proposed def-

inition covers changes in molecular populations due to the molecules’ participation in

unmodelled reactions (‘cross-talk’).

Throughout this work from this point onwards, our focus will be exclusively on

intrinsic noise.
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2.2 Continuous time, discrete space Markov jump

process formulation of chemical reaction

kinetics

2.2.1 Preliminaries: notation and basic notions

Let us suppose that there are n chemical species S1, . . . ,Sn, reacting through m chemical

reaction channels R1, . . . ,Rm. These chemical reactions are represented by formulæ like

α1S1 + · · ·+ αnSn
k−→ β1S1 + · · ·+ βnSn, (2.2.1)

where α1, . . . , αn, β1, . . . , βn ∈ N (nonnegative integers), and k ∈]0,∞[ is a reaction

rate constant, whose role will become clear shortly. All state vectors will be written as

column vectors. Let Xi(t) (i ∈ {1, . . . , n}) denote the number of molecules of species Si

at time t, and let X(t) = (X1(t), . . . , Xn(t))T . Equivalently, the state can be given by

the vector of concentrations c(t) = (c1(t), . . . , cn(t))T , a formalism usually used in the

continuous ODE models.

Any set of chemical reactions is uniquely characterised by two sets of quantities. The

first is the stoichiometric matrix ν ∈ Zn×m, which encodes the combinatorial aspect of

reactions: a single firing of the jth reaction channel changes the count of the ith species

by νij. If reaction (2.2.1) is Rj, then νij = βi − αi. The columns ν·1, . . . , ν·m of ν are

called the stoichiometric (or update) vectors. The second set of quantities required are

the propensity (or intensity) functions a(x) = (a1(x), . . . , am(x))T that reflect the proba-

bilities of the reactions to occur: if the chemical system is in state x, then the probability

of a single firing of reaction channel Rj in an infinitesimal time interval of length h is

aj(x)h + o(h). (Here the standard o notation is used for an unspecified one-variable
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real-valued function for which limh→0 o(h)/h = 0.) The propensity functions decide the

model dynamics, and there are different ways of endowing them with a numerical value.

A very commonly followed principle is to demand that the propensity is proportional

to the number of distinct subsets of the available molecules that can form the left-hand

side (input) of the reaction: for reaction (2.2.1),

aj(x) = k
∏

1≤i≤n
αi>0

(
xi
αi

)
.

A slight modification — basically an adaptation to the continuous setting or a simplifi-

cation for large molecular population sizes — is the law of mass action. This definition

of the propensity is

aj(x) = k
n∏
i=1

xαi
i

for reaction (2.2.1). The conversion of the reaction rate constants between these two

cases or between the concentrations and the counts formalisms is straightforward and

can be found in various sources, for example in Wolkenhauer et al. (2004) or in Sec-

tion 6.6 of Wilkinson (2006). These references also give guidance as to how to compute

propensities in a solution with changing volume, where the amount of solvent varies but

reactant counts are unaffected by this. It is often argued that in any reaction at most

two molecules interact at a given time (that is, the reactions are at most bimolecular or

second order, so
∑n

i=1 αi ≤ 2), or can be replaced by successive second-order reactions,

because the probability of three or more molecules colliding almost simultaneously is

very small (Wilkinson, 2006). Under these assumptions, the propensity functions are

polynomials of degree at most 2, and specifically are of the form kr, ksxi, kuxixk and

kvxi(xi − 1) or, in the mass action kinetics case, kvx
2
i (with kr, ks, ku, kv > 0 constants,

i, k ∈ {1, . . . , n}).
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2.2.2 Strong and weak characterisation of the process

These preparations have foreshadowed how the Markov jump process is constructed.

Suppose that at time t0 the chemical system is in state X(t0) = X0 ∈ Nn. For simplicity,

we will always use deterministic initial states; the generalisation to random initial states

is straightforward. Each reaction channel has some probability of firing, specifically,

a reaction Rj will occur after an exponentially distributed random waiting time with

parameter aj(X(t0)). More accurately, only the earliest of these m reactions will occur

(the one which has the smallest of the realised waiting times), say R` with waiting time

τ . Then the state will be defined as X(t0) for times in [t0, t0+τ [, and X(t0)+ν·` at t0+τ .

This update step is then repeated over and over, first with parameters aj(X(t0) + ν·`)

for the m exponential waiting times, and then with the propensity function evaluated

at the subsequent states.

To this pathwise construction corresponds the following description of the probability

distribution of the state. For P(X, t | X0, t0), the probability of the state being in X at

time t, given that it was in X0 at time t0, a well-known argument from the theory of

Poisson processes yields

P(X, t+ h | X0, t0) = P(X, t | X0, t0)

(
1−

m∑
j=1

aj(X)h+ o(h)

)

+
m∑
j=1

P(X − ν·j, t | X0, t0)
(
aj(X − ν·j)h+ o(h)

)
+ o(h)

(Feller, 1957; Karlin, 1966). This equation reflects that the event that the system is

in X some infinitesimal time h after time t is the disjoint union of three kinds of events.

One is that the system was in X at t and then no reaction occurred in the interval up

to t + h. The second kind of event is that the system at t was in a state one update

vector away from X, in X − ν·j for some j, and jumped into state X by a single firing
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of reaction channel Rj. The third kind of event is one with a small probability, that the

state jumped to X via multiple jumps. Simple algebraic rearrangement and passage to

the limit h→ 0 gives the chemical master equation (CME):

∂

∂t
P(X, t | X0, t0) = −

m∑
j=1

aj(X)P(X, t | X0, t0)

+
m∑
j=1

aj(X − ν·j)P(X − ν·j, t | X0, t0). (2.2.2)

The CME is a forward equation that describes the distribution of the continuous time,

discrete space Markov process. It is a system of ODEs where variables are transition

probabilities. There is one equation for each configuration X of the state space. This

system of ODEs is linear, but is typically very large or even infinite, in the case when

no upper bound can be established for some variable. Even if all variables are bounded

above, due to the large number of equations, the numerical solution of the CME is

computationally very challenging. Munsky and Khammash (2006) introduced the finite

state projection (FSP) method for the approximate solution of the CME when direct

solution is not possible. The FSP method finds a state space truncation such that the

Markov process that is confined to this reduced state space (and stopped in a cemetery

state upon leaving the reduced state space) approximates the original process. For a

given error tolerance and a fixed final time, the approximation by the FSP method has

a probability distribution function at the final time that is pointwise within the required

error range from that of the original process.

The above stochastic process is the gold standard in stochastic chemical reaction

network modelling. Its study was pioneered in the 1960s (McQuarrie, 1967) and 1970s

(Gillespie, 1976, 1977), and it was rigorously justified in the early 1990s by a physical

model that uses colliding spheres to represent interacting molecules (Gillespie, 1992).

Strictly speaking, the physical model only applies to gas-phase reaction systems, but it
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is customary to accept without proof that the resulting mathematical model also applies

to liquid-phase systems. This stochastic process can also be described as a stochastic

equation driven by m independent unit rate Poisson processes undergoing random time

changes (Kurtz, 1978; Ball, Kurtz, Popovic, and Rempala, 2006).

2.2.3 Moment equations

Given the CME (2.2.2), ODEs can be derived that describe the evolution of, for example,

the mean and the covariance matrix for fixed propensities. In particular, by multiplying

Eq. (2.2.2) by Xi and summing over all its possible values, one can show

d

dt
E(X(t)) =

m∑
j=1

ν·jE (aj(X(t))) = νE (a(X(t))) , (2.2.3)

where the last term is the product of an n ×m matrix and an m-dimensional column

vector. Similarly, the time evolution of the second moment is given by

d

dt
E
(
X(t)X(t)T

)
= E

(
νa(X(t))X(t)T

)
+ E

(
X(t)a(X(t))TνT

)
+ E

(
B(X(t))

)
, (2.2.4)

where the diffusion matrix B(x) is defined by

B(x) = ν diag(a(x))νT

(van Kampen, 2007; Tomioka et al., 2004). Here diag(a(x)) ∈ Rm×m is the diagonal

matrix with the entries of a(x) in its diagonal. The equation for the covariance matrix

follows easily.

Under the law of mass action kinetics, both Eqs. (2.2.3) and (2.2.4) are closed only

if all reactions are at most first order (that is, all propensity functions aj have degree at

most one). If there is at least one bimolecular reaction, then the corresponding propensity

function is a quadratic polynomial which will render the right-hand side of Eq. (2.2.3)
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dependent on the appropriate second moment. At the same time, Eq. (2.2.4) will become

dependent on third moments through the E(νa(X(t))X(t)T ) and E(X(t)a(X(t))TνT )

terms. Similarly, the equation for any higher moment will be dependent on even higher

moments. In such a case, we say that the moment equations are not closed.

There are a few proposals on how to relax this problem through approximation to

get a finite, closed set of ODEs (see e.g. Singh and Hespanha, 2006; Gómez-Uribe and

Verghese, 2007; Ullah and Wolkenhauer, 2009). These methods may give spectacularly

good results. In a genetic regulatory system which oscillates in the stochastic modelling

setup (for a certain choice of rate parameters), the method by Gómez-Uribe and Verghese

(2007) predicts oscillation, whereas the standard ODE model, the reaction rate equation,

fails to do so and settles to a fixed level. The ability to use approximate information about

the second moments may make such a difference. However, it does not seem possible

to know a priori about any of these closure methods whether they will be accurate,

only a posteriori, by comparing their predictions to the full stochastic model. Then it

is questionable how useful they are; whether they can save the expensive computations

needed to work with the stochastic models. They might have utility in accelerating the

exploration of the parameter space: when interesting behaviour is found, those parameter

values can be checked by the full stochastic model. But other interesting parameter

combinations may be overlooked due to the inaccuracy of the moment closure method.

2.3 The stochastic simulation algorithm and its

approximative evolutions

Gillespie (1976, 1977) considered first how to algorithmically generate realisations of

the stochastic process given in Section 2.2.2. Gillespie’s direct method, also known as
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the stochastic simulation algorithm (SSA), is easy to implement, and has become a very

popular computational tool.

Given X(t) at time t, the SSA draws a random waiting time τ to the next reaction

from an exponential distribution with parameter a0(X(t)) =
∑m

j=1 aj(X(t)). This can

be done efficiently using a uniformly distributed random variable on [0, 1], U , and the

inverse cumulative distribution function of the exponential distribution, to get τ =

−lnU/a0(X(t)). Then the algorithm randomly selects which reaction to occur based

on the relative sizes of a1(X(t)), . . . , am(X(t)): reaction Rj is chosen with probability

aj(X(t))/a0(X(t)). If reaction Rj is selected indeed, then the state vector is updated as

X(t+ τ) = X(t) + ν·j,

and the algorithm repeats. It is easy to see that this algorithm is equivalent to the strong

characterisation in Section 2.2.2, but it only needs two independent uniformly distributed

random variables in each step. The algorithmic implementation of that characterisation,

which in every step generates an exponential waiting time for each reaction channel and

realises the reaction with the shortest waiting time, is called the first reaction method

(Gillespie, 1976).

The next reaction method by Gibson and Bruck (2000) cuts down computation time

compared to the SSA through careful algorithm design. For each reaction channel, it

stores a tentative waiting time. Similarly to the first reaction method, whichever waiting

time is the shortest defines the time to the next reaction and the type of reaction.

After this reaction occurred, the algorithm calculates the new propensities. For the one

reaction channel that fired, a new random waiting time is drawn. For the other m − 1

channels, the waiting times are updated in a deterministic fashion. This strategy reduces

the random number draws per reaction from two in the SSA to just one (in addition to
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the m required for the initialisation of the next reaction method), while it still maintains

the independence of the m waiting times. Further saving in computational time can be

achieved by, first, storing the tentative waiting times in a binary tree structure (called

an indexed priority queue) that is sorted such that the shortest waiting time is always

at the root. Thus the root defines the time and type of the next reaction. The second

trick is to calculate only those propensities that have changed.

Anderson (2007) used the stochastic equations formalism introduced by Kurtz (1978,

which we have already mentioned at the end of Section 2.2.2) to analyse the next reaction

method. This approach provides a clearer explanation of why the waiting times can be

updated the way proposed in the next reaction method. It also lends itself more naturally

to generalisations to time-dependent propensity functions or to chemical systems with

delayed reactions.

These three methods (the direct, the first reaction and the next reaction methods) are

all exact, that is, they generate samples of the Markov jump process of Section 2.2.2.

Their weakness is the computational cost: since each method simulates every single

reaction, if at least some of the reacting species is abundant, that species will generate

many reactions. This happens even when those reactions do not contribute much to

the dynamics, like the reversible enzyme–substrate complex formation in an enzymatic

reaction or the dimerisation and dissociation of a protein. This is not a wise allocation of

computational resources, which is the limiting factor when one needs to sample a large

batch of simulation runs to explore the distribution of possible system dynamics.

Much effort has been concentrated on developing approximative but faster algo-

rithms. We review some of the most commonly known ones. Gillespie (2001) introduced

the τ -leap method, which takes time steps (leaps) of length τ > 0. In one such leap mul-

tiple reactions are allowed to occur. τ must be chosen short enough so that neither of the
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propensities change considerably in time intervals of length τ . Then the number of reac-

tion firings in the time interval for the different reaction channels can be approximated

with independent Poisson random variables. Thus the algorithm generates m Poisson

random variables in each leap and updates the state accordingly. This assumption will

resurface in Section 3.1 as Condition 1. The choice of τ is a challenging problem and has

been addressed in subsequent papers: the longer the time intervals are, the faster the

algorithm will be, but the less accurate. Also, the Poisson distribution has an infinitely

long tail. The larger τ is, the more likely it is that in a given time interval the proposed

reaction number is greater than there are reactant molecules. The execution of such a

state update would lead to unrealistic negative molecular counts.

Tian and Burrage (2004) proposed to replace Poisson random variables with bino-

mial ones whose maximal possible values are the smallest respective reactant population

sizes so that no variable will become negative in any reaction. The case when a species

appears as a reactant in two or more reactions is also dealt with. Then the binomial

variables are such that their sum is not greater than the population size of the shared

reactant species. Independently, Chatterjee, Vlachos, and Katsoulakis (2005) also pro-

posed binomial reaction numbers. Their solution in the case of a species reacting in

multiple channels is to generate firing numbers in a predetermined (or random) se-

quence of all reaction channels at each leap, such that the upper bound on firings takes

account of how many molecules were used in reactions that were earlier in this sequence.

This approach introduces a bias into sampling, but the authors report the bias to be

small in simulations compared to the error introduced by leaping instead of simulating

each individual reaction.

The R-leaping method by Auger, Chatelain, and Koumoutsakos (2006) (somewhat

similarly to the ka-leap method by Gillespie, 2001) generates a fixed number L of reac-
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tions in each leap and randomly generates the leap length. Deciding how many of these

L reactions will be R1, . . . ,Rm−1 or Rm is done by sequential draws from binomial

distributions, which is an unbiased method in this setting.

The next chapter studies how one can approximate the discrete stochastic process of

Section 2.2.2 with a continuous one that is given by an SDE. Any numerical integration

scheme applied to such an SDE is essentially a further alternative approximation of the

SSA. Although they might have arisen from different mathematical concepts, in practice

they can be used for the same applications in computational modelling.
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Chapter 3

An Itô stochastic differential

equation model for chemical

reaction kinetics: the chemical

Langevin equation

In this chapter we introduce and study the standard Itô stochastic differential equation

(SDE) analogue of the reaction kinetics models we discussed in the previous chapter.

Due to space limitations, we assume that the reader is familiar with Itô SDEs. We recall

the notion of a Wiener process or Brownian motion only. Detailed elaboration of these

topics can be found in standard stochastic analysis textbooks, such as Karatzas and

Shreve (1998) or Øksendal (2007).

Definition 3.0.1 A (standard, one-dimensional) Wiener process (or Brownian motion)

is a continuous stochastic process (W (t))t≥0 adapted to some filtration (Ft)t≥0 on a

probability space (Ω,F , P ) with the following properties:
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• W (0) = 0 almost surely,

• the increment W (t+ h)−W (t) (h > 0) is independent of Ft, and

• this increment is normally distributed with mean 0 and variance h: W (t + h) −

W (t) ∼ N (0, h). ♣

The chemical Langevin equation (CLE), introduced by Gillespie (2000), is the stan-

dard SDE model for chemical reaction kinetics. The drift (deterministic) term of the

CLE is just the right-hand side of the standard ODE model (of the reaction rate equa-

tion), while the diffusion (stochastic) term takes a very special form. Gillespie captured

this stochastic component by using one Wiener process per chemical reaction. Subse-

quently, a number of authors have realised that the CLE (and SDEs in general) can

be written in alternative, equivalent forms using arguments from stochastic analysis

and multivariate statistics (Wilkinson, 2006; Allen et al., 2008; Ullah and Wolkenhauer,

2009). These changes to the equation do not change the finite-dimensional distributions

of its solution. As such, the alternative formulations do not arise from model reduction.

These authors used this insight solely to reformulate the CLE with the minimum number

of Wiener processes.

Our contribution in this chapter is a detailed exploration of this insight. We investi-

gate the minimum number of Wiener processes in the CLE in conjunction with a state

space reduction by removing linearly dependent variables through conservation laws ex-

hibited by the chemical system. This will shed light on the structure of the CLE from

a linear algebraic viewpoint. Secondly, we show how from the standard form CLE one

Wiener process can be omitted for each pair of reversible reactions. If there are m1 pairs

of reversible reactions and m2 irreversible reactions, then only m1+m2 Wiener processes

are needed, rather than 2m1 +m2. We demonstrate that this simplification, in addition
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to its appealing explanatory power, can significantly speed up numerical simulations.

Adalsteinsson, McMillen, and Elston (2004) also use this formulation, but they did not

point out that this formulation is different to the original one and did not compare the

computational costs. Singer et al. (2009) derived this new form for a certain application

from the Euler–Maruyama discretisation (see, for example, Kloeden and Platen, 1992)

of the CLE, which is an approximative method and does not possess the same level of

rigour as the one we follow.

We will initially intend to construct the CLE in such a way that its mean and

variance match the mean and the variance of the CME at any time t. It will become

clear that with our current knowledge this is an insurmountable task in the general

case because the moment equations are not closed. Still, we will arrive at the standard,

well-known form of the CLE and will use that as the best approximation available. All

our alternative formulations will be equivalent to this standard form.

3.1 Gillespie’s derivation of the chemical Langevin

equation

Gillespie (2000) set out to approximate the finite-dimensional distributions of the dis-

crete Markov jump process of molecular counts by making two simplifying assumptions.

His argument was the following.

Suppose that at time t the chemical system is in state X(t) ∈ Rn. If the random

variable Kj(X, h) denotes the number of times reaction Rj occurs in a time interval of

length h if the system is released from state X, then after time h has passed, the system
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will be in state

X(t+ h) = X(t) +
m∑
j=1

Kj(X(t), h) ν·j. (3.1.1)

Now assume that Condition 1 holds:

1. h is small enough so that the change in the state during [t, t + h] will be so small

that none of the propensity functions aj changes substantially,

aj(X(s)) ≈ aj(X(t)), for all s ∈ [t, t+ h].

Recall that in the most typical cases aj(x) is a polynomial of degree not greater than 2.

In any reaction typically no molecular count changes by more than two. Hence this

condition can be satisfied if the expected number of firings of a reaction channel is

much smaller than the population size of the least populous species. This requirement

can always be met if all molecular populations are sufficiently large. The assumption

that the propensities remain approximately constant in the time interval implies that

the random variables K1(X(t), h), . . . , Km(X(t), h) are independent, and Kj(X(t), h) is

Poisson distributed with parameter aj(X(t))h for all j.

Then Condition 2 is stipulated:

2. h is large enough so that the expected number of firings for each reaction channel Rj,

namely E
(
Kj(X(t), h)

)
= aj(X(t))h, is much larger than 1.

This obviously runs counter to Condition 1. In cases where the two cannot be met

simultaneously, Gillespie’s approximation will fail. But large molecular populations help

to satisfy this condition, just as with the previous one. In this case, the Poisson random

variable Kj(X(t), h) is well approximated by a normal random variable with matching

mean and variance,

N
(
aj(X(t))h, aj(X(t))h

)
.
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(Once again, we use the notation N (µ, σ2) for a normal distribution with mean µ and

variance σ2.)

Thus the independent discrete Poisson random variables are replaced by the same

number of independent but continuous normal random variables. It is well known that

this distribution is a linear transformation of some other normal distribution:

N
(
aj(X(t))h, aj(X(t))h

)
∼ aj(X(t))h+

√
aj(X(t))N (0, h).

