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Abstract

The chemical Langevin equation (CLE) is a multivariable Itd stochastic differential
equation that describes the time evolution of molecular counts of reacting chemical species
(Gillespie, 2000). It lies between the deterministic ordinary differential equation (ODE)
model and the discrete probabilistic chemical master equation model in that it is continuous
and probabilistic.

Suppose n chemical species react through m reaction channels, and the n x m sto-
ichiometry matrix is denoted by S. Gillespie formulated the CLE with m independent
standard Brownian motions. In the first half of this report we show that the same dis-
tribution of variables is given by an alternative formulation of the CLE which uses only
m — dim(Ker S) = n — dim(Ker S7) Brownian motions, and this is minimal. However,
this formulation is computationally too expensive for numerical simulation. We present a
computationally tractable formulation which omits one independent Brownian motion for
each pair of reversible reactions. If m is the number of pairs of reversible reactions, then in
Gillespie’s formulation there would be 2m Brownian motions for the reversible reactions,
while in our formulation there would only be m.

In the second half of the report we discuss why all attempts to calculate the moments
of the It6 process given by the CLE have so far been unsuccessful: we will give the ODEs
that the first two moments satisfy and observe that to integrate them, information from
higher moments is required. We propose an approximative computation which is based on
the linearisation of the CLE. For such linear stochastic differential equations the ODEs for
the moments can be integrated numerically. Accurate estimates of the first two moments
are derived in two examples which support the validity of this new method.
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1 Introduction

Mathematical modelling has become an indispensable tool for modern systems biology (Mur-
ray, 2003; Szallasi, Stelling, and Periwal, 2006). Simple qualitative descriptions are proving
increasingly insufficient for understanding the intricate dynamical properties of microbiolog-
ical phenomena. As a result, quantitative mathematical models are now routinely used in
order to describe and analyse protein interactions (Cornish-Bowden, 2004), metabolic path-
ways (Heinrich and Schuster, 1996; Fell, 1997), the regulation of gene expression (Bower and
Bolouri, 2004), and other biochemical processes.

Activities and the observed behaviour of cells mostly reflect ongoing intracellular biochem-
ical processes. Therefore understanding the behaviour of microbes, or the subcellular basis of
physiological processes of complex multicellular organisms is impossible without understand-
ing the underlying biochemistry.

Throughout this report we will assume that we are given a fixed set of interacting molecular
species, an exhaustive list of reactions with the corresponding reaction propensities (or reaction
intensities) that may occur using and producing some of these species like in this example:

lel"""ka‘SaL €1P1++£ﬁ7)ﬁ (101)

(Here ki,...,ka,1,...,£5 € N. In this example k €]0, oo[ is just a reaction rate constant and
we will give an explanation of it shortly. The set of species found on the left-hand side do not
need to be disjoint from those on the right-hand side.) We want to understand the dynamics of
how the concentrations (or counts) of molecules change in the closed system from their initial
values as the listed reactions take place with their given intensities.

We will use the convention that in our models n > 1 chemical species {S1,...,S,} react
through m > 1 reaction channels {Ry,..., R, }. All state vectors will be written as column
vectors. To get a row vector from such a column vector, we will use the transposition symbol 7.
The state of the system at time ¢ is described by either the vector of copy numbers of the
molecular species, X () = (X1(¢),..., Xn()T (or just Xy = (X14,...,Xns)?), or the vector
of concentrations, c(t) = (c1(t),...,cn(t)T (or ¢ = (c14y..-,¢nt)T). Xt and ¢; uniquely
determine one another. The change in molecular counts corresponding to the different reaction
channels is represented by the stoichiometry matriz S € Z"*™: a single firing of the jth
reaction channel changes the count of the ith species by S;;. The propensity (or intensity)
function is denoted by a(X) = (a1(X),...,an(X))T. Its interpretation is that in state X the
probability of a single firing of reaction channel j in an infinitesimal time interval of length A
is a;(X)h. This can also be given as a function of concentrations, a(c) = (ay(c), ..., am(c))’ =
a(X). The m x m diagonal matrix created from the coordinates of a(X) will be denoted by
A(X) = diag(a(X)).