Substituting these approximations, Eq. (3.1.1) takes the form

X(t+ h) = X(t) +
m∑
j=1

aj(X(t))h ν·j +
m∑
j=1

√
aj(X(t)) ν·jNj (3.1.2)

with independent normal random variables N1, . . . , Nm with mean zero and variance h.

Here we keep t fixed and omit the dependence of Nj on t in our notation. Using the

notion of Wiener process, clearly, when h → 0, then Eq. (3.1.2) becomes nothing else

but an n-variable Itô SDE

dX(t) =
m∑
j=1

aj(X(t)) ν·j dt+
m∑
j=1

√
aj(X(t)) ν·j dWj(t), (3.1.3)

which is called the chemical Langevin equation. This is how in Gillespie’s derivation two

approximative steps facilitated by two assumptions lead to an Itô SDE model.

It is worth noting that the approximation that followed from Condition 1 is the key

idea of the τ -leap method (Gillespie, 2001), as we already indicated in Section 2.3.
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3.2 Alternative motivation: comparison of moment

equations for the discrete Markov process and

an Itô diffusion

In the Langevin regime, one hopes to be able to construct an SDE such that the evolution

equations for the state mean and the second moments are exactly Eqs. (2.2.3) and (2.2.4)

(from Section 2.2.3) in order to get the same mean and covariance matrix as in the CME

at any time t. Of course this is not equivalent to identical finite-dimensional distributions,

but accurately describing the first two moments using an SDE can be useful for many

practical applications.

The approach of matching the first two moments is implicit in Gillespie’s derivation.

In that case, as opposed to our approach, matching is only enforced locally, for each

small time step. Global matching of the first two moments is more explicitly mentioned

by, for instance, Wilkinson (2006), but it has not been explored in depth.

Formally, we are seeking f : Rn → Rn and g : Rn → Rn×d such that the solution to

dx(t) = f(x(t)) dt+ g(x(t)) dW (t), (3.2.1)

with a d-dimensional standard Wiener process W , has its first two moments given by

Eqs. (2.2.3), (2.2.4).

We will now derive the ODEs that describe the evolution of the first two moments

of Eq. (3.2.1). By taking the expectation on both sides of Eq. (3.2.1), it is easily seen

that

d

dt
E(x(t)) = E

(
f(x(t))

)
. (3.2.2)

To calculate the second moment for x(t) it is enough to calculate E(xi(t)xk(t)) for all

40



i, k ∈ {1, . . . , n}, i ≤ k.

Proposition 3.2.1 For Eq. (3.2.1),

d

dt
E
(
xi(t)xk(t)

)
= E

(
fi(x(t))xk(t)

)
+ E

(
xi(t)fk(x(t))

)
+

d∑
j=1

E
(
gij(x(t))gkj(x(t))

)
. (3.2.3)

Proof The proof of this proposition is found in the appendix of Part I. �

Comparing Eq. (2.2.3) with Eq. (3.2.2) suggests we should choose

f(x) = νa(x). (3.2.4)

Once this is fixed, a comparison between Eqs. (2.2.4) and (3.2.3) suggests that

d∑
j=1

gij(x)gkj(x) = Bik(x)

for all i and k is the most natural choice for g, that is,

g(x)g(x)T = ν diag(a(x))νT . (3.2.5)

It is important to point out here that such a choice of f and g can only guarantee

that the first two moments for the CME and the CLE are the same when all reactions

are at most first order (under the law of mass action). In the case when there is at least

one bimolecular reaction (when the moment equations are not closed), the mere formal

matching of the two pairs of equations is not sufficient to match the first and second

moments because Eqs. (2.2.4) and (3.2.3) are dependent on higher moments which we

do not attempt to match and whose moment equations are in actual fact different.

It was shown in the previous section how Gillespie’s argument gives the CLE (3.1.3),

or this equivalent form:

dX(t) = νa(X(t)) dt+
m∑
j=1

ν·j

√
aj(X(t)) dWj(t). (3.2.6)

Clearly, it satisfies both Eqs. (3.2.4) and (3.2.5) with d = m.
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Corollary 3.2.2 Under the law of mass action kinetics, if all reactions are at most

first order, then the chemical Langevin equation (3.2.6) gives the same first and second

moments (means and covariances) as the chemical master equation.

This result has already appeared in Higham and Khanin (2008, Theorem 4.1), but we

have used more succinct notation and therefore this derivation is more transparent. As

we have just noted, in the general case this does not imply that the first two moments of

the CLE are the same as those of the CME. Instead of further studying the relationship

of the CME and the CLE, we accept Eq. (3.2.6) as the standard reference SDE model

for chemical reaction systems.

3.3 The CLE as a parametric family of SDEs:

alternative, weakly equivalent formulations

In the following, we derive alternative formulations of the CLE based on the following

insight.

Proposition 3.3.1 Different solutions g to the factorisation problem Eq. (3.2.5) all

give chemical Langevin equations that have the same finite-dimensional distributions (in

different terminology: which coincide in law).

Beware that in its current formulation, this is not a rigorous statement. Both proofs we

give here are incomplete and are intended to reveal the core idea and to cast light on why

some form of this statement is true. Section 3.6 will study the difficulties associated with

making this argument rigorous, and Proposition 3.6.8 of the concluding Section 3.6.4

will state and prove the coveted claim.
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Proof We assume previous knowledge of a standard tool, the Kolmogorov forward

equation, which is also known as the Fokker–Planck equation (Gardiner, 1985; Øksendal,

2007). For the solution g of Eq. (3.2.5), the probability density function pt(x0, x) of a

transition from x0 to x in a time interval of length t evolves according to the partial

differential equation

∂pt(x0, x)

∂t
= −

n∑
i=1

∂
(
pt(x0, x)(νa(x))i

)
∂xi

+
1

2

n∑
i,k=1

∂2
(
pt(x0, x)

(
g(x)g(x)T

)
ik

)
∂xi∂xk

.

pt(x0, x) evolves identically for all solutions g to (3.2.5), because the parameters in the

Kolmogorov forward equation νa(x) and g(x)g(x)T = ν diag(a(x))νT are identical for

any g, and p0(x0, x) = δx0(x) (the Dirac delta function at x0) does not depend on g.

The reason why this proof is incomplete is that it requires that the transition measure

of X(t) has a density.

An alternative choice is to apply Theorem 8.4.3 of Øksendal (2007). The argument

used there is based on the equivalence between solutions of an SDE (whose coefficients

only depend on the state, not on time) and solutions of the martingale problem. The

approach to study the weak existence and uniqueness of solutions to SDEs via the mar-

tingale problem was developed by Stroock and Varadhan (see e.g. Stroock and Varad-

han, 1997), but it can be found in several other textbooks, such as Chung and Williams

(1990); Karatzas and Shreve (1998). The martingale problem that corresponds to

dX(t) = νa(X(t)) dt+ g(X(t)) dW (t) (3.3.1)

is to find a measure Px0 on the set of continuous functions equipped with the Borel

σ-algebra (C([0,∞[,Rn),B), such that for all twice continuously differentiable functions

h : Rn → R with compact support, h ∈ C2
0(Rn), M(t) = h(ω(t)) −

∫ t
0
Lh(ω(s)) ds is
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a martingale under Px0 with respect to Bt, the filtration generated by the continuous

functions restricted to [0, t], where ω is a general element of C([0,∞[,Rn),

L =
n∑
i=1

(νa(x))i
∂

∂xi
+

1

2

n∑
i,k=1

(g(x)g(x)T )ik
∂2

∂xi∂xk
,

and M(0) = h(x0) Px0-almost surely. The correspondence between the SDE and the

martingale problem (under certain regularity conditions) means the following. First,

the probability measure on (C([0,∞[,Rn),B) induced by the law of the Itô diffu-

sion (X(t))t≥0 solution of Eq. (3.3.1) solves the martingale problem. Vice versa, if

there exists a solution to the martingale problem, then there exists a weak solution

of the SDE (3.3.1). Uniqueness also carries over: there is a unique weak solution of

the SDE (3.3.1) if and only if there is a unique solution of the associated martingale

problem. The coefficients in the differential operator L of our martingale problem are

benign, typically polynomials of degree not greater than two, so we can assume that the

martingale problem is well posed, that is, there is a unique measure Px0 that solves it.

We will say more about this assumption in Section 3.6.

The rest of the argument is identical to that in our first sketch proof. The function g

enters the martingale problem only via g(x)g(x)T = ν diag(a(x))νT in L, therefore

different g all give the same martingale problem. This single martingale problem has a

unique solution to which corresponds a unique weak solution of Eq. (3.3.1). �

This proposition implies that the SDE (3.3.1) defined with different g, each of which

satisfies Eq. (3.2.5), are equivalent in the sense that the distributions of their solutions

are the same at any time t. It follows that all their moments will be identical at fixed

times.

The main goal of Part I is to explore the different possibilities of how the SDE (3.3.1)

can be parameterised with different g such that the multidimensional Itô diffusion pro-
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cesses given by these different parameterisations all preserve the distribution of the

standard CLE (3.2.6). Note that although the number of rows of g is fixed from the

beginning to be the number of chemical species n, the number of columns, d, is not

a priori specified. Our first line of enquiry will examine the minimum d for which the

factorisation (3.2.5) is possible — this is also the minimum number of Wiener processes

necessary to describe the Itô diffusion process. Then, using the mathematical framework

we have developed, we will be able to construct and prove the validity of a reduced for-

mulation of the original CLE where there is only one Wiener process associated with

each pair of reversible reactions. This formulation may be considered as a more natural

model of chemical reaction systems than the original model (3.2.6). We will also demon-

strate that this reduced formulation can speed up numerical simulations considerably

without compromising accuracy.

3.3.1 Gillespie’s original formulation

Construction 1 Assuming that the number of firings of different reaction channels

are independent in short time intervals and that the expected number of firings is large

enough for each reaction channel, in his seminal paper Gillespie (2000) derived that g

is of the form

g(x) = ν diag(
√
a1(x), . . . ,

√
am(x)). ♣

As we said, this will be our reference model and is also a special case of Eq. (3.2.5) with

d = m. Here every independent Wiener process corresponds to one reaction channel.

Hence the physical interpretation of this model is quite clear. Every variable is forced

by as many Wiener processes as there are reaction channels which change its count.

Gillespie mentioned that this is not the only possible formulation, and other formu-

lations with differing numbers of Wiener processes are possible. He referred to his former
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work (Gillespie, 1996), where equations were laid down which if satisfied by both a g1

and a g2 then the two Langevin equations with either g1 or g2 would have increments

with identical distributions. This is analogous to our Proposition 3.3.1.

3.3.2 The minimal formulation

In what follows we will often refer to dim(Ker ν), the dimension of the (right) nullspace

of ν, and to dim(Ker νT ), the dimension of the left nullspace of ν. Left nullvectors

correspond to conservation laws in the reaction system, that is, to preserved linear

combinations of different species’ counts. Each right nullvector corresponds to a multiset

of firings of reaction channels (a multiset is a set whose elements can be members of this

set repeatedly, here we even allow negative multiplicities) such that if starting in state x

all reactions occur the number of times given by the right nullvector, then the chemical

system will eventually return to the original molecular counts x. However, note that

reaction firings should be interpreted broadly, as some entries of these right nullvectors

may be negative.

The focus of Part I is to explore different natural choices for the formulation of

the CLE (3.3.1) and hence for the choice of d. A natural question to ask is what the

minimum number of Wiener processes is in the CLE, or equivalently, what the minimum

d is for which the factorisation of

B(x) = ν diag(a(x))νT

in Eq. (3.2.5) is possible.

As B(x) is a symmetric positive semi-definite square matrix for all x, it can be

diagonalised by a change of basis with an orthonormal matrix U(x) whose columns are
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eigenvectors of B(x):

B(x) = U(x)D(x)U(x)T .

We partition the eigenvectors based on whether they belong to zero eigenvalue (U0(x))

or some positive eigenvalue (U1(x)) and arrange them such that U(x) = [U1(x) U0(x)].

Then there are n− dim(KerB(x)) nonzero eigenvalues, so D(x) is of the form

D(x) =

 D1(x) 0

0 0


with a diagonal

D1(x) ∈ R(n−dim(KerB(x)))×(n−dim(KerB(x))).

The construction for g(x) is then

g(x) = U(x)D(x)1/2 = [U1(x)D1(x)1/2 0],

or simply

g(x) = U1(x)D1(x)1/2 ∈ Rn×(n−dim(KerB(x))).

Indeed, g(x)g(x)T = U(x)D(x)1/2D(x)1/2U(x)T = B(x). This formulation shows that

d = n− dim(KerB(x)) independent Wiener processes are enough to define Eq. (3.3.1).

This factorisation is minimal indeed, since the rank of g(x) cannot be less than the

rank of B(x) = g(x)g(x)T , that is, n− dim(KerB(x)).

The next proposition shows that the number of columns of g(x) is independent of

the state x. In order to avoid digression, the proofs of the following two propositions are

found in the appendix of Part I.

Proposition 3.3.2 For every strictly positive x (it is enough that for all x and each

reaction channel j, aj(x) > 0 holds), dim(KerB(x)) is equal to the number of linearly

independent conservation laws of the reaction network, dim(Ker νT ). In fact, a vector
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y ∈ Rn \ {0} is a (right) nullvector of B(x) if and only if it is a left nullvector of the

stoichiometric matrix ν.

The following proposition states that this construction reduces the number of Wiener

processes compared to the m Wiener processes of Gillespie’s construction by the dimen-

sion of the right nullspace of ν.

Proposition 3.3.3 n− dim(Ker νT ) = m− dim(Ker ν).

We summarise the results of this section.

Construction 2 The previously described

g(x) = U1(x)D1(x)1/2

gives a chemical Langevin equation (3.3.1) with n − dim(Ker νT ) = m − dim(Ker ν)

independent Wiener processes. Any CLE requires at least this many independent Wiener

processes. ♣

Note that this result is an improvement over Gillespie (2000, Appendix B) and

Wilkinson (2006, p 189) in that both texts claim that generally the number of Wiener

processes d must be no less than n. We will return to the problem of state space reduction

in Section 3.3.4, where we prove that there is an equivalent formulation of the CLE with

n− dim(Ker νT ) states, and as we see here, n− dim(Ker νT ) Wiener processes.

The minimum number of Wiener processes needed is interesting for efficient numer-

ical simulation (Kloeden and Platen, 1992). Notice that the solution in Construction 2

is not satisfactory since U1 is dependent on x. Hence, in a numerical simulation scheme

at each time step a new diagonalisation of B(x) is required, which is computationally

expensive.
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As a first improvement, we propose another approach that results in a g of the same

size, but potentially decreases the requirement for repeated computation at the cost

of increased initial, one-off computation. A substantially different construction will be

presented in Construction 4.

Let W = [W1 W0] ∈ Rn×n be an orthogonal matrix such that the columns of

W0 ∈ Rn×dim(Ker νT ) form an orthonormal basis in the left nullspace of ν, Ker νT , and

the columns of W1 ∈ Rn×(n−dim(Ker νT )) are an orthonormal basis in the orthogonal com-

plement, the image space of ν, Im ν. Let us define the square root M̄ =
√
M of a square

matrix M ∈ Rk×k as any square matrix M̄ ∈ Rk×k such that M̄M̄T = M , if such an M̄

exists.

Construction 3 For notational brevity let A(x) = diag(a(x)). Then

g(x) = W1

√
W T

1 νA(x)νTW1

gives a chemical Langevin equation (3.3.1) with n − dim(Ker νT ) = m − dim(Ker ν)

independent Wiener processes. ♣

Proof We verify that ĝ(x) = W
√
W TνA(x)νTW is an equally valid diffusion term (it

satisfies Eq. (3.2.5)) and that the stated g is equivalent to ĝ. Note that W TνA(x)νTW

and W T
1 νA(x)νTW1 are symmetric positive semi-definite matrices, therefore their square

root can be evaluated as for B(x) earlier. Thus

ĝ(x)ĝ(x)T = WW TνA(x)νTWW T = νA(x)νT
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since W is orthogonal, so Eq. (3.2.5) is satisfied. Also,

W TνA(x)νTW =

 W T
1 ν

0

A(x)

[
νTW1 0

]

=

 W T
1 νA(x)νTW1 0

0 0


shows that it is enough to use the top left block with W T

1 νA(x)νTW1. This is because

when constructing g(x) from this, on the left the columns of W0 would be multiplied by

zeros, and when constructing the CLE (3.3.1) on the right the last dim(Ker νT ) Wiener

processes would be multiplied by zeros. Hence we can omit those. �

This is an improvement over Construction 2 in that here the square root of a state-

dependent (n − dim(Ker νT )) × (n − dim(Ker νT )) matrix is used instead of an n × n

matrix.

3.3.3 A general, state-independent reduction technique

In the previous section a practical constraint for numerical simulations was discussed.

Constructions that require in each time step an eigendecomposition of a state-dependent

matrix are computationally too costly. In the following, we develop a construction in

which, to compute g(x), only matrix products and taking the square root of a state-

dependent diagonal matrix are required. This construction will give a CLE that generally

may need more than n−dim(Ker νT ) = m−dim(Ker ν) independent Wiener processes,

but certainly not more than m.

For a positive integer k, let Ik denote the k× k identity matrix. We say two nonzero

vectors y1, y2 ∈ Rn \ {0} represent the same direction, if there is a λ ∈ R \ {0} such that

y1 = λy2.
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Construction 4 Let s be the number of different directions given by the columns of ν.

There exist matrices J ∈ Rm×s and V ∈ Rs×m such that V A(x)V T ∈ Rs×s is diagonal

with only nonnegative entries and

g(x) = νJ
√
V A(x)V T (3.3.2)

gives a chemical Langevin equation (3.3.1) with s independent Wiener processes, m −

dim(Ker ν) ≤ s ≤ m. ♣

Proof Permute the columns of ν ∈ Rn×m such that ν = [ν1 ν2], where ν1 ∈ Rn×s has

one representative column vector for each direction given by the columns of ν. Then the

columns that are left (ν2) are each a constant multiple of one column in ν1. We permute

the entries of A(x) accordingly.

Let

ν2 = [ν1v
(1) . . . ν1v

(m−s)],

where for all i, v(i) ∈ Rs has one nonzero entry.

Introducing M = [v(1) . . . v(m−s)] ∈ Rs×(m−s), the definitions are

J =

 Is

0

 ∈ Rm×s,

V =

[
Is M

]
∈ Rs×m.

First, partitioning A(x) according to the sizes of blocks of V ,

V A(x)V T =

[
Is M

] A1(x) 0

0 A2(x)


 Is

MT


= A1(x) +MA2(x)MT

= A1(x) +
m−s∑
j=1

(A2(x))jjv
(j)v(j)

T
,
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where the last step follows from

(MA2(x)MT )ik =
m−s∑
j=1

(v(j))i(A2(x))jj(v
(j))Tk .

Since v(j) has only one nonzero entry for all j,
∑m−s

j=1 (A2(x))jjv
(j)v(j)

T
is diagonal with

only nonnegative entries, and consequently V A(x)V T is too. Hence
√
V A(x)V T exists

trivially.

Second,

νJV = [ν1 ν2]

 Is M

0 0

 = [ν1 ν1M ] = [ν1 ν2] = ν.

It follows

g(x)g(x)T = νJ
√
V A(x)V T

(
νJ
√
V A(x)V T

)T
= νJV A(x)V TJTνT = νA(x)νT

so Eq. (3.2.5) is satisfied. The actual form of g is

g(x) = [ν1 ν2]


√
A1(x) +MA2(x)MT

0


= ν1

√
A1(x) +MA2(x)MT

= ν1

√√√√A1(x) +
m−s∑
j=1

(A2(x))jjv(j)v(j)
T
. �

Corollary 3.3.4 There is a formulation of the chemical Langevin equation (3.3.1) that

is constructed from Gillespie’s original CLE by omitting one independent Wiener pro-

cess for each pair of reversible reactions and assigning to the retained Wiener process

either respective stoichiometric vector multiplied by the square root of the sum of the two

propensities. This is computationally inexpensive to numerically simulate. If m1 is the

number of pairs of reversible reactions, then in Gillespie’s formulation there would be
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2m1 Wiener processes for the reversible reactions, while in this formulation there would

only be m1.

In fact, the result is slightly more general than this. Consider chemical systems with

reactions

A+B −→ C

2C −→ 2A+ 2B

 or
A

k1−→ B

2A
k2−→ 2B

 .

In both cases one independent Wiener process can be spared. Note that the reactions

in these examples are at most bimolecular.

3.3.4 State space reduction

Another form of system-size reduction we have not discussed yet is the reduction of the

number of variables. The conservation laws describe linear dependencies between the

counts of molecular species. This can be used to express certain variables as functions of

others. With dim(Ker νT ) linearly independent conservation laws it is possible to reduce

the number of variables from n to n− dim(Ker νT ) without loss of accuracy.

To this end, we specify an invertible matrix T ∈ Rn×n such that Tν will take over

the role of ν. (For aesthetic reasons one may prefer T ∈ Zn×n.) T is just a change of

basis of the state space. To see this, multiply the CLE (3.3.1) with T from the left to

get an equation in a new variable z = Tx:

d(Tx) = Tνa(T−1Tx) dt+ Tg(T−1Tx) dW (t),

or, by letting ◦ denote the composition of functions, and · multiplication (a special

composition), we have

dz = (T · ν · a ◦ T−1)(z) dt+ (T · g ◦ T−1)(z) dW (t).
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We define T such that the last dim(Ker νT ) coordinates of the new state variable z

are the conservation laws, which do not change at all.

We give T for Construction 1 first. Order the columns of ν ∈ Rn×m such that

ν = [νb νc], where the columns of νb ∈ Rn×(m−dim(Ker ν)) form a basis for Im ν, and

νc ∈ Rn×dim(Ker ν) is the collection of the rest of the column vectors. These are linearly

dependent on columns of νb. Then, similarly to Construction 4, there are vectors

w(1), . . . , w(dim(Ker ν)) ∈ Rm−dim(Ker ν),

and a matrix

R = [w(1) . . . w(dim(Ker ν))] ∈ R(m−dim(Ker ν))×dim(Ker ν)

such that νc = νbR. Define ν⊥b ∈ Rn×dim(Ker νT ) such that its columns form a basis of the

orthogonal complement space of Im ν. The last preparatory step to the definition of T

is to note the following fact, which is proved in the appendix of Part I.

Proposition 3.3.5 νTb νb is invertible.

Now let

T =

 (νTb νb)
−1νTb

(ν⊥b )T

 .
(To get an integer-valued T , we may put an appropriate diagonal matrix

D0 ∈ Z(n−dim(Ker νT ))×(n−dim(Ker νT ))

in front of (νTb νb)
−1νTb , and choose ν⊥b ∈ Zn×dim(Ker νT ).) T is invertible, as required: it is

easy to verify that T−1 = [νb ν⊥b ((ν⊥b )Tν⊥b )−1]. Here (ν⊥b )Tν⊥b is invertible for the same

reason as νTb νb.
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Hence

Tν =

 (νTb νb)
−1νTb

(ν⊥b )T

 [νb νc]

=

 Im−dim(Ker ν) (νTb νb)
−1νTb νc

0 0



=

 Im−dim(Ker ν) R

0 0

 .
Therefore in no CLE formulation will the last dim(Ker νT ) variables be affected by

the drift term Tνa(x). Since in Constructions 1 and 4 the first factor in g(x) is ν, the

last dim(Ker νT ) rows of the diffusion term Tg(x) will vanish too. Consequently, the last

dim(Ker νT ) variables of z are constant and can be omitted from a numerical simulation.

The same argument holds for Construction 3, using W1 and W0 instead of νb and ν⊥b ,

respectively, in T . In the case of Construction 2, the state space reduction must pre-

cede the reduction of the number of Wiener processes. This method is very similar to

Construction 3. For Construction 4, a finer partitioning of matrices ν, J, V is proposed.

The detailed calculations are in the appendix of Part I. These considerations prove the

following result.

Theorem 3.3.6 For Constructions 1–4 a state space transformation is possible which

reduces the number of variables from n to n − dim(Ker νT ) = m − dim(Ker ν) without

changing the number of independent Wiener processes.

3.4 Applications

We demonstrate the reduction of the number of independent Wiener processes in the

CLE by three examples. The first example is a simple one merely to illustrate our
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ideas, while the other two systems are models of biological systems of real interest: a

Markov model for a human ether a-go-go related gene (HERG) encoded K+ channel

(Brennan et al., 2009), and the Goldbeter–Koshland switch (Goldbeter and Koshland,

1981), which plays a vital role in many cellular pathways (Huang and Ferrell, 1996). In

order to focus on the application of our main results, we will not carry out the fairly

well-known state space reduction in any example.

3.4.1 A cyclical reaction system

Consider the following ring of m = 3 reactions with n = 3 species, (A1, A2, A3)
T :

A1
k1−→ A2

k3 ↖ ↙ k2

A3

The indexing of reactions follows that of rate constants kj. This specifies the order of

columns in the stoichiometric matrix

ν =


−1 0 1

1 −1 0

0 1 −1

 ,

which has rank 2. The propensity vector function is just

a(x) = (k1x1, k2x2, k3x3)
T .

Gillespie’s diffusion term (Construction 1) is

g1(x) =


−
√
k1x1 0

√
k3x3

√
k1x1 −

√
k2x2 0

0
√
k2x2 −

√
k3x3

 .

As there are no parallel stoichiometric vectors, Construction 4 cannot reduce the number

of Wiener processes.
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Constructions 2 and 3 can be computed analytically for such a small example. In

Construction 2 finding the eigenvalues of the rank 2, 3× 3 matrix requires the solution

of a cubic equation (roots of the characteristic polynomial). But we know that one

eigenvalue is zero and this reduces the problem to a quadratic. This gives D(x). Finding

the eigenvectors is done by solving a linear equation for each nonzero eigenvalue, and

then the vectors need to be normalised to create U1(x).

The calculations giving Construction 3 can be coded in step-by-step instructions.

The orthogonal matrix W can be chosen as

W = [W1 W0] =


−1/
√

2 −1/
√

6 1/
√

3

1/
√

2 −1/
√

6 1/
√

3

0 2/
√

6 1/
√

3

 .

This is computed only once, therefore its computational cost is almost irrelevant. Then

W T
1 νA(x)νTW1 =

 2a1(x) + 1
2
a2(x) + 1

2
a3(x) −

√
3
2
a2(x) +

√
3
2
a3(x)

−
√
3
2
a2(x) +

√
3
2
a3(x) 3

2
a2(x) + 3

2
a3(x)

 .
To take the square root of this or, in general, of a matrix M11 M12

M12 M22

 ,
we can compute the two eigenvalues as the roots of the quadratic characteristic polyno-

mial. These are

λ1,2 =
M11 +M22 ±

√
(M11 −M22)2 + 4M2

12

2
.

The corresponding normalised eigenvectors are

v1 =
1√

(λ1 −M22)2M
−2
12 + 1

 (λ1 −M22)M
−1
12

1

 ,

v2 =
1√

(λ2 −M22)2M
−2
12 + 1

 (λ2 −M22)M
−1
12

1

 .
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Thus

g3(x) = W1

[√
λ1(x)v1(x)

√
λ2(x)v2(x)

]
is the product of a 3× 2 and a 2× 2 matrix, and the CLE requires 2 Wiener processes.

The construction that requires the least computation time hinges on how the cost of

these computations compares to the cost of generating independent Wiener increments

(that is, normal random variables).

3.4.2 A K+ channel

We model the transformations of HERG encoded K+ channels between three closed

states (C1, C2, C3), one open state (O) and one inactivation state (I) as n = 5 chemical

species (C1, C2, C3, O, I)T reacting through m = 10 reactions:

O

k5 ↗↙k6

C1

k1
−→←−
k2

C2

k3
−→←−
k4

C3 k8 ↑↓k7

k9 ↖↘k10

I

(For details, see Brennan et al. (2009) and references therein.) Thus the stoichiometric

matrix is

ν =



−1 1 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0

0 0 1 −1 −1 1 0 0 1 −1

0 0 0 0 1 −1 −1 1 0 0

0 0 0 0 0 0 1 −1 −1 1


,

and the propensity vector function is

a(x) = (k1x1, k2x2, k3x2, k4x3, k5x3, k6x4, k7x4, k8x5, k9x5, k10x3)
T .

58



Gillespie’s formulation (Construction 1) needs 10 Wiener processes with

g1(x) = ν
√

diag(a(x)).

The rank of the stoichiometric matrix ν is 4, which allows for a CLE specification

with 4 Wiener processes. Thus the minimal solutions g2 and g3 from Constructions 2

and 3, respectively, are of the form

g2(x) = U1(x)D1(x)1/2,

g3(x) = W1

√
W T

1 νA(x)νTW1,

where U1(x),W1 are 5×4, D1(x) and
√
W T

1 νA(x)νTW1 are 4×4 matrices, respectively.

With the exception of W1, we could only compute either of these matrices analytically

if we solved a quartic equation. To avoid this laborious task, one can use standard

numerical computations that we do not present here.

On the other hand, Construction 4 gives a simple closed form diffusion term. Indeed,

this is a straightforward example where the number of Wiener processes can be decreased

by half, to 5, with

g4(x) =



−1 0 0 0 0

1 −1 0 0 0

0 1 −1 0 1

0 0 1 −1 0

0 0 0 1 −1


diag



√
a1(x) + a2(x)√
a3(x) + a4(x)√
a5(x) + a6(x)√
a7(x) + a8(x)√
a9(x) + a10(x)


.

3.4.3 The Goldbeter–Koshland switch

This example studied by Goldbeter and Koshland (1981) is a system of covalent mod-

ifications facilitated by two converter enzymes, E1 and E2. A typical example is a
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phosphorylation–dephosphorylation system. It consists of the following m = 6 reactions:

S + E1

k1
−→
←−
k2

C1
k3−→ P + E1,

P + E2

k4
−→
←−
k5

C2
k6−→ S + E2,

with n = 6 chemical species, (S,E1, C1, P, E2, C2)
T . The corresponding stoichiometric

matrix is

ν =



−1 1 0 0 0 1

−1 1 1 0 0 0

1 −1 −1 0 0 0

0 0 1 −1 1 0

0 0 0 −1 1 1

0 0 0 1 −1 −1



,

while the propensity vector function is given by

a(x) = (k1x1x2, k2x3, k3x3, k4x4x5, k5x6, k6x6)
T .

Gillespie’s formulation (Construction 1) with 6 Wiener processes is

g1(x) = ν
√

diag(a(x)).

However, the rank of the stoichiometric matrix ν is 3, which implies that only

3 Wiener processes are needed in the CLE. As with the K+ channel, this can only

be practically computed through numerical computation.

The closed form diffusion term from Construction 4 requires 4 Wiener processes.
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Removing the stoichiometric vectors corresponding to reactions 2 and 5, we have

g4(x) =



−
√
a1(x) + a2(x) 0 0

√
a6(x)

−
√
a1(x) + a2(x)

√
a3(x) 0 0√

a1(x) + a2(x) −
√
a3(x) 0 0

0
√
a3(x) −

√
a4(x) + a5(x) 0

0 0 −
√
a4(x) + a5(x)

√
a6(x)

0 0
√
a4(x) + a5(x) −

√
a6(x)



.

These examples demonstrate cases in which the stoichiometric matrix is rank defi-

cient and a reduction in the number of Wiener processes is possible. In Example 1 there

were no parallel stoichiometric vectors, thus Construction 4 could not be deployed. In

Examples 2 and 3 some Wiener processes could be spared for reversible reactions. These

were also cases in which Constructions 2 and 3 could reduce the system size even further.

3.5 Simulations

In this section, we present computational benchmarking of numerical simulations of

the examples described in Section 3.4. In addition to this, in order to demonstrate

the theory we developed, we compare the numerically computed empirical means and

variances from simulations that use different constructions for g in the CLE (3.3.1). As

we have already stated in Proposition 3.3.1, all these different CLEs have the same finite-

dimensional distributions and thus we expect all moments calculated with different g to

agree (up to Monte Carlo sampling error).

3.5.1 A cyclical reaction system

For this example we chose rate constants to be k1 = k2 = k3 = 0.1 and set the initial

state to be (100, 80, 100)T . Our numerical computations were carried out in Matlab on
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a desktop computer. We integrated using the Euler–Maruyama method (Kloeden and

Platen, 1992) up to time 5 with a time step size 0.005 and generated 104 realisations for

each simulated construction.

We simulated two different CLE formulations: the standard formulation (Construc-

tion 1) and Construction 3. The first needs 3 Wiener processes, while the latter only

needs 2 Wiener processes. In our simulations of Construction 3, we used the explicit

formula from Section 3.4.1 for the square root of the 2× 2 matrix.

For this simple example, the running time required to generate the sample with g

given by Construction 1 was 255 seconds, while with Construction 3 it was 256 seconds.

This lack of computational improvement ought not to be surprising since the time saved

by using one less Wiener process could be expected to be comparable to the time spent

evaluating the complicated exact formula for the matrix square root.

Construction 1 Construction 3

E(X1(5)) 98.41 98.52

E(X2(5)) 87.76 87.62

E(X3(5)) 93.83 93.86

Var(X1(5)) 50.17 51.19

Var(X2(5)) 47.37 47.49

Var(X3(5)) 47.80 48.46

Table 3.1: Comparison of the empirical means and variances in the cyclical reaction

system at time 5 for CLE Constructions 1 and 3.

The results of the comparison of the simulated means and variances using the two

different constructions are presented in Table 3.1. As one can see they agree very accu-

rately, as expected.
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3.5.2 A K+ channel

We chose all rate constants to be kj = 0.1 (j ∈ {1, . . . , 10}) and set the initial state

to be (100, 50, 100, 50, 100)T . We used the Euler–Maruyama integration scheme with a

time step size 0.005 to generate 104 realisations up to time 5.

We simulated two different CLE constructions: the standard formulation (Construc-

tion 1) and Construction 4. The first needs 10 Wiener processes, while the second needs

5 Wiener processes.

For this example, the running time required to generate the sample with g given

by Construction 1 was 455 seconds, while with Construction 4 it was 261 seconds.

This is a saving of approximately 42%. This saving compares to a 50% decrease in

the number of Wiener processes. Through the separate, preceding batch sampling of

Wiener increments, it was established that the saving arose mainly from the decrease

in the computational cost of matrix multiplications to compute the diffusion term. This

observation accentuates the considerable benefit our reduction method can provide. As in

Section 3.5.1 the means and the variances calculated using the two different constructions

agreed (data not shown).

3.5.3 The Goldbeter–Koshland switch

We chose rate constants k1 = 0.05, k2 = 0.1, k3 = 0.1, k4 = 0.01, k5 = 0.1, k6 = 0.1 and

set the initial state to be (110, 100, 30, 30, 100, 30)T . We generated 104 realisations up to

time 5 with the Euler–Maruyama method, with a time step size 0.005.

In our simulations, we compared the standard formulation (Construction 1) with the

reduced one, Construction 4. Whereas the first requires 6 Wiener processes, the latter

only needs 4.
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The running time required to generate the sample for Construction 1 was 349 seconds,

while for Construction 4 it was 254 seconds. Therefore the saving in computational time

was approximately 27%, which is the result of a 33% reduction in the number of Wiener

processes. Just as in the previous two cases, the means and the variances calculated

using the two different constructions agreed (data not shown).

3.6 Criticism of the chemical Langevin equation

The forthcoming section explores issues with the CLE that have so far been swept under

the carpet in this work. Specifically, we discuss the question of existence and uniqueness

of solutions.

Let us make some simplifying but very classical assumptions. Suppose that all re-

actions are at most second order (at most two molecules interact in each) and that the

kinetics follow the law of mass action. For reactions where two molecules of the same

species Si react, we stipulate that the propensity function is of the form aj(x) = krx
2
i ,

instead of the combinatorially justified krxi(xi−1). This is more in line with the contin-

uous nature of the CLE and causes considerable difference only at molecular numbers so

low that are outside the normal application regime of the CLE. This assumption implies

that aj(x) > 0 even if xi < 2, down to 0. From the modelling perspective krxi(xi − 1)

would be more accurate but it would still allow reactions to occur if xi ∈]1, 2[. Our

choice will simplify the treatment of the behaviour at the boundary: we will not need

to distinguish between molecular counts falling to 1 or to 0.

We will observe that the trajectories exit the nonnegative orthant with positive

probability (Section 3.6.1). We will also find that in certain cases the state may explode

in finite time, but identifying all such cases remains a challenging open problem (Sec-
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tion 3.6.2). A sketch proof using a standard technique will be given as to how to define

the trajectories of the stochastic process sequentially on the open positive orthant when

the coefficients are only locally Lipschitz (Section 3.6.3), as they are in our case. We

will revisit the fundamental result of this chapter, Proposition 3.3.1, to refine its proof

in the light of these findings (Section 3.6.4). The analysis in this section, Section 3.6, is

original and unpublished, except for Example 3.6.2.

For reference, we recapitulate that the original formulation of the CLE is the follow-

ing:

dX(t) = νa(X(t)) dt+
m∑
j=1

ν·j

√
aj(X(t)) dWj(t). (3.2.6)

This is the formulation we will use for the following arguments.

3.6.1 Species in the chemical Langevin equation can become

negative

The starting observation of this line of argument is that the nonnegativity of the variables

will be violated with positive probability at all time instances in the CLE model of even

simple chemical systems. This has been noted in the literature only very recently (Wilkie

and Wong, 2008; Szpruch and Higham, 2010), but we expose this phenomenon in greater

generality.

The great concern is that we cannot have negative numbers under the square roots

in (3.2.6), but we also expect our model to reflect the physical reality by assigning

nonnegative values to molecular counts (or concentrations).

In practice (that is, in computer simulations) this problem does not necessarily ap-

pear. This is because the probability of negativity is small so it may not be encountered

in the finite sample that the computer generates. But in theory — particularly when the
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weak solution is considered instead of the strong solution, that is, the trajectories that

the simulations generate — this means that the CLE is seriously flawed and it ought to

be replaced by an improved SDE model.

We give three increasingly general cases of how (and why) trajectories will leave the

nonnegative orthant. The first has been in the folklore for some time, the second was

discussed by Wilkie and Wong (2008) and Szpruch and Higham (2010), and the third is

a new and unpublished finding.

Example 3.6.1 The case in which the problem can be seen most easily is the consti-

tutive production of a species, say Si:

∅ k1−→ Si.

Let us assume that this is reaction R1 among m reactions. Its propensity is a1(x) = k1.

Then, with νi· denoting the ith row of ν, the row corresponding to Si in the CLE is

dXi(t) = νi·a(X(t)) dt+
√
k1 dW1(t) +

m∑
j=2

νij

√
aj(X(t)) dWj(t). (3.6.1)

Here
√
k1 dW1(t) is an additive noise term. Hence, for any t > 0 and M > 0,

P

(∫ t

0

√
k1 dW1(s) < −M

)
> 0.

Therefore no matter what the other terms are on the right-hand side of Eq. (3.6.1),

this reaction in itself can drive Xi negative in any short time interval with positive

probability. For instance, it makes no difference what the drift term is; it can only shift

the distribution of Xi upwards but it will not prevent it from having an infinitely long

tail towards negative values. �

Example 3.6.2 Wilkie and Wong (2008) and Szpruch and Higham (2010) gave re-

versible isomerisation as an example. This example has two molecular species and two
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reactions:

S1
k1
−→
←−
k2

S2.

In this case the total number of molecules is conserved: XT = X1(t) + X2(t). The row

that corresponds to S1 in the CLE is

dX1(t) = −k1X1(t) dt+ k2X2(t) dt

−
√
k1X1(t) dW1(t) +

√
k2X2(t) dW2(t),

or after substituting the above conservation law,

dX1(t) = −k1X1(t) dt+ k2(XT −X1(t)) dt

−
√
k1X1(t) dW1(t) +

√
k2(XT −X1(t)) dW2(t).

When X1(t) is close to zero, then X2(t) = XT −X1(t) will be close to XT . If X1(t) is

below some fixed value, then X2(t) is bounded from below. Similarly to Example 3.6.1,

it is enough to consider the diffusion terms for our argument. Under the assumption

that k2(XT −X1(t)) is bounded from below,
√
k2(XT −X1(t)) dW2(t) will be similar to

the additive noise term of Example 3.6.1. The same argument applied here proves that

this noise term on its own can drive X1(t) negative.

When X1(t) is close to the other end of the [0, XT ] interval, close to XT , a similar

argument with the roles of X1 and X2 reversed proves that X2 can become negative

with positive probability.

This example is mathematically equivalent to the ion channel model that Dangerfield,

Kay, and Burrage (2010) studied. The authors proposed to replace the CLE model

for this system with the Wright–Fisher model from population genetics because that

preserves the interval constraint on the state. �
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Example 3.6.3 The same phenomenon is present in the most typical reactions, like

Sh
k1−→ Si (h 6= i), or

Sh1 + Sh2
k1−→ Si (h1, h2 6= i).