We will use the dot notation to select a column or a row of a matrix: for matrix S, S.;
is the n-dimensional column vector given by the entries of the jth column, whereas .S;. is the
m-~dimensional row vector given by the entries of the ¢th row.

Note that left nullvectors of S correspond to conservation laws in the reaction system, that
is, to preserved linear combinations of different species’ counts. Right nullvectors correspond
to sequences of firings of reaction channels such that if starting in state X all reactions occur
the number of times that is given by such a right nullvector, then the chemical system will
eventually return to the original molecular counts X.



1.1 Frameworks for the mathematical modelling of biochemical reaction
dynamics

Traditionally, mathematical modelling of reaction dynamics in chemistry and chemical engi-
neering has relied on multivariable ordinary differential equations (ODEs). In a closed, well-
stirred solution of fixed volume and constant temperature different chemical species can be
modelled as continuous entities residing in the same spatial location. Then the system behaves
as if the mass of reactants flowed through chemical reactions to be turned into mass of reaction
products. The amount of these superposed entities and the changes thereof can be quantified
by a vector of changing concentrations, each coordinate corresponding to one species. The
ODEs used for these models are autonomous, that is, the rate of change of concentrations is
a function of the current concentration, but not of the time variable.

The most widely used model of reaction kinetics is the law of mass action (Heinrich
and Schuster, 1996). This law assumes that the intensity with which a reaction occurs is
proportional to the concentrations of participating molecular species raised to the power of
their respective molecularity. In full generality, if the the concentration of species S; is denoted
by [S;], then the term corresponding to reaction (1.0.1) is

This term appears on the right-hand side of each ODE corresponding to a species which is
involved in this reaction either as a reactant or a product: reactant S; would have —k;a(c),
whereas product P; would have +/;a(c) in its describing ODE. It is often argued that in any
chemical reaction at most two molecules react at a given time, that is, reactions are at most
second-order (or can be replaced by successive second-order reactions). (Wilkinson, 2006)

In biochemistry, for modelling intracellular reactions one can look at cells as containers in
which reactions occur in the cytoplasm as in any other solvent. This naturally leads to the
transfer of the ODE framework to biochemical modelling.

One drawback of this framework is that by assuming well-stirredness the spatial structure
of a cell is ignored. In reality there are molecules confined to certain locations (e.g. transmem-
brane proteins), and in eukaryotic cells, there is a complex internal membrane structure which
hinders the free diffusion of solved molecules (Alberts et al., 2002).

If we suppose that spatial structure does not play a role in the modelled processes, which
we will do throughout this report, then another concern stems from the low copy number
of molecules in a cell and how this affects the validity of ODE models (Wolkenhauer et al.,
2004). Certain proteins are present in a cell with copy numbers in the order of magnitude of
hundreds or only dozens. Particular genes are usually present in even lower numbers. There
has been a report (Brenner and Tomizawa, 1991) of an average level of only 3-11 unbound
RNA II regulatory molecules of the ColE1l system present in a single FEscherichia coli cell
(7 nM concentration).” For such chemical species the assumption that their concentrations
change continuously is clearly inaccurate. Moreover, any departure from the assumed, only
hypothetical uniform spatial distribution of molecules will change which reactions occur and
in what order. This causes divergence from the average relative intensities among different
reaction channels, leading to fluctuations around the average overall concentrations of species.
This inherent fluctuation in concentrations is called intrinsic (or internal) noise, to distinguish

*With an estimated cell volume of 0.6-2.7 x 1071 ¢, 0.6-2.8 nM concentration corresponds to one molecule
per cell. (Arkin et al., 1998; Brenner and Tomizawa, 1991; Hayot and Jayaprakash, 2004; Santilldin and Mackey,
2004; Wilkinson, 2006)



it from fluctuations caused by environmental changes and interference with other intracellu-
lar processes, collectively called extrinsic (or external) noise (Gillespie, 2000; Paulsson and
Ehrenberg, 2001; van Kampen, 1992).