For the second reaction (the argument holds for the first too), the row of the CLE for

Si is

dXi(t) = νi·a(X(t)) dt+
√
k1Xh1(t)Xh2(t) dW1(t)

+
m∑
j=2

νij

√
aj(X(t)) dWj(t). (3.6.2)

For this argument, we suppose that Sh1 and Sh2 do not appear on the reactant side of

any other reaction. Again, for any t > 0 and M > 0,

P

(∫ t

0

1 dW1(s) < −M
)
> 0.

As there is an independent Wiener process W` associated with each reaction channel R`,

the event

{
for all ` ∈ {2, 3, . . . ,m} and u ∈ [0, t],∫ u

0

νi`a`(X(s)) ds+

∫ u

0

νi`
√
a`(X(s)) dW`(s) is bounded

}
(3.6.3)

has positive probability (we have just stipulated that none of the a`(x) is dependent on

xh1 or xh2). Therefore, if M is large enough, then on the event {
∫ t
0

1 dW1(s) < −M} the

first noise term
√
k1Xh1(t)Xh2(t) dW1(t) can dominate the right-hand side of Eq. (3.6.2).

Thus with positive probability Xi will decrease. As it approaches zero, as neither Sh1

nor Sh2 is used on the reactant side in any other reaction, the propensity a1(X(u)) will

remain bounded from below:

a1(X(u)) = k1Xh1(u)Xh2(u) ≥ k1Xh1(0)Xh2(0) > 0. (3.6.4)
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So the term that is forcing Xi towards zero will not vanish and there will be nothing to

prevent Xi becoming negative. By requiring low enough bounds in Eq. (3.6.3) for each

reaction channel it can also be guaranteed that with positive probability neither Xh1(u)

nor Xh2(u) decreases by so much when they are on the product side of reactions in

{R2,R3, . . . ,Rm} that Eq. (3.6.4) is violated. This completes the argument. �

Why certain variables become negative with a positive probability can be understood

from Section 3.1, the derivation of the CLE by Gillespie (2000). That argument replaced

nonnegative Poisson random variables with normal random variables, for each reaction

channel separately. However, the left tail of the normal distribution is unbounded. In

Example 3.6.3 the drift pushes Xi towards ever higher positive values but the Wiener

noise effectively makes the reaction channel reversible (although the reverse direction

will have a small probability). As the reaction propensity is only dependent on the

left-hand side of the reaction, the right-hand side can become negative due to this

backwards-acting noise by creating Sh1 and Sh2 from Si.

Note that this phenomenon is inherently multidimensional. In the example Xi be-

comes negative because its noise is dictated by the other molecular counts (Xh, or Xh1

and Xh2).

Therefore it will not be surprising what Wilkie and Wong (2008) proposed in or-

der to preserve nonnegativity in the CLE. They recommend that for each reaction, the

corresponding noise term should be kept only in the equations of species that are reac-

tants of that reaction. The noise term should be omitted from the equations of species

that appear only on the product side of the reaction. However, this leads to kinetics

where mass is not conserved in individual reactions. We think this is too high a price to

pay. The authors are forced to reinterpret the meaning of this noise which only affects

the reactant but not the product side; they stipulate that it is due to the temporary
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unavailability or the release of reactant molecules by clustering, caging, adsorption or

similar processes. This modified CLE, even if nonnegativity preserving, is no longer a

quantitative model of intrinsic noise.

Numerical analysts are in a disadvantaged situation to recognise this negativity issue

with the CLE. If a simulation runs into negative territory, it is typically attributed to the

time step being too long. The observation underlying this is that the reaction intensities

converge to zero with the decreasing number of reactants (Sh, Sh1 or Sh2). What we

have just shown is that it is not one of these molecules, but Si whose count may become

negative. The logically incorrect step, as we can see it now, is to prematurely deduce that

if one of the species’ counts becomes negative, it must have been caused by discretisation

error. The following quotation from Sotiropoulos et al. (2009, p 472) is a typical example

which suggests that many users of the CLE have an incomplete view of the negativity

issue:

‘Every time the integration failed, we decreased the time step [. . . ]; 5×10−5 s

was the first time step for which the integration did not fail, i.e., species pop-

ulations did not attain negative values. [. . . ] In the remainder of the present

work, whenever we state that the integration fails for larger time steps, it is

assumed that we followed a similar approach to arrive at the selected time

step.’

We verified this claim and found that in each of their three examples, with step sizes that

they had found too long, negativity arose immediately in the first time step. In each case

it was caused by the drift and not the diffusion term. In this case the authors were right,

and the discretisation error was responsible for negativity. However, we suspect that in

the CLE modelling framework reversible reactions, like Example 3.6.2 or the complex

formation in the simple enzymatic reaction associated with Michaelis and Menten, often
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drive scarce molecular species negative due to the reason we discussed. It is important

that users of the CLE are aware of this possibility.

3.6.2 Problems to be addressed in any proof of existence and

uniqueness

As we have just seen, it is a fundamental property of the CLE that its trajectories can

exit the nonnegative orthant. In this section we conduct a survey into what challenges

there are which one needs to overcome in order to guarantee a unique solution for the

CLE on an infinite time horizon.

Textbooks typically give the following set of sufficient conditions for the existence

and uniqueness of strong solutions for SDEs. (For our purposes the possibility of time-

dependence of the coefficients will be ignored.)

Theorem 3.6.4 Let f : Rn → Rn and g : Rn → Rn×d be measurable functions

satisfying

|f(x)|+ |g(x)| ≤ C(1 + |x|) (3.6.5)

for all x ∈ Rn and some constant C (where |g(x)|2 =
∑

i,j |gij(x)|2) and such that

|f(x)− f(y)|+ |g(x)− g(y)| ≤ D|x− y| (3.6.6)

for all x, y ∈ Rn and some constant D. Let Z be a random variable taking values in Rn

which is independent of the σ-algebra F∞ generated by (W (t))t≥0 and such that

E
(
|Z|2

)
<∞.

Then the SDE

dX(t) = f(X(t)) dt+ g(X(t)) dW (t), X(0) = Z

71



has a unique t-continuous solution X(t, ω) with the property that for all t ≥ 0, X(t, ω)

is adapted to the filtration (FZt ) generated by Z and (W (s))0≤s≤t and

E

(∫ t

0

|X(s)|2 ds

)
<∞.

(This is Theorem 5.2.1 in Øksendal (2007), but it can also be found as Theorem 1.1

in Chapter 5 of Friedman (1975); Theorem 2.9 in Chapter 5 of Karatzas and Shreve

(1998). See also Theorem 10.6 in Chung and Williams (1990).)

In fact, there is redundancy in these conditions: the global Lipschitz property (3.6.6)

implies at most linear growth (3.6.5). Instead, it is enough to require local Lipschitzness

and linear growth.

The CLE does not satisfy the Lipschitz condition (3.6.6): its diffusion term g(x) =

ν diag(
√
a(x)) is not Lipschitz, only locally Lipschitz on the open, strictly positive or-

thant ]0,∞[n because of the square roots. If there are reactions involving two molecules

of the same species (second-order or higher), particularly a dimerisation with propen-

sity aj(x) = kjx
2
i , then the Lipschitz condition will also be violated by f(x) = νa(x) as

xi →∞.

The violation of Condition (3.6.5) can cause the state to explode in finite time. We

can even give a simple chemical example.

Example 3.6.5 Consider the following chemical reaction system:

2S1
k1−→ 3S1.

The corresponding CLE is

dX1(t) = k1X1(t)
2 dt+

√
k1|X1(t)| dW1(t), X1(0) = a > 0.

If we take the expectation of both sides and look at the remaining ODE (the reaction

rate equation), then by Jensen’s inequality

dE(X1(t)) = k1E
(
X1(t)

2
)

dt ≥ k1E(X1(t))
2 dt.
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The ODE

d

dt
x(t) = k1x(t)2, x(0) = a > 0

can be solved explicitly:

x(t) =
a

1− ak1t
,

and this blows up by t = 1
ak1

. Since E(X1(t)) increases at least as rapidly as x(t), and

their initial conditions are identical, so it too must blow up by that time. �

Obviously, such a reaction is unlikely to form part of a reaction system. However, in

general it cannot be expected that some conservation law (e.g. the conservation of mass

or the conservation of the number of atoms of certain elements) holds for each reaction

channel, certainly not in practical biochemical applications. The reason for this is that

very often only the counts and the reactions of macromolecules (such as nucleic acids,

proteins) are modelled, simple molecules and building blocks of complex molecules (e.g.

ATP, nucleotides, amino acids) are assumed to be abundant enough not to be a limiting

factor. Thus in applications one often writes reactions like

gene −→ gene + mRNA, or

mRNA −→ mRNA + protein.

In complex biochemical networks with such non-conserving reactions it is unclear whether

there is a possibility for runaway production of a molecular species as in Example 3.6.5.

One would like to give as general conditions as possible under which the existence of a

solution of the CLE that does not explode in finite time can be guaranteed.

At the most conservative end of the spectrum, one can impose the conservation of

mass for each reaction channel. In this case the state space is the compact set given

by the intersection of the stoichiometric subspace with [0,∞[n, and state explosion is

not possible. One is interested in how much this condition can be relaxed such that
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state explosion still cannot occur in finite time. In many models we do expect that

variables will ultimately tend to infinity. In a cell cycle model DNA (and essentially

all constituents of a cell) will need to be doubled by the end of the cell cycle. If cell

division is not incorporated into the model, then the biochemical processes are expected

to generate exponentially increasing masses of each molecular species.

In the deterministic reaction rate equation setting, with law of mass action kinetics,

trajectories starting from a nonnegative initial state remain nonnegative. If the chemical

reaction system is weakly reversible (the definition of this classical notion would require

some prerequisites, therefore we choose to direct the reader to Feinberg, 1987), then

there is a bounded subset of the positive orthant S ⊂]0,∞[n such that for every strictly

positive initial state the trajectory will enter S and will remain inside S for all time after

a certain threshold that is dependent on the initial state (August and Barahona, 2010).

This means that weak reversibility rules out finite time explosion in the deterministic

model under the law of mass action.

The development of comparably general results for the stochastic case is left for

future research (Chapter 10).

3.6.3 A strong existence and uniqueness proof for the

chemical Langevin equation on the strictly positive

orthant

We now consider how to define strong solutions of the CLE taking into account that

close to the boundary the diffusion term satisfies Ineq. (3.6.6) only locally. We have

already indicated that for large values of the variables, the drift term too may only

satisfy a local Lipschitz condition. For this argument we require that the initial state is
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a strictly positive deterministic vector, x0 ∈]0,∞[n.

One may take positive sequences (εk) ↘ 0 and (Kk) ↗ ∞ (that is, the sequence

(εk) is monotonically decreasing and converges to 0, and (Kk) monotonically increases

to infinity) such that ε1 < (x0)i < K1 for all i ∈ {1, . . . , n}. For each element ω of

the probability space, we define the (continuous) path of the stochastic process up to

stopping times

τk(ω) := inf{t ≥ 0 | X(t, ω) /∈]εk, Kk[
n given X(0, ω) = x0}

sequentially. This can be achieved by replacing g(x) = ν diag(
√
a(x)) with some gk such

that for each k ∈ N their restrictions to ]εk, Kk[
n coincide:

g �]εk, Kk[
n= gk �]εk, Kk[

n,

gk(x) is zero whenever at least one coordinate of x is nonpositive and gk is globally

Lipschitz. This implies that gk satisfies the linear growth condition (3.6.5). Similarly, f

can be modified outside ]εk, Kk[
n (more specifically, for all i ∈ {1, . . . , n} for xi > Kk)

such that fk meets conditions (3.6.5) and (3.6.6). Then Theorem 3.6.4 can be applied

to the SDEs

dXk(t) = fk(Xk(t)) dt+ gk(Xk(t)) dW (t).

For each ω, the strong solutions Xk(t) of these SDEs have the property that for k1 < k2,

(
Xk1(t, ω)

)
0≤t≤τk1 (ω)

=
(
Xk2(t, ω)

)
0≤t≤τk1 (ω)

,

that is, Xk2(t) extends Xk1(t), but it coincides with the trajectory we wish to define as

the solution of the CLE up to τk2 , which is greater than τk1 . This is a standard technique,

e.g. compare with Section 5.3 in Durrett (1996).

The sequence of stopping times τk(ω) is strictly increasing. Therefore it has some

limit τ(ω), either finite or infinite. We define the trajectory of the CLE, X(t), up to

75



but excluding τ(ω). If τ(ω) =∞, then the trajectory thus constructed is defined for all

t ≥ 0. If τ(ω) is finite, then the trajectory may have a limit as t → τ(ω), which limit

may have a coordinate that is zero (the trajectory reached the boundary), or that has

diverged to infinity (finite time explosion).

Let us summarise what we found in this section. The CLE, the standard SDE model

for chemical reaction kinetics, poses several challenges to a rigorous analysis of the

existence and uniqueness of its solutions. Its diffusion coefficient satisfies the Lipschitz

condition on the positive orthant ]0,∞[n only locally. In certain chemical systems the

state may explode in finite time but in this it does not differ from the deterministic

reaction rate equation model. Neither the drift nor the diffusion coefficient vanishes

on the boundary. Therefore extending them to be zero on the entire Rn outside the

nonnegative orthant is not a continuous extension. This is of importance for a proof of

Proposition 3.3.1: either we aim to prove the existence and uniqueness of a solution to

the Kolmogorov forward equation or to the martingale problem, most references give

uniqueness results which require that the coefficients are continuous on the entire Rn.

3.6.4 Revisiting Proposition 3.3.1: the proof of the weak

equivalence of our alternative formulations

Lastly, we will reconsider the statement which was at the heart of the development of

different formulations of the CLE. This is motivated by the more accurate understanding

that has been developed over the past few pages of the subtle issues with defining the

solution of the CLE. The second proof of Proposition 3.3.1 used the martingale problem

formulation, and implicitly assumed that the process is defined on the entire Rn. Now we

can make a rigorous argument that takes into account that the coefficients of the CLE

are only defined on the nonnegative orthant. The coefficients are only locally Lipschitz
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on the strictly positive orthant; for example, on sets of the form ]ε,K[n (0 < ε < K)

they are bounded and Lipschitz.

For this argument we will rely on Chapter 1 of Pinsky (1995). The main result that

we will need to invoke is in its Section 1.13, The generalized martingale problem on

D ⊆ Rn. Notice, first, that here the martingale problem is defined on a subset of Rn.

Second, the word generalised refers to the fact that this setup will allow the explosion of

the corresponding stochastic process. We need to introduce some new definitions now.

Let D ⊆ Rn be a domain (an open, connected set), and let (Dk)k∈N\{0} be an in-

creasing sequence of bounded domains in Rn such that for all k, for the closure of Dk,

D̄k ⊆ Dk+1 holds, and D =
⋃∞
k=1Dk. Let D̂ := D∪{∆} denote the one-point compacti-

fication of D: if D is bounded, then ∆ is identified with ∂D, the boundary of D; if D is

unbounded, then ∆ is identified with ∂D extended with the ‘point at infinity’. With the

introduction of an appropriate metric on D̂ (Pinsky, 1995, Section 1.12), let C([0,∞[, D̂)

denote the space of continuous functions ω from [0,∞[ to D̂ with the topology of uni-

form convergence (with respect to the metric on D̂) on bounded intervals. The choice of

the trajectories themselves as elementary events (the so-called canonical construction)

is already manifest. Similarly to the previous section, the first exit time from Dk will be

required:

τk(ω) := inf{t ≥ 0 | ω(t) /∈ Dk}.

Define τD := limk→∞ τk. Now

Ω̂D := {ω ∈ C([0,∞[, D̂) | either τD(ω) =∞

or τD(ω) <∞ and for all t > τD(ω), ω(t) = ∆}.

Let B̂D denote the Borel σ-algebra on Ω̂D and define the filtration B̂Dt := σ ((ω(s))0≤s≤t).

Then we have B̂D = σ
(

(B̂Dt )0≤t<∞

)
= σ

(
(B̂Dτk)k∈N\{0}

)
.
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Let Sn denote the set of real symmetric positive semidefinite n × n matrices. With

f : D → Rn and B : D → Sn, we define the following differential operator on D:

L =
n∑
i=1

fi(x)
∂

∂xi
+

1

2

n∑
i,k=1

Bik(x)
∂2

∂xi∂xk
.

For each k ∈ N \ {0}, let ψk be a smooth function: ψk ∈ C∞(Rn,R), satisfying ψk �

Dk = 1, ψk � Rn \Dk+1 = 0 and 0 ≤ ψk ≤ 1. Define fk : Rn → Rn and Bk : Rn → Sn

by

fk = ψkf,

Bk = ψkB + (1− ψk)In.

We define Lk on Rn similarly to L, with fk and Bk in the place of f and B. For s, t ∈ R,

let s ∧ t := min{s, t}. Following these preparatory steps, we are ready to define the

generalised martingale problem on D and state important results about it.

The generalised martingale problem for L on D For each x0 ∈ D̂, find a

probability measure Px0 on (Ω̂D, B̂D) such that

1. Px0(ω(0) = x0) = 1;

2. h(ω(t ∧ τk))−
∫ t∧τk
0

Lh(ω(s)) ds is a martingale with respect to (Ω̂D, B̂Dt ,Px0) for

all k ∈ N \ {0} and all h ∈ C2(D).

Theorem 3.6.6 (Pinsky, 1995, Theorem 1.13.1) Let f : D → Rn and B : D →

Sn be locally bounded and measurable on D and assume that B is continuous on D and

that

n∑
i,k=1

Bik(x)yiyk > 0, for all x ∈ D and y ∈ Rn \ {0}. (3.6.7)

Then there exists a unique solution {Px0 | x0 ∈ D̂} to the generalised martingale problem

for L on D. Letting {Px0
(k) | x0 ∈ Rn} denote the unique solution to the martingale problem
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on Rn for Lk with coefficients fk and Bk, then Px0 � B̂Dτk = Px0
(k) � Bτk for all k ∈ N \ {0}

and all x0 ∈ D (where Bτk has been identified with B̂Dτk in the obvious way). The family

{Px0 | x0 ∈ D} possesses the Feller property and the family {Px0 | x0 ∈ D̂} possesses the

strong Markov property. Furthermore, the sub-probability measure Px0(ω(t) ∈ ·) on D

possesses a density pt(x0, x) and for any finite stopping time σ,

Px0(ω(σ + t) ∈ B | B̂Dσ ) = Pω(σ)(ω(t) ∈ B)

for all t ≥ 0 and B ⊆ Rn Borel. If

lim
k→∞

Px0
(k)(τk ≤ t) = 0 for all t > 0 and x0 ∈ D,

then {Px0 | x0 ∈ D} in fact solves the martingale problem for L on D.

The following is an immediate consequence.

Theorem 3.6.7 (Pinsky, 1995, Theorem 1.13.2) Let DP, DQ ⊆ Rn be domains.

Let fP : DP → Rn and BP : DP → Sn be locally bounded and measurable. With

these coefficients, define LP in the usual way. Let fQ : DQ → Rn, BQ : DQ → Sn and

LQ satisfy the respective conditions. Let {Px0 | x0 ∈ D̂P} solve the generalised martingale

problem for LP on DP and let {Qx0 | x0 ∈ D̂Q} solve the generalised martingale problem

for LQ on DQ. Let U ⊆ DP ∩DQ be a domain on which the coefficients of LP and LQ

coincide. Assume that these coefficients, when restricted to U , satisfy the conditions of

Theorem 3.6.6. Then for all x0 ∈ U , Px0 � BτU = Qx0 � BτU . (BτU has been identified

with B̂DP
τU

and B̂DQ
τU in the obvious way.)

These two theorems will be directly applied to prove our equivalence statement. An

issue that needs to be dealt with is that the diffusion matrix of the original CLE (3.2.6),

B(x) = ν diag(a(x))νT , does not generally satisfy Condition (3.6.7) due to the existence

of conservation laws (compare with Proposition 3.3.2). This failure to meet the positive
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definiteness criterion is called the degenerate case in the theory of martingale problems

(Stroock and Varadhan, 1997). In order to rectify this issue, we will carry out a state

space reduction on the CLE (Section 3.3.4), and apply Theorem 3.6.6 to a reduced,

(n− dim(Ker νT ))-dimensional formulation.

It is clear that if a basis transformation is applied to this reduced CLE formulation

whose corresponding generalised martingale problem has a unique solution, or the state

space of this reduced CLE is embedded into a higher dimensional space, the solution

will still be essentially the same. Therefore we may state our equivalence result allowing

for such contingencies. In fact, it is vital to do so; otherwise even the equivalence of the

original CLE (3.2.6) and its (n− dim(Ker νT ))-dimensional reduced form would not be

covered.