There is experimental evidence to show that stochastic fluctuations are a prevalent phe-
nomenon in living cells. Elowitz and colleagues (Elowitz et al., 2002) expressed cyan and yellow
alleles of green fluorescent protein (gfp) controlled by identical promoters in Escherichia coli
cells. Through microscopy imaging they compared the relative fluorescent levels of these two
proteins in various experiments. They showed that at strong constitutive expression of both
proteins both the relative difference between their fluorescence intensities and the overall cell-
cell variation were low. On the other hand, in wild-type (lacI”) E. coli strains, where the
artificial lac-repressible promoters are repressed, the gfp expression fell to 3-6%, and both
intrinsic and extrinsic noise rose approximately fivefold. (They defined the measure of noise as
standard deviation divided by the mean.) With the addition of saturating amounts of the lac
repressor inactivating isopropyl S-D-thiogalactopyranoside (IPTG), both internal and external
noise and levels of fluorescent proteins returned to the levels observed in the first experiment.
This and further experiments with different levels of added IPTG, and lac repressor expressed
from plasmids or by the synthetic oscillatory network, the Repressilator (Elowitz and Leibler,
2000), prove that noise increase in the wild-type strain is directly correlated to higher repressor
concentration.

The golden standard in stochastic chemical reaction network modelling is the chemical
master equation (CME), pioneered in the 1960s (McQuarrie, 1967) and 1970s (Gillespie, 1976,
1977), and from a physical model that uses colliding spheres to represent interacting molecules,
rigorously derived in the early 1990s (Gillespie, 1992). As its starting assumptions are very
general (and are assumed in almost every analogous modelling framework, e.g. in the ODE
framework);

e the chemically reacting system is gas-phase’, in a container of constant volume,

e it is well stirred, that is, it is spatially homogeneous with random fluctuations; the
position of a randomly selected molecule is a uniformly distributed random variable,

e it is in thermal equilibrium, that is, at a constant absolute temperature; the velocity of
a randomly selected molecule follows the Maxwell-Boltzmann distribution with a fixed
temperature;

the result is widely applicable (as widely, say, as the ODE framework).

Given an initial state X (tg) = Xo of the state variable X = (X1,...,X,)T € N, and
using the standard o notation for an unspecified one-variable real-valued function for which
limp g o(h)/h = 0, a well-known argument from the theory of Poisson processes yields

P(X,t+h | Xo,to) =P(X,t | Xo,to) [ 1= D a;(X)h+o(h)
j=1

+ iP(X — S.j,t | Xo, to)(aj(X — SJ)h + O(h)) + O(h)
j=1

(Feller, 1957; Karlin, 1966). This says that the event that the system is in X some infinitesimal
time h after time ¢ is the disjoint union of two kinds of events. One is that the system was in

Tt is generally accepted that without this assumption the results would still hold with new rate coefficients.



X at t and then no reaction occurred in the interval up to ¢ + h (plus an event with a small
probability that the state left X and then returned again). The other is that the system was
in another state at ¢, but jumped into state X by a single firing of a reaction channel (plus
an event with a small probability that this transition took more than one jump, and there is
a further event with a small probability that the state jumped to X from a state which is not
of the form X — S.;). Simple algebraic rearrangement and passage to the limit h — 0 gives
the chemical master equation:

m m
%P(X,t | Xo,to) = — Y _P(X,t | Xo,t0)a;(X) + Y P(X — St | Xo,to)a;(X — ;).
j=1 j=1
This CME is a forward equation that describes the distribution of a continuous time, discrete
space Markov process. It is a system of ODEs where variables are probabilities. For each X
there is an equation which gives the time evolution of the probability that at time ¢ there
are X; S; molecules present in the system for all 4, given their initial values (or their initial
probability distributions) at time to < ¢. This system of ODEs is linear, but unfortunately it
may be infinite: this typically occurs if one assumes an unlimited source of basic molecules, an
influx of metabolites, or, for example, the constitutive expression of a gene. In such cases there
is no upper bound for some of the individual X; values. Even if all variables are upper bounded,
due to the large number of equations, the numerical solution of the CME is computationally
very challenging.