Proposition 3.6.8 Let x0 ∈]0,∞[n. Let N ∈ N, N ≥ n − dim(Ker νT ). Assume that

there exist invertible matrices

T =

 T1

T0

 ∈ Rn×n, S =

 S1

S0

 ∈ RN×N

such that T1 ∈ R(n−dim(Ker νT ))×n, T0 ∈ Rdim(Ker νT )×n, S1 ∈ R(n−dim(Ker νT ))×N , S0 ∈

R(N−n+dim(Ker νT ))×N and T0ν = 0. Consider functions

b : S←1 (T1(]0,∞[n))→ RN , and

σ : S←1 (T1(]0,∞[n))→ RN×d

(here S←1 (T1(]0,∞[n)) ⊆ RN is the preimage of T1(]0,∞[n) under S1) which are locally

Lipschitz, satisfy the linear growth conditions (3.6.5) and for which S0b = 0 and S0σ = 0

hold. Let (Ek)k∈N\{0} be an increasing sequence of bounded domains in ]0,∞[n such that

x0 ∈ E1, for all k, Ēk ⊆ Ek+1 holds, and
⋃∞
k=1Ek =]0,∞[n. With these and a d-
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dimensional standard Wiener process W̃ , consider the SDE

dξ(t ∧ τξ) = b(ξ(t ∧ τξ)) dt+ σ(ξ(t ∧ τξ)) dW̃ (t), (3.6.8)

ξ(0) = ξ0 ∈ S←1 (T1(]0,∞[n)),

which is stopped at

τξ := lim
k→∞

inf
{
t ≥ 0

∣∣∣ ξ(t) /∈ S←1 (T1(Ek))
}
.

If

S1ξ0 = T1x0, (3.6.9)

S1b

(
S−1

(
·

S0ξ0

))
= T1νa

(
T−1

(
·

T0x0

))
, (3.6.10)

S1σ

(
S−1

(
·

S0ξ0

))
σ

(
S−1

(
·

S0ξ0

))T
ST1 = T1ν diag

(
a

(
T−1

(
·

T0x0

)))
νTT T1 ,

(3.6.11)

(Eqs. (3.6.10) and (3.6.11) are required to hold on T1(]0,∞[n)), then the stopped SDE

(3.6.8) has essentially the same finite-dimensional distributions as the CLE (3.2.6)

started from x0 and stopped at

τ]0,∞[n = lim
k→∞

inf
{
t ≥ 0

∣∣∣ X(t) /∈ Ek
}
.

(In different terminology: the two have essentially the same law.) Here essentially refers

to that the finite-dimensional distributions of Eqs. (3.2.6) and (3.6.8) are bijectively

connected by linear transformations: for any ` ∈ N, t1, . . . , t` ≥ 0 and Borel sets

B1, . . . , B` ⊆ Rn−dim(Ker νT ),

P(S1ξ(t1 ∧ τξ) ∈ B1, . . . , S1ξ(t` ∧ τξ) ∈ B`) =

= P(T1X(t1 ∧ τ]0,∞[n) ∈ B1, . . . , T1X(t` ∧ τ]0,∞[n) ∈ B`).

81



Proof Theorem 3.6.4 and considerations in Section 3.6.3 give that both the stopped

SDE (3.6.8) and the stopped CLE (3.2.6) have unique strong solutions. The state space

reduction discussed in Section 3.3.4 can be applied to Eq. (3.6.8) with matrix S and to

the CLE (3.2.6) with matrix T . The conditions S0b = 0, S0σ = 0 and T0ν = 0 imply that

certain entries of the new variables, namely S0ξ0 and T0x0, will be constant. They still

influence the propensity functions, but they can be treated as fixed parameters. Thereby

both Eqs. (3.6.8) and (3.2.6) have been reduced to (n−dim(Ker νT ))-dimensional SDEs.

To each corresponds a generalised martingale problem on the domain D = T1(]0,∞[n) ⊆

Rn−dim(Ker νT ), and each has a solution provided by the corresponding strong solution.

By Eqs. (3.6.10) and (3.6.11), the two generalised martingale problems are the same; its

coefficient f equals Eq. (3.6.10), and B equals Eq. (3.6.11).

Now we check that the conditions of Theorems 3.6.6 and 3.6.7 are satisfied. The right-

hand sides of Eqs. (3.6.10) and (3.6.11) show that the local boundedness, measurability

and continuity conditions are met.

To check Condition (3.6.7), pick any y ∈ Rn−dim(Ker νT ) \ {0} and consider the right-

hand side of Eq. (3.6.11). The propensity a is evaluated in T−1
(
T1(]0,∞[n)

T0x0

)
, that is, in a

general element of ]0,∞[n, so all its coordinates are positive. For the sake of simplicity,

let them be denoted by ã1, . . . , ãm. Since T is invertible, the rows of T1 are linearly

independent. Therefore yTT1 6= 0. Also, νTT T1 y 6= 0, because if T T1 y ∈ Ker νT was the

case, then yTT1 would be generated by the rows of T0 (they form a basis in Ker νT ),

which contradicts that the rows of T1 and T0 combined are linearly independent. From

νTT T1 y 6= 0 it follows that diag(
√
ã1, . . . ,

√
ãm)νTT T1 y 6= 0, because the ã1, . . . , ãm are

all positive. Thus

0 <
∣∣∣diag(

√
ã1, . . . ,

√
ãm)νTT T1 y

∣∣∣2 = yTT1ν diag(ã1, . . . , ãm)νTT T1 y,

so B is positive definite everywhere on T1(]0,∞[n). Consequently, the two theorems
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apply. In Theorem 3.6.7, we can choose U = DP = DQ = T1(]0,∞[n). This gives that

the reduced, stopped SDE (3.6.8) has the same finite-dimensional distributions as the

reduced, stopped CLE (3.2.6).

The original stopped SDEs can be retrieved by appending S1ξ0 (or T1x0) to the

reduced state vector of Eq. (3.6.8) (of Eq. (3.2.6), respectively) and applying S−1 (T−1,

respectively). �

We required local Lipschitz and linear growth conditions for b and σ in order to

ensure the existence of strong solutions. This is because the application we have in mind

is the numerical simulation of trajectories. Without the linear growth condition, finite

time explosion becomes possible. We could have substituted these conditions with the

weaker local boundedness and continuity conditions from Theorem 3.6.6. In that case,

the existence of a solution would have followed from Theorem 3.6.6 and the inverse

linear transformation under S and T of the weak solution. To identify the solution on

D = T1(]0,∞[n), one can choose Dk = T1(]εk, Kk[
n) for all k ∈ N\{0} in Theorem 3.6.6,

similarly to Section 3.6.3.

We proved our equivalence result for the CLE with mass action kinetics, but gener-

alisations to wider classes of propensity functions a are possible.

We quickly demonstrate the use of Proposition 3.6.8 in practice by showing the

equivalence of the four constructions developed earlier in this chapter. Recall that the

variability in formulations hinged on how g : [0,∞[n→ Rn×d in the SDE

dX(t) = νa(X(t)) dt+ g(X(t)) dW (t) (3.3.1)

was chosen under the condition g(x)g(x)T = ν diag(a(x))νT . We sometimes used the
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shorthand A(x) = diag(a(x)). Consider Constructions 1, 3 and 4:

g1(x) = ν
√

diag(a(x)),

g3(x) = W1

√
W T

1 νA(x)νTW1,

g4(x) = νJ
√
V A(x)V T .

Construction 1 is the original CLE (3.2.6), the reference to which Constructions 3 and 4

will be compared; the latter ones will be used as Eq. (3.6.8). Here W = [W1 W0] ∈

Rn×n was an orthogonal matrix such that the columns of W0 ∈ Rn×dim(Ker νT ) form

an orthonormal basis in Ker νT , and the columns of W1 ∈ Rn×(n−dim(Ker νT )) are an

orthonormal basis in Im ν. We can pick these as the basis transformation matrices in

all three cases. Note how simple this example is: all three processes live in the same

n-dimensional space, the basis transformation is only required to meet the positive

definiteness condition (3.6.7) in a lower dimensional space. With

T1 = S1 = W T
1 and T0 = S0 = W T

0 ,

T0ν = W T
0 ν = 0, S0νa(x) = W T

0 νa(x) = 0, and both S0g
3(x) = W T

0 W1

√
W T

1 νA(x)νTW1

= 0 and S0g
4(x) = 0 are satisfied. Obviously, we choose x0 = ξ0, so Eq. (3.6.9) holds.

Eq. (3.6.10) is satisfied because all our constructions use the same drift term. Eq. (3.6.11)

follows from that g is always chosen to satisfy g(x)g(x)T = ν diag(a(x))νT .

Therefore the conditions of Proposition 3.6.8 are all satisfied. The solution to the

generalised martingale problem can be lifted up into the original space by multiplication

with T−1 = S−1 = W from the left. So the three SDE constructions, each stopped when

it leaves the positive orthant, have the same finite-dimensional distributions.

The case of comparing Construction 2,

g2(x) = U1(x)D1(x)1/2,
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to Construction 1 calls for the application of

T1 = S1 = U1(x)T and T0 = S0 = U0(x)T

as basis transformation matrices. However, these are now state dependent. T0ν = U0(x)Tν

= 0 due to Proposition 3.3.2, S0νa(x) = U0(x)Tνa(x) = 0, and S0g
2(x) = U0(x)TU1(x)D1(x)1/2

= 0 all hold for any x ∈]0,∞[n. Eqs. (3.6.9), (3.6.10) and (3.6.11) hold as in the case

of Constructions 3 and 4. It is also important to verify that the latter two equations

provide valid coefficients for the generalised martingale problem. Local boundedness,

measurability and continuity (in Theorem 3.6.6) follow from the well-known continuity

of the eigendecomposition (that gives U(x) and D(x)) as a function of the matrix. Hence

Proposition 3.6.8 applies.

It is worth mentioning here that the argument of Section 3.6.3 about pathwise ex-

istence is directly applicable to Construction 4 as well. For Constructions 2 and 3, one

also needs that taking the square root via the eigendecomposition of the diffusion ma-

trix ν diag(a(x))νT (or of W T
1 νA(x)νTW1, respectively) is not only a continuous but a

locally Lipschitz function of the state. Since the propensity functions are polynomials

with degree not greater than 2, the conditions of Theorem 6.1.2 of Friedman (1975) or

Theorem 5.2.3 of Stroock and Varadhan (1997) are satisfied in ]0,∞[n and these give

the locally Lipschitz property as required.

We conclude by reiterating that the greatest deficiency of the CLE stems from the

fact that its diffusion coefficient does not vanish on the boundary — trajectories may

leave the nonnegative orthant with positive probability. There may exist a natural,

consistent way to define a boundary behaviour that prevents the state from leaving the

nonnegative orthant (e.g. reflection in a prespecified direction). Still, this fundamental

problem may suggest that the entire CLE model needs to be reconsidered and a new

SDE approximation to the discrete Markov jump process is needed for a satisfactory
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continuous stochastic reaction kinetics model.
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Chapter 4

Summary of the results of Part I

In Part I, we have given a thorough analysis of the form of the chemical Langevin

equation (CLE). We proved that the finite-dimensional distribution of the Itô diffusion

process described by the CLE does not change if the diffusion term g(x) = ν
√

diag(a(x))

of the standard form is replaced by another one as long as it satisfies (3.2.5), g(x)g(x)T =

ν diag(a(x))νT . We explored different ways how the factorisation of the right-hand side

can be carried out.

Via the combination of the factorisation with the minimum number of columns in

g (Section 3.3.2) with a state space reduction by the removal of dependent variables

(Section 3.3.4), we showed that the CLE can be given in a form where there are as

many independent Wiener processes as there are linearly independent variables. This

is also the number of independent stoichiometric vectors, that is, the dimension of the

linear space spanned by the update vectors, rank ν. Neither the number of variables nor

the number of Wiener processes can be further reduced without loss of accuracy of the

system description. The number of Wiener processes can be reduced independently from

the state space reduction: one can carry out just one or the other or both. Indeed, the
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state space reduction was achieved by multiplying the state x and the functions f and g

by a matrix T from the left and by compensating for this by ‘fitting’ both f and g with

an ‘input converter’ T−1, which are ‘external’ changes. The reduction in the number of

Wiener processes relies on what happens with the entirety of g(x)g(x)T , that is, on the

internal structure of g(x).

Due to the stoichiometric constraints, after its release from the initial state, a chem-

ical reaction model can only move within a (rank ν)-dimensional affine subspace of the

full n-dimensional state space. The state space reduction reflects this geometric con-

straint. One of our contributions is that we found that this many, rank ν, independent

Wiener processes are sufficient (and also necessary) to describe the distribution of the

process given by the CLE at any time instance t. The eigendecomposition used for

Construction 2 is apparently just an algorithm to disentangle the directions (locally)

in which the m Wiener processes of the standard CLE fluctuate to rank ν orthogonal

directions.

Another contribution of this work is that we showed using the same mathematical

framework that in the case where there are m1 pairs of reversible chemical reactions

and m2 irreversible reactions there is another, transparent formulation of the CLE with

only m1 + m2 Wiener processes, whereas the standard form uses 2m1 + m2. This new

form can be seen to be more intuitive than the standard approach. At the heart of

this construction is a transformation in which the two Gaussian noise processes that

correspond to the two directions of a reversible reaction are replaced by a single one

with variance equal to the sum of the two variances.

It is important to distinguish our system-size reduction methods from model reduc-

tion techniques, such as time scale separation applied to multiscale systems (Sotiropoulos

et al., 2009; Kang et al., 2010). Ours are not approximations but transformations of the
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CLE which avoid information loss about the statistical properties of the CLE model of

the kinetics of the chemical system. In computer jargon, ours are ‘lossless compression’

methods (of the information content of the diffusion matrix B(x)) as opposed to model

reduction approaches that are ‘lossy’.

We illustrated these ideas by considering alternative forms of the CLE for a HERG

ion channel model and the Goldbeter–Koshland switch. We showed that considerable

savings in running time can be achieved when using the reduced form of the CLE for

numerical simulation. We believe that all software implementations of the CLE should

include this reduced form. This would only require a small change in code and would ac-

celerate simulation without changing the statistical properties of the generated stochas-

tic process. The CLE is an important tool for the analysis and simulation of multiscale

chemical reaction systems and it is vital to choose its most appropriate or most efficient

formulation according to the requirements of the application.

The problem with the boundary behaviour of the CLE underscores the importance of

using the CLE only in the appropriate regime, where all species are sufficiently abundant,

and the state is far from the boundary. The genuine solution would be the development

of a nonnegativity preserving SDE model for chemical reaction kinetics.
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Chapter A

Appendix. Proofs deferred from

Chapter 3

A.1 Proof of Proposition 3.2.1

Proof For ease of notation we will drop the time variable t from x(t). We apply the

multidimensional Itô’s formula. This states that when substituting time t and a diffusion

process x(t) into a function u(t, y) : R× Rn → R,

du(t, x) =
∂u(t, x)

∂t
dt+

n∑
i=1

∂u(t, x)

∂yi
dxi +

1

2

n∑
i,k=1

∂2u(t, x)

∂yi∂yk
dxi dxk

holds, where the rules for computing dxi dxk are dt dt = dt dWj,t = dWj,t dt = 0,

dWj,t dWj′,t = δjj′ dt (for all j, j′ ∈ {1, . . . , d}, δjj′ is the Kronecker delta) (Øksendal,

2007), where these are approximations that hold in an o(dt) sense. Applying the formula
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with u(t, y) = yiyk gives

d(xixk) = 0 + (xk dxi + xi dxk) +
1

2
(dxi dxk + dxk dxi)

= (xk dxi + xi dxk)

+
1

2
2

(
fi(x) dt+

d∑
j=1

gij(x) dWj(t)

)

×

(
fk(x) dt+

d∑
j′=1

gkj′(x) dWj′(t)

)

= (xk dxi + xi dxk)

+
d∑
j=1

d∑
j′=1

gij(x)gkj′(x) dWj(t) dWj′(t)

=

(
xkfi(x) dt+ xk

d∑
j=1

gij(x) dWj(t)

+xifk(x) dt+ xi

d∑
j=1

gkj(x) dWj(t)

)

+
d∑
j=1

gij(x)gkj(x) dt.

Taking the expectation on both sides yields

dE
(
xixk

)
= E

(
xkfi(x)

)
dt+ E

(
xifk(x)

)
dt+

d∑
j=1

E
(
gij(x)gkj(x)

)
dt,

which is just another form of Eq. (3.2.3). �

A.2 Proof of Proposition 3.3.2

Proof If y ∈ Rn \ {0} is a left nullvector of ν, yTν = 0, then it is trivially a nullvector

of B(x):

B(x)y = ν diag(a(x))νTy = 0.

In the other direction, if B(x)y = 0, we first prove that y is a left nullvector of the

factor in Gillespie’s factorisation,

σ(x) = ν diag(
√
a1(x), . . . ,

√
am(x)).
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Indeed, 0 = B(x)y = σ(x)σ(x)Ty, hence 0 = yTσ(x)σ(x)Ty = |σ(x)Ty|2 = |yTσ(x)|2, so

yTσ(x) = 0 and y is a left nullvector to σ(x).

The left nullvectors of σ(x) and ν are the same, since
√
a1(x), . . . ,

√
am(x) are all

positive by assumption. Therefore y is a left nullvector of ν, as claimed. �

A.3 Proof of Proposition 3.3.3

Proof The column rank of ν ∈ Rn×m is just dim(Im ν). It is well known that

dim(Im ν) + dim(Ker ν) = m.

The row rank of ν is the column rank of νT , or dim(Im νT ). Similarly,

dim(Im νT ) + dim(Ker νT ) = n.

It is also well known that the column and row ranks are always equal. Therefore

m− dim(Ker ν) = rank ν = n− dim(Ker νT ). �

A.4 Proof of Proposition 3.3.5

Proof By its definition, the columns of

νb ∈ Rn×(m−dim(Ker ν)) = Rn×(n−dim(Ker νT ))

are linearly independent. Using this, we will prove that the kernel of

νTb νb ∈ R(n−dim(Ker νT ))×(n−dim(Ker νT ))

is trivial, hence νTb νb is full rank.

Let y ∈ Rn−dim(Ker νT ) \ {0} be a nullvector of νTb νb, ν
T
b νby = 0. Then 0 = yTνTb νby =

|νby|2, so νby = 0. By the linear independence of the columns of νb, y is zero. �
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A.5 State space reduction for Construction 4

For Construction 4, a finer partitioning of matrices ν, J, V is proposed. Let us order

the columns of ν ∈ Rn×m such that ν = [ν1 ν2 ν3 ν4], where the columns of ν1 ∈

Rn×(m−dim(Ker ν)) form a basis for Im ν; ν3 is the collection of the column vectors that

are constant multiples of any single column of ν1; the columns of ν2 represent all the

directions specified by columns of ν that are distinct to directions of the columns of ν1

(columns of ν2 are linearly dependent on columns of ν1, they are a linear combination of

more than one); and finally ν4 is the collection of the column vectors that are constant

multiples of any single column of ν2. Let the sizes of these matrices define r2, r3 and r4

such that ν2 ∈ Rn×r2 , ν3 ∈ Rn×r3 , ν4 ∈ Rn×r4 . Obviously, m− dim(Ker ν) + r2 = s, and

r2 + r3 + r4 = dim(Ker ν). The entries of A(x) are permuted accordingly, and then A(x)

is partitioned into blocks.

Such a choice specifies the matrices

R ∈ R(m−dim(Ker ν))×r2 ,

M3 = [v(1) . . . v(r3)] ∈ R(m−dim(Ker ν))×r3 ,

M4 = [w(1) . . . w(r4)] ∈ Rr2×r4 ,

such that ν2 = ν1R, ν3 = ν1M3, ν4 = ν2M4, and all v(i) and w(k) have only one nonzero
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entry each. Then let

J =



Im−dim(Ker ν) 0

0 Ir2

0 0

0 0


∈ Rm×s,

V =

 Im−dim(Ker ν) 0 M3 0

0 Ir2 0 M4

 ∈ Rs×m,

J having first r3 then r4 rows of zeros.

The construction is again as in Eq. (3.3.2). For the sake of notational clarity, let

C1(x) = A1(x) +

r3∑
j=1

(A3(x))jjv
(j)v(j)

T ∈R(m−dim(Ker ν))×(m−dim(Ker ν)),

C2(x) = A2(x) +

r4∑
j=1

(A4(x))jjw
(j)w(j)T ∈ Rr2×r2 .

Then

V A(x)V T =

 C1(x) 0

0 C2(x)


is diagonal, νJV = ν and Eq. (3.2.5) hold. Defining T with ν1 in the role of νb,

g(x) = ν1

[ √
C1(x) R

√
C2(x)

]
,

T g(x) =


√
C1(x) R

√
C2(x)

0 0

 ,
whose nonzero blocks together are in R(m−dim(Ker ν))×s, as required.
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Part II

Optimal experiment design for

discrimination between rival

biochemical models
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Chapter 5

Motivation for the mathematical

design of experiments

In Part I our focus was on the development, justification and understanding of a certain

mathematical modelling framework for biochemical reaction kinetics. In Part II our

attention will turn to choosing the best model for a particular biological system within

a simpler, fixed modelling framework, the deterministic reaction rate equation. We note

here that the methods we will develop apply to other nonlinear ODE models too.

A successful modelling effort is necessarily an iteration between changing the model

and testing the new one by experimentation. Testing the accuracy and fitness for purpose

of a mathematical description of any physical process should be done by confronting it

with experimental data. At the same time, models should inform the design of new

experiments.

Traditionally, experiments have been designed using heuristic approaches: experi-

ence, intuition, or simple causal analyses. Evidently, such heuristically designed experi-

ments are not always maximally informative, a great impediment given the labour, mon-
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etary cost and effort expended on the implementation of experiments or the development

of new measurement techniques. As a result, it is becoming increasingly necessary to

systematically design more informative experiments, in order for the iterative modelling

process to result in reliable models at the lowest possible cost.

Our view on the computational modelling of biological networks is that the itera-

tive modelling procedure should have three stages: model identification (model fitting),

model discrimination (in which a new experiment is designed) and model invalidation

(using the new experimental data). Note that we talk about invalidation and not about

validation; we will explain this shortly. The new experiment may give new insights that

can lead to the modification of the best model, thus closing the flow-chart of this iterative

process into a cycle. All three tasks present serious challenges, and remain important

areas of research.

5.1 Previous work on optimal experiment design

for biochemical reaction systems

5.1.1 Experiment design for system identification

To date, the majority of studies addressing experiment design for biological reaction

systems have considered system identification. In this area, experiments are designed

such that the resulting data are most informative about model structure or parameter

values — see, for example, Barrett and Palsson (2006) and Feng and Rabitz (2004);

Gunawan, Gadkar, and Doyle III (2006); Bandara et al. (2009), respectively. Several

groups studied statistically orientated frameworks for optimal structure identification

(Casey et al., 2007) or for parameter identification (Casey et al., 2007; Balsa-Canto
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et al., 2008). These approaches aim to find the weighted least squares of differences

between data and model prediction and make use of the Fisher information matrix and

the associated notions of A-, D- and E-optimality. In this framework, Yue et al. (2008)

examined optimally designed parameter estimation methods that are robust to model

uncertainties (robust experiment design).

5.1.2 Experiment design for model discrimination

In numerous practical situations, accumulated biological knowledge about the system of

interest can constrain the set of plausible model structures. In such a case, several dif-

ferent model structures may be proposed based on corresponding biological hypotheses.

Experiment design in this context aims for the effective discrimination between these

well-defined alternative models. In particular, several mathematical models of similar

complexity, each corresponding to a different network topology, can fit the available set

of experimental data and describe the behaviour of this system within error bounds re-

flecting uncertainty in experimental environment and inaccuracies of measurements. For

instance, network determination algorithms (such as the ones developed by August and

Papachristodoulou, 2009a) yield such alternative models. Discriminatory experiment

design can then be used to differentiate between the models.

Various aspects of model discriminatory experiment design have been addressed in

the literature. Bardsley, Wood, and Melikhova (1996) investigated the problem of how

measurements should be spaced in time to perform an optimally discriminating experi-

ment between two models, and how many of them are required. More specifically, they

compared different patterns of measurement spacings (geometric versus uniform spacing

of points in time, or uniform spacing on the axis that corresponds to the state). Chen

and Asprey (2003) developed statistical approaches to parameter estimation, the assess-
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ment of model fit and model discrimination, assuming that the response variables are

uncertain. In this framework, model discrimination is based on a Bayesian approach,

which assigns prior probabilities to each model, updates these after each experiment

and chooses the model with the likelihood that has become sufficiently large compared

to others. An alternative frequentist method uses repeated hypothesis tests to reject

models one by one. Donckels et al. (2009) separated the uncertainty of the model pre-

dictions and the uncertainty of the measurements and used these to design the next

experiment such that it is most informative. As opposed to the traditional approach,

here the expected information content of the newly designed experiment is also taken

into account (anticipatory design) in order to assess the uncertainties more accurately.

Kreutz and Timmer (2009) gave a review of approaches to parameter estimation and

model discrimination (discussing the Akaike Information Criterion, the likelihood ra-

tio test and alternative forms of the sum of squared differences between two models’

outputs). They also discussed relevant classical statistical aspects of experiment design,

such as randomisation, replication and confounding.

Tidor and co-workers (Apgar et al., 2008) developed dynamic model-based controllers

that drive the output along a prescribed target trajectory (usually a constant output).

If such a control input signal achieves the required output trajectory in an experiment,

then the model is more accurate than another model which gives a different output

trajectory for this particular input. Kremling et al. (2004) presented three methods

for optimal pairwise discriminating experiment design, and compared them on a test

example. Their first method compares combinations of certain initial input levels and

subsequent changes in input in order to determine which combination will lead to the

largest difference in the outputs. Their second method replaces models with their lin-

earised counterparts in order to find a sinusoidal input with a frequency that maximises
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the difference between phase shifts of the two models. Their third method follows the

work by Chen and Asprey (2003), and aims to find an input profile that brings the

output responses of the two models as far apart as possible. The distance is measured

by a weighted objective function. The weighting is set up such that if the measurement

error of an output variable is large, then the difference of these outputs contributes less

to the weighted objective function. The authors concluded that the most appropriate

method strongly depends on the possible ways to stimulate the system and the quality

of the measurements.

5.1.3 Closing the cycle: model invalidation

The findings of model discriminatory experiments feed into model invalidation proce-

dures (Anderson and Papachristodoulou, 2009). The experiments need to be carefully

designed and implemented to produce new data that show system behaviour that cannot

be represented by a particular model. This can be used to invalidate a seemingly good

but incorrect model.

Note that, logically, one can never validate a model. At best, a model will be capable

of explaining all available data and can be tested against some of its predictions. There-

fore, narrowing down on the correct model can only be done from the other direction

through invalidation, by systematically ruling out incorrect models.

5.2 Problem formulation

5.2.1 Overview

Our work addresses the problem of model discrimination. We present a framework for

defining and designing optimally discriminating experiments, that is, experiments that
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are the best (in some mathematically defined but practically meaningful way) at dis-

criminating between rival models.

There are cases when it is difficult or even impossible to distinguish between rival

models due to the incomplete observability of their internal states. Tests exist to identify

such cases (August and Papachristodoulou, 2009b). Even when model discrimination is

possible, it can be expected to be difficult as the starting assumption is that the rival

models both describe all available data well.

Our key principle is to maximise the difference between the outputs of two different

models, in particular, the L2-norm of the output difference. Although similar in principle,

our investigation follows a direction distinctly different from and more practical than the

work by Chen and Asprey (2003): we use deterministic models that do not take account

of measurement noise directly. Instead, we try to make the outputs of the two models

as distant as possible to ensure that even a noisy measurement has a good chance of

discriminating between them.

We discuss three approaches to achieve this goal. In the first approach, the Initial

condition design for model discrimination, we find the initial state of the system which

results in the most discriminating output between the two examined models. This is a

result by Papachristodoulou and El-Samad (2007).

The second method, Design of structural changes for model discrimination, combines

optimal initial condition choice with optimal systemic modifications. The latter reflects

the assumption that in the experiment it is possible, for example, to up- or downregulate

the expression of certain genes, either through genetic manipulations or other techniques,

such as RNA interference (RNAi) technology. The gene product may be an enzyme whose

concentration is not explicitly modelled but is reflected in a chemical rate constant, or

some protein which exists in (possibly various) phosphorylated and dephosphorylated
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forms such that the sum of their concentrations is constant. In our mathematical model

this means a free choice in some parameter values within given intervals.

The third method, Input design for model discrimination, is a novel one. It assumes

the possibility for external stimulation during the experiment and searches for the best

such stimulus from a set of allowable stimuli. This approach is reminiscent of, but differ-

ent from, the second method in Kremling et al. (2004) — there, the difference between

phase shifts is maximised, whereas in our method the difference between amplitudes is

maximised.

In all three approaches, the problems are cast in an optimisation framework and

the sum of squares (SOS) technique (Parrilo, 2000) is used for the experiment design,

allowing us to treat the nonlinear system descriptions directly. The theoretical results

are demonstrated by the application of each method to a discrimination problem for

two models of signal processing for chemotaxis in Dictyostelium discoideum amœbæ.

5.2.2 Mathematical formalisation of the problem

In the following we consider different models describing the same biological system by

a set of autonomous ODEs. This can be the reaction rate equation using mass action

kinetics, but other formalisms are possible, like generalised mass action or Michaelis–

Menten kinetics. In general, the ith model takes the form

dxi(t)

dt
= fi(xi(t)) + gi(xi(t))u(t),

yi(t) = hi(xi(t)), (5.2.1)
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where

u : [0, ∞[→ Rq denotes the input function,

xi : [0, ∞[→ Rni the state, and

yi : [0, ∞[→ R` the output function.

The input functions (and the output functions, respectively) are of the same dimension

for each model. Function gi is matrix valued, with size ni × q. The structure of the

functions fi, gi and hi will depend on the modelling framework in use to describe the

biological system, but we assume that all of them are smooth. We will use the shorthand

ẋi(t) := dxi(t)
dt

for the differential of a function with respect to time.

The output function represents measurements an experimenter obtains from the

system, and the input function represents the stimuli or perturbations the experimenter

introduces to the system during the experiment. For mathematical simplicity we assume

that the input does not affect the output directly.

In this work our aim is to discriminate between two models of the form Eq. (5.2.1)

(i ∈ {1, 2}), which have n1 and n2 state variables, respectively. As these two models

represent the same underlying biological system, we require that they both admit the

same steady states and fit already available experimental data. Our aim is to design the

next experiment that will facilitate their discrimination. A natural way to formulate the

discrimination problem is to concatenate the two models and generate the difference

between their outputs: with

x(t) =

 x1(t)

x2(t)

 , f(x) =

 f1(x1)

f2(x2)

 , g(x) =

 g1(x1)

g2(x2)

 ,
h(x) = h1(x1)− h2(x2), y(t) = y1(t)− y2(t),
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the concatenated system is

ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)). (5.2.2)

We call an experiment optimal, if the difference between the outputs of the two

models (y1 − y2) is maximal over a set of experimental perturbations of bounded ‘size’.

In technical terms, we aim to pick the best point in a set of allowable perturbations

of the initial state conditions (Initial condition design for model discrimination), the

set of some admissible parameter changes and the set of common initial conditions

(Design of structural changes for model discrimination), or the set of allowable inputs u

(Input design for model discrimination) in order to maximise the L2-distance between

the outputs of the two rival models:

‖y‖2 = ‖y1 − y2‖2 =

(∫ ∞
0

∑̀
k=1

(y1k(t)− y2k(t))2 dt

) 1
2

.

To help interpretation, we implement a change of coordinates that places the inves-

tigated steady state to zero in both models. We assume that the outputs are identical

in this common steady state, now the origin: h1(0) = h2(0). Throughout this work it is

also assumed that the examined steady state is asymptotically stable in both models in

Eq. (5.2.2).

Since experiments must be implemented in finite time, we require that the designed

input u has compact support. For convenience, we sometimes relax this requirement and

only assume that u is ‘very small’ after a certain time. Clearly, since there is only one

experimental setup in reality, the input u must be identical for the two models.

In the case of linear systems, the description of the concatenated system (5.2.2)
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becomes

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t), (5.2.3)

with

x(t) =

 x1(t)

x2(t)

 ∈ Rn1+n2 , A =

 A1 0

0 A2

 ∈ R(n1+n2)×(n1+n2),

B =

 B1

B2

 ∈ R(n1+n2)×q, C = [C1 − C2] ∈ R`×(n1+n2). (5.2.4)

We assume that all eigenvalues of both A1 and A2 have negative real parts (we call

these matrices Hurwitz ), thus they define asymptotically stable systems. This makes A

Hurwitz too.
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Chapter 6

Initial condition design and its

extension to the design of optimal

structural changes for model

discrimination

6.1 Initial condition design for model

discrimination

Many biological experiments drive a cellular system into an informative out-of-equilibrium

state (e.g. heat shock, osmotic shock, chemical stimulus) and then glean information

from the patterns of return to equilibrium in the absence of an input. In an optimisa-

tion formulation this amounts to searching for normalised initial condition x1(0) = x2(0)

for the two models between which one wishes to discriminate that maximises the output
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difference ‖y‖2 — where y is defined in Eq. (5.2.2) — for the unforced system (u = 0).

Here we assume that the two alternative model representations of the system are written

in terms of the same chemical species, thus n1 = n2 =: n.

6.1.1 Linear case

If x1(0) is not required to be equal to x2(0), then the solution can be borrowed from

standard results in linear systems theory. In particular, the optimal direction for the

initial value of Eq. (5.2.3) can be found by the following procedure.

1. Find a symmetric, positive semidefinite matrix P ∈ R2n×2n that solves the so-called

observability Lyapunov equation

ATP + PA+ CTC = 0.

The solution P is called the observability gramian (Dullerud and Paganini, 2000).

It is known to satisfy

P =

∫ ∞
0

eA
T tCTCeAt dt.

2. Find the normalised eigenvector x̄ ∈ R2n (|x̄| = 1) corresponding to the largest

eigenvalue λ̄ of P , that is, for λ̄ find x̄ such that

Px̄ = λ̄x̄.

Indeed, the direction x(0) = x̄ gives the maximum output L2-norm (output energy),

since the output is y(t) = CeAtx(0) and the output energy is given by

‖y‖22 = x(0)TPx(0). (6.1.1)
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However, this computation is not satisfactory since an experimentally meaningful initial

condition should satisfy x1(0) = x2(0) = x̂ ∈ Rn. To enforce this condition, we can

partition P into blocks of size n× n,

P =

 P11 P12

P T
12 P22

 .

With this decomposition, the optimal initial state is the unit norm eigenvector x̂ corre-

sponding to the largest eigenvalue of the matrix

R = P11 + P22 + P12 + P T
12.

To see this, substitute x(0) =
(
x̂
x̂

)
∈ R2n in Eq. (6.1.1) to get:

‖y‖22 = x̂TRx̂.

Hence ‖y‖22 is maximised exactly when x̂ is the eigenvector corresponding to the largest

eigenvalue of R.

6.1.2 Nonlinear case

The ideas behind model discrimination in the linear case can be generalised for applica-

tion to nonlinear systems. However, we cannot explicitly compute the exact difference

in the outputs of the two rival models ‖y‖2. Our approach avoids simulations and con-

centrates on finding an upper bound on ‖y‖2 using storage functions (Willems, 1972a,b)

and sum of squares algorithmic relaxations of the resulting optimisation problem.

To determine an upper bound on ‖y‖2 for the nonlinear system (5.2.2), suppose there
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exists a continuously differentiable function S : R2n → R satisfying

S ≥ 0, S(0) = 0, and (6.1.2)

for all x ∈ D, − ∂S(x)

∂x
f(x)− h(x)Th(x) ≥ 0, (6.1.3)

where D is a neighbourhood of the steady state defined by

D =

{(
x1
x2

)
∈ R2n

∣∣∣∣ |x1| ≤ α, |x2| ≤ α

}
(6.1.4)

for some α > 0. Here we assume that D does not include states which are not physically

meaningful, and the value of α will ensure this. This implies that the system is dissipative

with supply rate −h(x)Th(x). Suppose that the system is released from an initial state

x(0) inside the largest level set of S that fits into D, so that |x1(0)| = |x2(0)| = β ≤ α.

(Note that here in the nonlinear case assuming that the initial state is normalised to

unit length would restrict generality.) In this case, integrating condition (6.1.3) and

using ∂S
∂x
f(x) = dS

dt
, we get

∫ T

0

h(x(t))Th(x(t)) dt ≤ S(x(0))− S(x(T )).

If we let T →∞, then

‖y‖22 =

∫ ∞
0

h(x(t))Th(x(t)) dt

≤ S(x(0))− lim
T→∞

S(x(T )) ≤ S(x(0)), (6.1.5)

by the nonnegativity of S. This implies that ‖y‖22 ≤ S(x(0)), since condition (6.1.3) is

valid within the whole region D and level sets of S are invariant. Hence we have found

a way to bound ‖y‖22, which requires constructing the function S.

It is worth noting that the result from the linear and nonlinear cases have a similar

purpose. Whereas in the linear case the result is rooted in a Lyapunov equality and
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provides optimal solution, in the general nonlinear case one has to be content with an

estimate given by inequality (6.1.5).

A condition missing from the above construction is that the two system models must

be released from the same initial state. Hence, following from our discussion in the linear

case, one has to construct an appropriately modified S, Ŝ(x̂) := S(
(
x̂
x̂

)
) (x̂ ∈ Rn). In the

linear case, the desired initial conditions correspond to those that maximise the quadratic

form x̂TRx̂. That is, the optimal direction was that of the eigenvector corresponding to

the largest eigenvalue of matrix R. This is also exactly the direction corresponding to

the smallest semi-axis of the ellipsoid x̂TRx̂ = r for some r > 0. In other words, we were

looking for

inf
{
γ > 0

∣∣∣ {x̂ ∈ Rn | |x̂| = β, x̂TRx̂ ≥ γ} = ∅
}
.

Similarly to the linear case, in the nonlinear case we will also use a geometric ar-

gument to achieve initial condition design. Here, Ŝ(x̂) plays the role of the quadratic

form x̂TRx̂, and one can now decrease γ > 0 from infinity until the shrinking level set

{
(
x̂
x̂

)
∈ R2n | Ŝ(x̂) = γ} touches D′ = {

(
x1
x2

)
∈ R2n | |x1| ≤ β, |x2| ≤ β}. Therefore, we

need to solve the following optimisation problem:

minimise γ,

such that for all x̂ ∈ Rn, |x̂| = β :

Ŝ(x̂)− γ ≤ 0. (6.1.6)

The sequence of results presented so far asserts that the presence of a function S

with the properties delineated above provides an upper bound on the difference in output

energies of two rival models.

This information can be exploited to generate experimental initial conditions that

drive the system towards this bound. These methods, however, do not prescribe how
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one should go about finding such a function. Constructing a nonnegative function is in

general a difficult problem. However, advances in the theory of sum of squares provide

a computationally tractable way to relax this problem (Parrilo, 2000). In a nutshell,

instead of searching for a general nonnegative function, we can constrain our search

to functions that can be parameterised as sums of squares of polynomials. Within this

class, the problem can be solved through semidefinite programming, with a polynomial

time algorithm (see Appendix B, Sections B.1 and B.2).

Therefore, our strategy to find a near optimal initial state for the nonlinear model

discrimination is a two-step process. First, we construct an SOS function S that satisfies

conditions (6.1.2) and (6.1.3). In the second step, we search for the direction in which

Ŝ is maximal, that is, we solve the optimisation problem (6.1.6). The details are given

in Appendix B, in Section B.2.

6.2 Design of structural changes for model

discrimination

A class of experiments is based on the introduction of internal changes (genetic and

biochemical manipulations) to the system. To mirror such experiments, we develop a

methodology to choose numerical changes of parameters in the system that maximise

the difference between the outputs of two rival models of its internal structure. Since two

such models are different, they do not necessarily have the same number of parameters.

Therefore the design concentrates on the parameters that the models have in common,

which we denote by pj (j ∈ {1, . . . ,m}). We assume that their values can be chosen

within closed intervals [aj, bj] (where bj ≥ aj ≥ 0 for all j), that is, p ∈ Π, where

Π :=
∏m

j=1[aj, bj] ⊂ Rm. We rewrite Eq. (5.2.2) to underline the dependence of the
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model on those parameters as

ẋ(t) = f(x(t), p) + g(x(t), p)u(t),

y(t) = h(x(t)),

with

x(t) =

 x1(t)

x2(t)

 , f(x, p) =

 f1(x1, p)

f2(x2, p)

 , g(x, p) =

 g1(x1, p)

g2(x2, p)

 ,
h(x) = h1(x1)− h2(x2), y(t) = y1(t)− y2(t),

and again assume that n1 = n2 = n, u = 0, f1(0, p) = f2(0, p) = 0 (for every p ∈ Π),

h1(0) = h2(0) and let

D =

{(
x1
x2

)
∈ R2n

∣∣∣∣ |x1| ≤ α, |x2| ≤ α

}
.