The two papers by Gillespie (1976, 1977) considered sampling from this distribution instead
of solving the CME. Gillespie’s method, the Stochastic Simulation Algorithm (SSA) is easy
to implement, and has become a very popular computational tool. To simulate the evolution
of a chemical system from an initial state over a fixed time interval, in each step one draws
a random waiting time until the next reaction and which reaction will occur is also chosen
randomly. Then one updates the state according to how this reaction changes molecular counts,
and starts over again. This repeated draw of reactions ends once the cumulative sum of waiting
times surpasses the time horizon of the simulation.

The underlying assumption is that at time ¢ the time until the first firing of any reaction
channel R; is an exponential random variable with rate a;(X(¢)), independent from the other
waiting times. Once the smallest waiting time is passed, the corresponding reaction occurs
instantaneously. As this changes the molecular counts, the intensities have to be updated,
and the waiting times resampled. In practice, one samples from an exponential distribution
with parameter 3 7" a;(X(?)) to get the waiting time 7, and then draws independently a
random variable which tells them which reaction occurs: reaction Ry occurs with probability
ag(X(t))/ 2271, aj(X(2)). If Ry is drawn indeed as above, then the new state is X (t +7) =
X(t) + S,

Many studies which rely on stochastic biochemical models do not go any further than
generating many realisations of the Markov process by the SSA (or by some improved descen-
dant of it), and analysing the empirical distribution of molecular counts (Barkai and Leibler,
2000; Gonze, Halloy, and Goldbeter, 2002). The bottleneck in applications of this method
is the computational cost of repeated pathwise simulations. There is a palpable shortage of
methodologies to mathematically analyse the discrete space Markov process describing the
time evolution of chemical processes. The problem with finite samples from simulations is
that they can never be evidence that the distribution is wholly explored and no rare events
(maybe with substantial negative effects on the living biochemical system) evade our atten-
tion. Another challenge, which also arises in the ODE framework but is even more pronounced
here, is inference that is robust to parameter uncertainty.



Ball, Kurtz, Popovic, and Rempala (2006) pioneered an asymptotic analysis of approxima-
tions to the reaction system dynamics. They formulated equations, which basically described
the SSA, and carried out rigorous model reduction through admittedly somewhat ad hoc scal-
ing. This scaling is used to balance the discrepancies in the population counts of interacting
molecular species and the different time scales in which different reactions take place. Due
to the very technical, mathematically advanced nature of these methodological developments,
the impact of the paper is very limited outside a specialist community. More work is needed
to develop this approach into an accessible methodology for the wider system biologist com-
munity.

There is an intermediate regime between the deterministic, continuous ODE regime and the
stochastic, discrete Markov process regime (which includes the equivalent CME, the SSA, and
Kurtz’s and co-workers’ equations with Poisson processes). This is a stochastic but continuous
modelling framework with stochastic differential equations (SDEs), the so-called chemical
Langevin equation (CLE) (Gillespie, 2000). This regime corresponds to a physical system with
not too low but not too high molecular copy numbers. Mathematically it can also be seen as
a diffusion approximation to the discrete Markov model.

1.2 Gillespie’s chemical Langevin equation

Gillespie (2000) set out to approximate the distribution of the discrete Markov process of
molecular counts by making two simplifying assumptions. His argument went like this.

If at time ¢ the chemical system is in state X (t), and the random variable K;(X, h) is the
number of times reaction R; occurs in a time interval of length 5 if the system is released from
state X, then after h time has passed, the system will be in state

X(t+h) = X(t) +§:Kj(X(t),h)S.j. (1.2.1)
j=1

Now assume Condition 1 holds: h is small enough that the change in the state during
[t,t 4+ h] will be so small that none of the propensity functions a; changes substantially,

a;j(X(s)) = aj(X(t), forallseltt+h].

In any reaction typically no molecular count changes by more than two. Hence this condition
can be satisfied if the expected number of firings of a reaction channel is much smaller than the
population of the least populous species. This requirement can always be met if all molecular
populations are sufficiently large. The assumption that the propensities remain approximately
constant in the time interval implies that the random variables K1 (X (¢),h), ..., Kn(X(t), h)
are independent, and K;(X(¢),h) is Poisson distributed with parameter a;(X(t))h for all j.

Then he stipulated Condition 2: h is large enough that the expected number of firings for
each reaction channel I7;, namely

E(K;(X(t),h)) = a;(X(t))h,

is much larger than 1. This obviously runs counter to Condition 1. In cases where the two can-
not be met simultaneously, Gillespie’s approximation will fail. But large molecular populations
help to satisfy this condition, just as with the previous one. In this case the Poisson random
variable K;(X(t), h) is well approximated by a random variable from the normal distribution
with matching mean and variance,

N(a;(X(t)h, aj(X(t)h).



(Here we use the standard notation N'(u,0?) for a normal distribution with mean p and
variance 02.) Thus the independent, discrete Poisson random variables are replaced by the
same number of independent but continuous normal random variables. It is well known that
this distribution is a transformed standard normal distribution:

N (a;(X()h, a;(X([E)h) ~ a;(X(B)h+/a;(X([#)AN(0,1).

Substituting these approximations, (1.2.1) takes the form

X(t+h) =X+ aj(XE)hS;+ > 1/aj(X(t)hS;N; (1.2.2)
j=1 j=1
with independent standard normal random variables Ni,..., N,,. Here we keep ¢ fixed and

ignore the dependence of IN; on t. One should now recall the notion of Brownian motion, or
Wiener process, which is an almost surely continuous, real-valued, one-dimensional stochastic
process starting from zero, with independent increments following normal distribution: for
0 <ty < ty, B(t1) — B(tg) ~ t1 —toN(0,1). Then clearly (1.2.2) is nothing else but an
n-variable It stochastic differential equation (Pksendal, 2007)

m

dX(t) =) a;(X(1) Sydt + Y \/a;(X (1) S, dB;(t),
j=1

J=1

which we call the chemical Langevin equation.
We have seen that in Gillespie’s derivation two approximative steps facilitated by two
assumptions lead to an It6 SDE model.

1.3 Alternative formulations of the chemical Langevin equation: model
reduction, alternative physical interpretations

Now that the background is sketched, in the forthcoming two sections a quick overview of the
main contents of this report is given.

Through a second-order Taylor series expansion of the propensity functions a;, the CME
can be used to derive ODEs giving the first and second moments of the state variable, E(X;)
and E(X;X/) (van Kampen, 1992; Tomioka, Kimura, Kobayashi, and Aihara, 2004). The
approximation is in fact exact when the law of mass action dynamics is assumed and all
reactions are at most second-order. (That is, at most two molecules interact in any reaction
channel.) Kevin Burrage proposed that this should impose a constraint on the CLE: Gillespie’s
derivation of the CLE can be correct only insofar as the first two moments of its solution match
those of the CME (personal communication).

This requirement gives that the simplest way for an n-variable stochastic differential equa-
tion

dX; = f(Xy)dt + g(Xy) dBy
to be a valid chemical Langevin equation is to have
/(@) = Sa(a),
exactly as in Gillespie’s CLE, and (recall the notation A(x) = diag(a(x)))
g(x)g(x)T = SA(z)ST. (1.3.1)



In fact equality is not required pointwise, only in L; for each t. Konstantinos Zygalakis observed
that Gillespie’s diffusion term satisfies this condition (personal communication). However, with
this approach there are infinitely many parameterisations of the CLE, infinitely many functions
g for which (1.3.1) holds.

If we pick some g' and g2 which both satisfy (1.3.1), then the corresponding It6 diffusions
must have identical first and second moments because they are both equal to those derived
from the CME. In fact, a simple argument proves that not only the first two moments, but the
full finite-dimensional distributions of these It6 diffusion processes will be identical. Therefore
different g solutions to (1.3.1) will give equally valid CLEs (in the weak sense probabilistically),
and Gillespie’s CLE is just one possible parameterisation.

One can ask the question what the minimum size solution is to the square root prob-
lem (1.3.1). The g with the minimum number of columns gives a CLE with the minimum
number of independent Brownian motions. One finds that this number is n — dim(Ker S7).
This is equal to m — dim(Ker S), always less than or equal to m, the value given by Gillespie’s
argument. Theoretically this is minimal: we give two different constructions for ¢ and also
prove that it cannot be further improved. The physical interpretation of this result is intrigu-
ing: it is enough to use this many independent noise variables to describe the moments of the
Ito diffusion process that matches the first two moments of the solution to the CME.