The steady state of either model may change with changing parameter p. Therefore the

assumption f1(0, p) = f2(0, p) = 0 should be interpreted as a change of coordinates

that shifts the steady state of each model to the origin individually for each p. We are

not interested in how far the two equilibria shift per se, which is an algebraic problem,

instead we are interested in the difference in their dynamic responses. This would reflect

a situation in which a change in parameters would not be reflected in a significant change

in the steady state but which could result in a substantial difference in the dynamics of

the system.

As with the previous method, our methodology will rely on the construction of an

appropriate function S that sets an upper bound on the difference between the outputs of

the two models, followed by a computationally efficient formulation for the construction

of this function using SOS.
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For the above system, suppose that there exists a function S : R2n ×Π→ R which

is sufficiently smooth and satisfies

S ≥ 0, for all p ∈ Π, S(0, p) = 0, and

for (x, p) ∈ D × Π, −∂S(x, p)

∂x
f(x, p)− h(x)Th(x) ≥ 0. (6.2.1)

Then

‖y‖22 =

∫ ∞
0

h(x(t))Th(x(t)) dt

≤ S(x(0), p)− lim
T→∞

S(x(T ), p) ≤ S(x(0), p) (6.2.2)

if the system is released from an initial state (x(0), p) ∈ D × Π where x(0) is in a level

set of S entirely contained in D, |x1(0)| = |x2(0)| = β ≤ α. The last inequality in (6.2.2)

holds since S(x, p) ≥ 0.

The computational relaxation and implementation of the search for the function S

is presented in Appendix B, Section B.3. Once this function has been constructed, one

can extract the optimal point x̂ and parameter point p̂ that maximises the difference

between the measured outputs of the two models.
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Chapter 7

Input design for model

discrimination

A powerful approach to discriminate between two plausible models of a molecular bio-

logical system is to design an experimental input that maximally differentiates between

the dynamical behaviours of the outputs of the two models. If this input generates

qualitatively different patterns in the model outputs, then one can subject the actual

physical system to this designed input and then eliminate the model which differs from

this pattern. We study this general form of the optimally discriminating input problem:

Given

 ẋ1(t)

ẋ2(t)

 =

 f1(x1(t))

f2(x2(t))

+

 g1(x1(t))

g2(x2(t))

u(t),

y = h1(x1(t))− h2(x2(t)),

x1(0) = x2(0) = 0,

find the input u, ‖u‖2 ≤ 1,

such that ‖y‖2 is maximal.
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The system gain (or L2-gain) is the quantity given by

sup{‖y‖2 | ‖u‖2 ≤ 1} = sup{‖y‖2 | ‖u‖2 = 1}.

We assume that the input (or in our numerical example, the perturbation of the

input from a basal value) is of unit L2-norm (in other words, is of unit energy) at most.

This assumption can be made without loss of generality as one can scale the equations

accordingly, depending on the amount of input (ligand) available and the constraints of

the system under study. Our goal is to maximise the difference between the two model

outputs over a transient period after application of the new input. Recall that the two

models describe currently available data equally well. Hence it can be assumed that

for the same basal input they have the same pre-stimulus steady states and the same

outputs.

Solving this optimisation problem in order to generate the maximally informative

input is computationally challenging. In fact, even the first order condition of optimality

is a 2(n1 +n2)-variable ODE with boundary conditions at both ends of the time interval

(for n1 + n2 variables the boundary conditions are at the beginning of the interval, for

the remaining n1 + n2 variables they are at the end; Bryson and Ho, 1975).

For that reason, our strategy is an approximative one. We approximate the maximally

discriminating input with the maximally discriminating input of the linearisation of

system (5.2.2) in Section 7.1. Then in Section 7.2 we assess the suitability of this (possibly

suboptimal) input for the nonlinear system by comparing the ‖y‖2 value it achieves

when fed into the nonlinear system to the greatest ‖y‖2 value over the set of all possible

inputs (the latter is just the L2-gain of system (5.2.2)). This gain will again be computed

approximately using an SOS decomposition approach.

The benefits of this strategy reside in the fact that we can use established, simple

methods to find an input that gives the maximal L2-norm output for the linearised

118



system. Although this input may well be suboptimal, its effectiveness can be assessed.

As we have just said, this input can be applied to the nonlinear system, and a com-

parison made how the realised output L2-norm compares to the optimal, maximally

discriminating L2-gain.

7.1 Designing an input profile using linearisation

Designing an input profile for optimal discrimination using linearisation is more easily

addressed in the frequency domain than in the time domain. The standard theory, which

we will summarise here, treats single-input single-output systems (q = ` = 1), but a

straightforward generalisation to multiple-input multiple-output systems exists (Zhou

and Doyle, 1997), which we will also use in our case study (Section 8.3). From a state

space description, the transformation to the frequency domain is done by taking the

Laplace transform of the state, input and output functions: for a function f in the time

domain its Laplace transform is

f̂(s) =

∫ ∞
0

f(t)e−st dt.

For the linear system (5.2.3), if x(0) = 0, for the transformed functions the input–

output relationship becomes

ŷ(s) = Ĝ(s)û(s),

where

Ĝ(s) = C(sI − A)−1B

is called the transfer function of the system (Doyle, Francis, and Tannenbaum, 1990;

Dullerud and Paganini, 2000). Here the matrices A,B and C are defined in Eqs. (5.2.4),
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and I is the identity matrix. The ∞-norm of the transfer function Ĝ is defined as

‖Ĝ‖∞ := sup
ω∈R
|Ĝ(iω)|,

where i ∈ C is the imaginary unit: i2 = −1. The importance of this notion is that the

system gain is exactly the same as the ∞-norm of the transfer function:

sup{‖y‖2 | ‖u‖2 = 1} = ‖Ĝ‖∞.

This means that in order to find the input that corresponds to the induced L2-norm

gain, one needs to find where the Bode magnitude plot peaks, the graph of the function

ω 7→ |Ĝ(iω)| (ω ∈ R). In the most commonly used form the Bode magnitude plot uses

decibel units on the vertical axis, hence it is defined by

ω 7→ 20 log10 |Ĝ(iω)| = 20 log10 |C(iωI − A)−1B|

for each frequency ω ∈ R. The scale on the horizontal axis is also logarithmic usually.

We will present such a plot for our case study in Section 8.3 (Figure 8.3).

When the frequency at which |G(iω)| peaks is ω0 (that is, when ‖Ĝ‖∞ = |Ĝ(iω0)|),

then the optimal input in the frequency domain is

û(iω) =
1

2
(δω0(ω) + δ−ω0(ω))

for ω ∈ R (here δ stand for Dirac delta functions). This optimal input in the time domain

is u(t) = cos(ω0t), but beware that it is not a permissible input: ‖ cos(ω0t)‖2 =∞.

Instead, for any appropriately small ε ∈]0, ω0[, we can approximate the optimal input

in the frequency domain with

ûε(iω) =


√
π/2ε, if |ω − ω0| < ε or |ω − (−ω0)| < ε,

0, otherwise.

(See Doyle et al., 1990) In the time domain this input function is

uε(t) = Z cos(ω0t)
sin(εt)

t
= Zε cos(ω0t)sinc(εt) (7.1.1)
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with Z normalising constant which ensures that the L2-norm of uε(t) is now 1.

7.2 Obtaining an upper bound on the L2-gain of

the system to assess input performance

To assess the near-optimal input designed using linearisation, we can compare its per-

formance in driving the difference of the outputs of the two rival nonlinear models to the

largest achievable difference, the L2-gain. We can obtain an upper bound for the L2-gain

by constructing an appropriate storage function S. To do so, given the appropriately

normalised system (5.2.2) and ε > 0, we assume that the trajectories with input u with

‖u‖2 = ε and initial condition 0 (the steady state) remain in a region D around this

initial state for all time. If there exists a γ > 0 and a continuously differentiable function

S : Rn1+n2 → R satisfying

S ≥ 0, S(0) = 0, and (7.2.1)

for all x ∈ D, −∂S
∂x

f(x)− yTy + γuTu ≥ 0, (7.2.2)

then

‖y‖22
‖u‖22

≤ γ.

In other terms, γ is the desired upper bound on the maximum difference in the

output of the rival nonlinear models. To see this, integrating condition (7.2.2) from 0 to

T leads to

∫ T

0

(
−y(t)Ty(t) + γu(t)Tu(t)

)
dt ≥ S(x(T ))− S(x(0))

= S(x(T )) ≥ 0.
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Therefore, for T →∞, if x ∈ D for the whole time, we obtain

γ ≥
∫∞
0
y(t)Ty(t) dt∫∞

0
u(t)Tu(t) dt

.

Here again, obtaining such a function S that provides the upper bound is difficult.

The task of finding this bound can be relaxed to solving an SOS programme and its

subsequent solution using semidefinite programming (see Appendix B, Section B.4).
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Chapter 8

An application: signal sensing in

Dictyostelium discoideum

Perfect adaptation is a critical feature of many cellular signalling networks — it allows a

cell to respond to a stimulus, but to resensitise itself so that further increases in stimulus

can be detected. Adaptation is commonly used in sensory and other signalling networks

to expand the input range that a circuit is able to sense, to more accurately detect

changes in the input and to maintain homeostasis in the presence of perturbations. One

of the earliest examples of cellular networks exhibiting perfect adaptation is chemo-

taxis, which we use as a test case to illustrate our algorithms. Specifically, we use the

chemotactic response in the social amœba Dictyostelium discoideum. Under starvation,

Dictyostelium secretes cyclic adenosine monophosphate (cAMP) thus attracting other

Dictyostelium amœbæ to aggregate and form a multicellular slug and then a fruiting

body, which produces spores. Spores are inactive cells that are capable of becoming ac-

tive when food is abundant. Experiments indicate that a step input of chemoattractant

triggers a transient response, after which the chemosensory mechanism returns to its

123



pre-stimulus values (to its steady state), indicating perfect adaptation (Van Haastert

and Van der Heijden, 1983).

binding
ligand

R

R*

A

S

I

Model 1

binding
ligand

R

I A

R*

S

Model 2

Figure 8.1: Two models of the signal sensing system of the Dictyostelium amœba.

At least two different simple models can describe the adaptation mechanism observed

when an amœba encounters the chemoattractant cAMP (Figure 8.1; Levchenko and

Iglesias, 2002). In both models, a chemotaxis response regulator R becomes active (R∗)

through the action of an activator enzyme A when a cAMP ligand S appears. However,

the deactivation mechanism determined through the interaction of an inhibiting molecule

I in the two models is different.

Since the sum of the concentrations of the active and inactive response regulators in

the two models is constant, we can write RT = R∗(t) + R(t). Consequently, Ṙ∗ can be

derived under mass action kinetics as

Ṙ∗ = −k−r I R∗ + kr AR

= −
(
k−r I + kr A

)
R∗ + kr ART ,

with activation and deactivation rate constants kr and k−r.
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In Model 1 both molecules, A and I, are regulated by the external signal, which is

proportional to cAMP concentration S. With rate constants ka, k−a, k−i and ki1 , the

dynamics of A and I are given by

Ȧ = −k−aA+ kaS,

İ = −k−iI + ki1S.

In Model 2 the inhibitory molecule I is activated through the indirect action of

activator A instead of direct activation by sensing of ligand binding, giving

Ȧ = −k−aA+ kaS,

İ = −k−iI + ki2A,

where ki2 is a rate constant. The equations for A are obviously identical in both models.

The parameter values used are given in Table 8.1. Simple manipulations show that the

steady state value for R∗ in Model 1 is given by

R̄∗ =
kr

ka
k−a

RT

kr
ka
k−a

+ k−r
ki1
k−i

,

while the steady state value for R∗ in Model 2 is given by

R̄∗ =
krRT

kr + k−r
ki2
k−i

.

Both are independent of the stimulus, explaining perfect adaptation. The two models

share the same unique steady state if ki2 = ki1k−a/ka, a condition we impose.

8.1 Initial condition design for model

discrimination

For the initial condition discriminating design, we set the input to a basal level of S = S0,

and assume that all three concentrations, A, I and R∗, can be measured, so the output
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Parameter kr k−r ka k−a ki1 ki2 k−i S0 RT

Value 1 1 3 2 1 2/3 0.1 0.2 23/30

Table 8.1: Parameter values of the two models in the Initial condition design for model

discrimination and Input design for model discrimination cases.

is (A, I,R∗). The most discriminating initial state (A, I,R∗) can be found based on the

linearisation of the system around its steady state using the main linear case result. The

common unit length initial state which provides the direction of the perturbation from

equilibrium to maximise ‖y1 − y2‖2 is then given by x1(0) = x2(0) = (1, 0, 0), where xi

(i ∈ {1, 2}) are the state vectors of Model 1 and 2, respectively.

By applying the analogous results from the nonlinear case, the unit norm direction

that maximises the above function is also found to be x1(0) = x2(0) = (1, 0, 0), which

illustrates that at least in this example, linearisation can be capable of providing the

correct information at a lower computational cost. Figure 8.2 compares the evolution of

the states in Models 1 and 2, (a) from a common arbitrary initial state, and (b) from

the common initial state generated by the nonlinear method by taking the differences

between the states in the two rival models.
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Figure 8.2: Difference between state variables of the two rival models (states of Model 1 minus states of Model 2) in the Initial condition

design for model discrimination and Design of structural changes for model discrimination cases.

Simulation results for the difference between Models 1 and 2 when started (a) from an arbitrarily perturbed initial condition (0.5774, 0.5774, 0.5774), (b) from the

‘best’ unit-norm perturbation of the initial condition (1, 0, 0), and (c) with the optimal parameter changes from the corresponding optimally perturbed initial state

(1, 0, 0). The corresponding ‖y1 − y2‖2 values are 0.420, 0.729 and 0.747, respectively.
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8.2 Design of structural changes for model

discrimination

In the case of the design of the most informative structural and parameter perturba-

tions, the equilibrium is dependent on the particular choice of parameters. Therefore,

we illustrate in detail how to change coordinates in order to translate the equilibrium

to zero. Let the state variables for Model 1 be x11 = A, x12 = I and x13 = R∗ and

those for Model 2 be x21 = A, x22 = I and x23 = R∗. Assume that in both models the

parameters that can be modified before the experiment are RT , the total chemotaxis

response regulator concentration, and p = kr, the response regulator activation rate

constant. Parameter values and the intervals of values that can be achieved are given in

Table 8.2. The dynamics of the two models are given by

ẋ11 = −k−ax11 + kaS0,

ẋ12 = −k−ix12 + ki1S0,

ẋ13 = −(px11 + k−rx12)x13 + pRTx11,

ẋ21 = −k−ax21 + kaS0,

ẋ22 = −k−ix22 + ki2x21,

ẋ23 = −(px21 + k−rx22)x23 + pRTx21.

Parameter kr k−r ka k−a ki1 ki2 k−i S0 RT

Range or value [0.5, 1.5] 1 3 2 1 2/3 0.1 0.2 [0.5, 3.0]

Table 8.2: Parameter ranges of the two models in the Design of structural changes for

model discrimination case.
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The steady states for these equations are given by

x∗11 = x∗21 =
kaS0

k−a
, x∗12 =

ki1S0

k−i
, x∗22 =

ki2
k−i

kaS0

k−a
,

x∗13 =
pRTkak−i

k−rki1k−a + pkak−i
, x∗23 =

pRTk−i
k−rki2 + pk−i

.

Let x̃ik = xik−x∗ik, i ∈ {1, 2}, k ∈ {1, 2, 3}. We can now perform a change of coordinates

to make the origin the equilibrium point of:

˙̃x11 = −k−ax̃11,

˙̃x12 = −k−ix̃12,

˙̃x13 = −
(
px̃11 +

pkaS0

k−a
+ k−rx̃12 +

k−rki1S0

k−i

)
x̃13

+
pRTk−rki1k−a

k−rki1k−a + pkak−i
x̃11 −

k−rpRTkak−i
k−rki1k−a + pkak−i

x̃12,

˙̃x21 = −k−ax̃21,

˙̃x22 = −k−ix̃22 + ki2x̃21,

˙̃x23 = −
(
px̃21 +

pkaS0

k−a
+ k−rx̃22 +

k−rki2kaS0

k−ak−i

)
x̃23

+
pRTk−rki2
k−rki2 + pk−i

x̃21 −
k−rpRTk−i
k−rki2 + pk−i

x̃22. (8.2.1)

In order to discriminate between Models 1 and 2, we solve the optimisation pro-

grammes given in Section B.3 of Appendix B, as explained in Section 6.2. We allow

parameters RT and kr to vary. We obtain that x̃1(0) = x̃2(0) = (1, 0, 0) are the initial

conditions, and RT = 3 and kr = p = 1.5 are the values of the parameters that have

maximal discriminating power between the two models. The increased difference be-

tween states can be seen in Figure 8.2c. This result means that one needs to overexpress

the total number of chemotaxis response regulators and increase their rate of activation

in order to see a large difference between the two models.
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8.3 Input design for model discrimination

To discriminate between the two models based on an optimally chosen input profile, we

first obtained an upper bound on the L2-gain of the difference system from input S to

output (A, I,R∗) using the algorithm in Section B.4 of Appendix B. This bound was

about 0.477, a value also close to that determined through the linearisation of the system

(0.4766, see the Bode plot shown in Figure 8.3).
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Figure 8.3: Bode magnitude plots of the linearised difference system of the two models

with output (A, I,R∗), I and R∗.

The difference between the R∗ values of the two models is marginal compared to the I values. The

L2-gains for outputs (A, I,R∗), I and R∗ are 0.4766, 0.4762 and 0.02038, respectively. At this resolution

one cannot see a difference between the cases when the output is the full state (A, I,R∗) or I only. The

shape of the Bode magnitude plot for single outputs I and R∗ is similar, with only slightly different

critical frequencies (0.4472 and 0.3853, respectively). The critical frequency corresponding to completely

observed state is 0.4470.

In order to evaluate the performance of our algorithm, we simulated the original,
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nonlinear system subjected to different inputs between 0 and 60 time units including

a constant (step function), sine, cosine, sine with an exponentially increasing then de-

creasing multiplier, sinc, the function given by Eq. (7.1.1), or a square wave function

(see Figure 8.4). As described earlier, for periodic inputs, the period of the input was

determined by finding the frequency corresponding to the maximum amplification in

the Bode magnitude plot of the linearised system (Figure 8.3).

Table 8.3 summarises the results for different input perturbation functions, input per-

turbation energies (‖u‖2) and output variables using simulations of the nonlinear system.

Since a cosine input and the input function given by Eq. (7.1.1) (uε(t) = Z cos(ω0t)
sin(εt)
t

)

gave indistinguishable results (because themselves are indistinguishable), their rows were

merged into one. The top and bottom parts of the table show values for different input

perturbation energies, the various columns for different output variables. The applied

frequency, where relevant, was always the critical frequency corresponding to the par-

ticular output function. Figure 8.5 is a graphical representation of the same data.

Figure 8.6 compares the differences in state variables between the two models for

three typical input perturbations. Interestingly, our results indicate that for all inputs

used, discrimination between the two models should be accomplished by measuring

output I rather than output R∗ (also seen in Table 8.3). In the first plot, the basal

input S0 is perturbed by a step function between 0 and 60 time units (Figure 8.4a). In

the second plot, the system is injected with a sine function (Figure 8.4b). In the third

plot, the input is a square wave function (Figure 8.4c), a caricature of the sine function

with preserved period that can be realised in practice more easily. The sine input yields a

visibly larger difference than the step function between the R∗ values of the two models.

The square wave function produces a similarly good result. One has to note that one

measurement may not be enough for the discrimination, but a series of measurements
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‖u‖2 = 1 (A, I,R∗) I R∗

Sine 0.472 0.472 0.0195

Sine w. exp. mult. 0.475 0.474 0.0209

Cosine or (7.1.1) 0.473 0.472 0.0200

Square wave 0.451 0.450 0.0182

Sinc 0.412 0.412 0.0153

Step 0.198 0.197 0.0070

‖u‖2 = 0.01 (A, I,R∗) I R∗

Sine 0.476 0.481 0.0203

Sine w. exp. mult. 0.467 0.467 0.0195

Cosine or (7.1.1) 0.457 0.456 0.0191

Square wave 0.441 0.441 0.0184

Sinc 0.396 0.396 0.0173

Step 0.198 0.198 0.0085

Table 8.3: Achievable output differences for different input profiles.

Numerical estimates of maxu ‖y1−y2‖2/‖u‖2 with different inputs for the Dictyostelium models by sim-

ulating the nonlinear system. Here maximisation is over different frequencies for inputs where frequency

makes sense. Output is either all states or I or R∗.

may be needed.

Perhaps the most notable outcome of the input design is that sinusoidal input per-

turbations generate the best L2-gains and are therefore superior to a step function for

discriminating between rival chemotaxis models. Square wave stimulation is achievable

in the reality of a laboratory. This is important since step inputs are usually used in

experiments, often at the exclusion of other input signals. Our studies demonstrate how

more dynamic inputs, in this case an oscillating input (on a finite time interval), might
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be necessary to delineate subtle features of underlying network topologies.

The optimisation problems in all three cases were solved on a desktop computer.

The most challenging was the first SOS programme for the choice of optimal initial

state and parameter values with eight variables (three state variables for each model

and two common parameters). Numerical methods will need to be improved in order

to deal with SOS programmes resulting from the analysis of more complex systems

biological models.
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Figure 8.4: Three distinctive input profiles S = S0 + u.

Basal input S0 perturbed until time 60 by (a) a step function, (b) a sine function, or (c) a square wave function. ‖u‖2 = 1 in all cases. In (b) and (c) the frequency is

0.3853, the critical frequency corresponding to the single output R∗.
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Figure 8.5: Bar chart of data in Table 8.3: achievable output differences for different input profiles.
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Figure 8.6: Difference between state variables of the two rival models (states of Model 1 minus states of Model 2) in the Input design for

model discrimination case.

Simulation results for Models 1 and 2 with (a) a step, (b) sine, or (c) square wave perturbation of the basal input S0 until time 60 (the inputs in Figure 8.4). The

output variable (on which the choice of the optimal frequency depends) is R∗ and ‖u‖2 = 1. The corresponding ‖y1 − y2‖2 values are 0.0070, 0.0195 and 0.0182,

respectively. Note that the input signal S0 + u is not included in the figure.
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Chapter 9

Summary of the results of Part II

In Part II we developed methods for designing experiments to effectively discriminate

between different models of a biological system. These methods are tailored to generate

maximally informative data that can be used to invalidate models of gene regulatory

pathways by ruling out certain connectivities in their underlying biochemical reaction

networks. We approached the problem in a unified framework, developing methodolo-

gies for initial condition design (see also Papachristodoulou and El-Samad, 2007), for

parameter modifications and for the design of dynamic stimulus profiles. These types of

manipulations cover a large spectrum of what is experimentally feasible and this is what

has motivated our formulation of the problem and the approach to its investigation.

If the field of systems biology is to accelerate the pace of biological discovery, rigorous

mathematical methods should be developed to link computational models of biological

networks to experimental data in tight rounds of analysis and synthesis. Any informative

model should be analysed in light of existing data, but it should also be able to synthesise

new experiments that further delineate the features of the underlying biological system.

Despite many notable examples demonstrating the success of this iterative procedure,
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progress has been slow due to the ad hoc nature of its implementation: the iterations

between the development of models and the production of data is still mostly guided by

the intuition of the modellers, and no rigorous algorithms exist to render this process

more systematic and less biased. We believe that the work presented here constitutes

an important step in this direction. By design, our formulation of the problem is of

sufficient generality to accommodate many experiment design procedures, and is cast in

a natural optimisation framework. Acknowledging that optimality of experiment designs

must always be balanced with biological and other practical constraints, our formalism

allows for the incorporation of limitations and constraints as dictated by the specific

biological context.

We illustrated the applicability of our algorithms using two possible and widely

accepted simplified models of the adaptation mechanism in Dictyostelium discoideum

chemotaxis. Evidently, these models do not capture the full complexity of the biological

circuit responsible for chemotactic behaviour. The models, however, illustrate the core

circuit topologies that are sufficient to implement perfect adaptation in the system.

These optimal experiment design methods were applied in practice to invalidate models

of the chemotaxis pathway in Rhodobacter sphaeroides (Roberts et al., 2009). There,

the combination of a square wave profile stimulation and protein overexpression was

necessary in the most challenging model discrimination problem. This demonstrates the

practical demand for sophisticated experiment design techniques.

The recipe for model discrimination that we propose involves collecting mostly time

series data. Every new time point at which measurements are made increases the labour

and monetary cost of experiments, thus one must carefully balance the number of time

points collected against the cost, and consider where along a time series to place obser-

vations. Our methods naturally offer insight into this question by predicting the time
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series that the experiment will likely measure. Furthermore, if the optimal experiment

is such that a differentiating dynamical phenotype only emerges several hours after a

perturbation, our methods can be easily modified to balance optimality with practically

measurable dynamics.

Finally, many commonly used perturbations (genetic or environmental) lead to ei-

ther extreme stress responses that put a cell in a modified physiological state or kills

it, or lead to quiescent states that do not have much measurable information about the

underlying regulatory network. Experiments that generate less catastrophic failures of

cellular networks under study, while being maximally informative, hold great promise

for the study of biological networks. However, finding these perturbations is a nontriv-

ial task. Model-based design of experiments will undeniably be instrumental for that,

ultimately leading to many important biological discoveries.
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Chapter B

Appendix. Methods deferred from

Chapters 6 and 7

B.1 Sum of squares decompositions

Here we present the sum of squares (SOS) formalism which is used to relax and solve

the optimisation problems posed by the various approaches for model discrimination

considered in Part II.

Denote by R[y] the ring of polynomials in variables y = (y1, . . . , yn) with real co-

efficients. p(y) ∈ R[y] is called nonnegative if and only if p(y) ≥ 0 for all y. It is a

sum of squares if there exist other polynomials pi(y) ∈ R[y] (i ∈ {1, . . . ,M}) such that

p(y) =
∑M

i=1 pi(y)2.

Obviously, such a polynomial is nonnegative, but the converse is not always true

(Parrilo, 2000). In fact, testing if p(y) ≥ 0 is NP-hard (Murty and Kabadi, 1987), but

testing if p(y) is a sum of squares is equivalent to a semidefinite programme (SDP)

(Parrilo, 2000), a convex optimisation problem for which there are algorithms that can
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solve it with polynomial time complexity.

The Matlab toolbox SOSTOOLS (Prajna, Papachristodoulou, and Parrilo, 2002)

can be used to formulate this SDP which can be solved using SDP solvers such as

SeDuMi (Sturm, 1999) or SDPT3 (Toh, Tütüncü, and Todd, 1999).

B.2 SOS programmes for initial condition design

The strategy outlined in the section on Initial condition design for model discrimination

relies on the construction of a function S satisfying the nonnegativity conditions given

by (6.1.2) and (6.1.3). As it was pointed out in Section B.1, constructing a nonnegative S

is difficult. We therefore relax nonnegativity to the existence of an SOS decomposition

and solve the problem through semidefinite programming. An SOS programme that can

be used to generate S is

given f1, f2, and the set description D,

find S(x), σ1(x1), σ2(x2) all SOS,

s.t. S(0) = 0,

− ∂S

∂x
f(x)− hTh+ σ1(x1)(|x1|2 − α2)

+ σ2(x2)(|x2|2 − α2) is SOS.

The last constraint ensures that −∂S
∂x
f(x)− hTh ≥ 0 when x ∈ D, since the multipliers

σ1(x1) and σ2(x2) are SOS.

The solution S is not unique, but a heuristic to find the ‘best’ S is to optimise

over the decision variables in the SOS description for S (by minimising the trace of the

Jacobian of S at the origin), so that the resulting S has sub-level sets that have maximal

area.
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In the second step, we solve the SOS relaxation of the optimisation problem (6.1.6)

to get the initial state x1(0) = x2(0) = x̂:

given Ŝ,

minimise γ, and

find p(x̂) polynomial,

s.t. − Ŝ(x̂) + γ + p(x̂)(|x̂|2 − β2) is SOS.

The point x̂ can be obtained from the dual solution of this semidefinite programme,

using SOSTOOLS.

B.3 SOS programmes for optimal structural design

The search for a function S(x, p) ≥ 0 such that conditions (6.2.1) hold in D×Π can be

formulated as

given f1, f2, bi ≥ ai ≥ 0 (i ∈ {1, . . . ,m}),

find S(x, p), σ1(x, p), σ2(x, p), v1(x, p), . . . , vm(x, p) all SOS,

s.t. S(0, p) = 0, and

− ∂S(x, p)

∂x
f(x, p)− hT (x)h(x)

+ σ1(x, p)(|x1|2 − α2)

+ σ2(x, p)(|x2|2 − α2)

+
m∑
i=1

vi(x, p)(pi − ai)(pi − bi) is SOS.

As in the initial state design case, we would like to maximise the difference given

by y. Although we cannot achieve this goal directly, we can maximise the approximation

of ‖y‖22 given by S(x(0), p) (see (6.2.2)), where we require that x1(0) = x2(0) = x̂
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and |x̂| = β. We introduce the modified S, Ŝ(x̂, p) := S(
(
x̂
x̂

)
, p) (x̂ ∈ Rn). Similarly,

f̂(x̂, p) := f(
(
x̂
x̂

)
, p). The problem is then the following.

Given Ŝ,

minimise γ, and

find r(x̂, p) polynomial, and w1(x̂, p), . . . , wm(x̂, p) all SOS,

s.t. − Ŝ(x̂, p) + γ + r(x̂)(|x̂|2 − β2)

+
m∑
i=1

wi(x̂, p)(pi − ai)(pi − bi) is SOS.

Exactly as in the initial state design case, the point x̂ can be obtained from the dual

solution, using SOSTOOLS.

B.4 SOS programmes for optimal input design

In the Input design for model discrimination, we should first note that it may occa-

sionally be the case that the set of inputs considered will lead to a system trajectory

outside the region where S is constructed. This case can be ruled out by solving a related

reachability problem (Papachristodoulou, 2005). Here, we assume that the containment

of the trajectory in D has been ensured, and describe how to obtain an estimate of the

L2-gain of the system.

To construct a function S which satisfies the conditions shown in Section 7.2, we use

the SOS framework as follows. Condition (7.2.2) can be satisfied by searching for SOS

multipliers σ1(x) and σ2(x) such that

− ∂S

∂x
f(x)− yTy + γuTu+ σ1(x)(|x1|2 − α2)

+ σ2(x)(|x2|2 − α2) is SOS,
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where α > 0 is used to define the region D by

D =

{(
x1
x2

)
∈ Rn1+n2

∣∣∣∣ |x1| ≤ α, |x2| ≤ α

}
.

This condition guarantees that −∂S
∂x
f(x) − yTy + γuTu ≥ 0 for x ∈ D. The rest of the

conditions can also be easily enforced in an SOS programming framework.

Consequently, the overall SOS programme for constructing S takes the form:

given f1, f2, α, and the set description D,

minimise γ, and

find S(x), σ1(x), σ2(x) all SOS,

s.t. S(0) = 0, and

− ∂S

∂x
f(x)− yTy + γuTu+ σ1(x)(|x1|2 − α2)

+ σ2(x)(|x2|2 − α2) is SOS.
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Chapter 10

Outlook and conclusion

10.1 Future directions in the modelling of chemical

reaction kinetics with continuous stochastic

models

Biochemical processes in individual cells are known to be multiscale: they occur on

widely varying time scales, and the sizes of the molecular species’ populations range over

several orders of magnitude. One of the great challenges facing mathematical modelling

is to reflect this multiscale property. The triad of the discrete Markov jump process, the

CLE and the reaction rate equation provide accurate and economical descriptions for

three complementary regimes of molecular population sizes. Each has its unique niche

and each is essential in its own right for a comprehensive picture of biochemical system

dynamics. Part I concerned the middle of these three regimes.

The most imminent task relating to the CLE was discussed in detail in Section 3.6:

its trajectories can leave the nonnegative orthant with positive probability and those
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trajectories cannot be continued such that they still satisfy the CLE. The discovery

of this defect creates an urgent need for a new, nonnegative SDE model for reaction

kinetics to replace the classical CLE.

We can envisage two routes to this end: either by modifying the boundary behaviour

of the stochastic process to enforce nonnegativity whenever a variable is about to become

negative, or by revisiting Gillespie’s argument that gave the CLE (Gillespie, 2000). It

might be the case that there is no better diffusion approximation to our discrete Markov

jump process than the CLE. All approximations have shortcomings and problematic

boundary behaviour might be unavoidable, especially since a diffusion approximation

can be expected to break down at the boundary. These questions are currently an active

area of research.

Another open problem concerning the existence of solutions of the CLE was presented

at the end of Section 3.6.2. Namely, providing sufficient conditions to avoid finite time

explosion in the CLE that are more general than the compactness of the state space.

This is an interesting direction for possible future research, especially given a nontrivial

result for the deterministic analogue (August and Barahona, 2010).

The existence of multiple scales within the same chemical system calls for models

that are themselves multiscale, and which treat faster and slower reactions, more and

less abundant species differently. Arguably, it is rarely the case that the assumptions in

Gillespie’s derivation of the CLE hold (Section 3.1), that is, that all discrete variables can

be simultaneously and uniformly approximated with continuous ones. In fact, there are

hybrid simulation strategies, in which the slowly changing variables follow the discrete

stochastic process, and the fast variables obey, for instance, either the reaction rate

equation or the τ -leap method or the CLE. Wilkinson (2006, Section 8.4) gives an

overview of such algorithms and references to relevant primary sources.
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The model reduction and analysis of multiscale biochemical systems is currently a

very active area of research. It is heavily influenced by the chemical engineering and

control engineering literature; the first methods were developed for deterministic ODE

models, often for applications in the petrochemical industry. Subsequently, such tech-

niques found extensive use in the mathematical biology community. Most recently, and

we will point out just some of the promising directions, stochastic analogues of methods

for deterministic systems are being developed. The partial equilibrium assumption or

quasi-steady state approximation is such an example, which has already been applied

to the discrete Markov jump process (Haseltine and Rawlings, 2002; Rao and Arkin,

2003; Goutsias, 2005; Chevalier and El-Samad, 2009) and directly to the CLE (Lan

et al., 2008; Sotiropoulos et al., 2009). Its application to speed up the SSA gave the

slow-scale SSA (Cao, Gillespie, and Petzold, 2005) and the nested SSA (E, Liu, and

Vanden-Eijnden, 2005). The differences between the two approaches were discussed by

both sets of authors (Gillespie, Petzold, and Cao, 2007; E, Liu, and Vanden-Eijnden,

2007).

A more sophisticated, although laborious technique to reduce multiscale, discrete

space Markov jump process models of chemical reaction systems was developed by Ball

et al. (2006). Their starting point, the discrete Markov process, was written with a

stochastic equations formalism with independent Poisson processes for each reaction

channel. Scaling constants were introduced for each molecular species, each reaction

channel, and time. With the fine control of all these scaling parameters, the authors could

approximate the different variables and reaction channels with diffusion approximations

(SDEs) or even continuous deterministic processes (integral equations), depending on

the inherent scaling properties of the system. However, they could not provide rules for

the appropriate choice of scaling constants, which is a great hindrance to the application
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of this model reduction technique. This shortcoming is addressed in Kang and Kurtz

(2010).

As we have just pointed it out, in the derivation of the CLE, passing to a continuous

limit in each variable uniformly is a questionable approach. Kang, Kurtz, and Popovic

(2010) are studying diffusion approximations for multiscale chemical reaction models to

develop a better understanding of this regime.

After a thorough analysis of multiscale deterministic chemical reaction models (Lee

and Othmer, 2010a), Lee and Othmer (2010b) are working on a similar treatment of

stochastic models, independently of the group around Kurtz.

10.2 A different optimal experiment design

problem for model discrimination based on

the Hankel operator

In Chapter 7 of Part II, in our discussion of optimal experimental stimulation design, our

approach was to observe and stimulate the biological system from time zero, applying

input and measuring output simultaneously. We briefly describe a different concept, in

which input is applied only up to a certain time, say zero, which is also the time when

the output measurement starts.

In the state space description, one can use the input–output operator G : L2(] −

∞,∞[) → L2(]−∞,∞[), for which y = Gu. This operator is the time domain equivalent

of the transfer function Ĝ we used for the input design.

The Hankel operator ΓG : L2(]−∞, 0]) → L2([0,∞[) of G is defined by

ΓG = P+G|L2(]−∞,0]) ,
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where P+ : L2(]−∞,∞[) → L2([0,∞[) is the projection by truncation. So the Hankel

operator connects input

u : ]−∞, 0] → Rq

with output

y : [0, ∞[→ R`.

Equivalently, ΓG = ΨoΨc, where

• Ψc is the controllability operator, which maps u to x(0),

• Ψo is the observability operator, which maps x(0) to y with no input after time 0.

Indeed, as the support of input u is before 0, it only affects future output y through the

state at time 0, x(0). The introductory results of this theory are about the norm of the

Hankel operator for linear systems (Dullerud and Paganini, 2000), which can potentially

serve as a starting point for interesting investigations of optimal experiment design in

this novel setting.

10.3 Conclusion

One of the characteristic aspects of contemporary biology is a strive for a systemic

understanding of the spatio-temporal dynamics of intracellular networks of molecular

reactions. In this effort, complementing experimentation, the contribution of mathe-

matical modelling is crucial; in essence, having an accurate mathematical model that

is amenable to analysis or to numerical simulation is what is considered as the under-

standing of a reaction network.

This thesis contributes to two stages of the mathematical modelling process for

biochemical networks: to using the right modelling framework and to finding the right
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model within a specific framework for a biological system. Part I considered what the

best way is of modelling biochemical reaction kinetics with continuous stochastic models.

We found that the moment equations give new justification for the standard SDE model,

the CLE. We explored different formulations of this equation and thus we gained a better

understanding of the geometry of the state space and discovered a way to accelerate the

numerical simulation of the equation. We also gave a detailed analysis of the Achilles

heel of the CLE, the negativity issue. We hope that armed with these observations, the

development of a novel, nonnegativity preserving SDE model will become possible.

Part II addressed a more practical task: designing experiments that differentiate be-

tween similarly accurate models of a reaction network in order to rule out incorrect

ones. This will improve the accuracy of our knowledge of the underlying biology and

of the biochemical processes involved. We found that in the case of externally excitable

systems, the optimal stimulation for model discrimination, perhaps surprisingly, is not a

single impulse (step function input profile) but periodically repeated stimulation (sinu-

soidal or square wave function input). This result has already been applied in practice

with resounding success.

We believe that both lines of our inquiries have important practical implications.

Further work is required to disseminate these results to potential beneficiaries. With

these considerations we bring our thesis to an end.
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List of abbreviations

ATP adenosine triphosphate

cAMP cyclic adenosine monophosphate

CLE chemical Langevin equation

CME chemical master equation

DNA deoxyribonucleic acid

Eq. equation

FSP finite state projection

gfp green fluorescent protein

HERG human ether a-go-go related gene

IPTG isopropyl β-D-thiogalactopyranoside

mRNA messenger ribonucleic acid

ODE ordinary differential equation

RNAi ribonucleic acid interference

SDE stochastic differential equation
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SDP semidefinite programme

SOS sum of squares

SSA stochastic simulation algorithm

s.t. subject to
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and E. D. Gilles. A benchmark for methods in reverse engineering and model discrim-

ination: problem formulation and solutions. Genome Research, 14 (2004) 1773–1785.

164



C. Kreutz and J. Timmer. Systems biology: experimental design. FEBS Journal, 276

(2009) 923–942.

T. G. Kurtz. Strong approximation theorems for density dependent Markov chains.

Stochastic Processes and their Applications, 6 (1978) 223–240.

Y. Lan, T. C. Elston, and G. A. Papoian. Elimination of fast variables in chemical

Langevin equations. The Journal of Chemical Physics, 129 (2008) 214115.

C. H. Lee and H. G. Othmer. A multi-time-scale analysis of chemical reaction networks:

I. Deterministic systems. Journal of Mathematical Biology, 60 (2010a) 387–450.

C. H. Lee and H. G. Othmer. A multi-time-scale analysis of chemical reaction networks:

II. Stochastic systems, 2010b. Manuscript in preparation.

A. Levchenko and P. A. Iglesias. Models of eukaryotic gradient sensing: application to

chemotaxis of amoebae and neutrophils. Biophysical Journal, 82 (2002) 50–63.

D. A. McQuarrie. Stochastic approach to chemical kinetics. Journal of Applied Proba-

bility, 4 (1967) 413–478.
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