Another question is the practical use of this minimality result. For instance, is the minimum
size construction able to speed up a pathwise numerical simulation scheme for the CLE? The
minimal construction needs an eigendecomposition of SA(X)S? for each time step, which is
computationally very costly. Following ideas of Tomioka et al. (2004) there is a construction
with as many Brownian motions as lines given by the directions of the stoichiometry vectors
(the columns of the stoichiometry matrix). The computations only require taking the square
root of scalars and matrix multiplication. The most obvious application of this formulation
is that it requires one independent Brownian motion for a pair of reversible reactions, which
may be considered as a more natural description than one Brownian motion for each reaction
channel. It is still an open question if there are smaller but computationally equally expensive
or just slightly more expensive formulations.

The computationally fastest formulation will depend on the cost of random number gen-
eration versus the cost of floating point operations, as well as the size and structure of the
stoichiometry matrix. Burrage, Mélykuti, and Zygalakis (2009) will present computational
benchmarking of the different constructions alongside the theory that is also presented in this
work. The three examples used for the benchmarking will also be discussed here to demon-
strate these reduction techniques. The authors are not aware of other studies in this direction.
To their knowledge this is the first time alternative forms of the CLE are proposed.

1.4 Moment estimation: the moment closure problem and estimation
based on linearisation

It has been mentioned that the first two moments of the chemical Langevin equation are
approximately equal to those of the chemical master equation, or the equivalent SSA. The
approximation is actually exact when the law of mass action dynamics is assumed and all
reactions R; are at most second-order. As it has already been pointed out, most studies infer
these via sampling from the distribution. This is achieved by repeated simulations with the
SSA. In the second half of this report we investigate the moments of the state variables in the
chemical Langevin equation. This calculation is lesser-known than the derivation of moments
for the CME and therefore it will be discussed in detail (Lemma 2.0.1). To get the moments of



the CME one can multiply each equation with a fixed monomial of the state vector coordinates
and sum these for all states. It is not difficult to see that this will give an ODE for the time
evolution of any given moment.

We will arrive at this observation through the application of It6’s formula. Either way,
one can see that the time derivative of a state variable mean is a function of the means of
propensity functions. Except for the simplest case when all reactions are at most first-order
(each reaction R; has at most a single molecule as its reactant), the propensities (under the law
of mass action) are at least second-order polynomials of the state variables. Let us assume for
simplicity that the reactions are at most second-order, in which case there will be polynomials
of degree two. Their mean is not an information that can be read out from this equation.
For that one needs the ODE for the time evolution of the second moments, which will be
dependent on third (for at most second-order reactions) or higher moments (in the general
case). This goes on ad infinitum; to specify the ODE of any moment the knowledge of higher
moments is needed. How to close this open lattice of interdependent problems, or generally,
that of any nonlinear stochastic system is called the moment closure problem and its solution
is unknown. Only approximations are available, especially for one-variable problems.

The author proposes the approximation of the CLE by its linearisation driven by the
observation that for linear SDEs the describing ODEs of the moments are self-contained and
thus can be numerically integrated. We expect this approximation to be valid in steady states
of the deterministic ODE model of the chemical system. To assess the validity of this approach
we compare the prediction based on this linearisation to moments of the empirical distributions
from simulations of the SSA, the CLE and the linearised CLE in two examples. We find that
the linearisation technique gives a good estimate of the first two moments in our examples at
a fraction of the computational cost of stochastic simulations.

This report will be concluded by outlining the proposed direction of future research.

2 Alternative formulations of the chemical Langevin
equation: model reduction, alternative physical
interpretations

In order to motivate the investigations of this section, we revise well-known facts about the

CME, which we treat as our reference stochastic model. The time evolution of the first moment
of the state variable of the CME is given by the ordinary differential equation

d
aE(Xt) = SE(a(Xy)), (2.0.1)
whereas the time evolution of the second moment is well approximated by
d
aE(XtXtT) =EB(h(X)X]) + E(X:h(X)T) + B(B(Xy)), (2.0.2)

where h(x) = Sa(x), and the diffusion matrix B(z) is defined as
B(z) = S diag(a(x))ST

(van Kampen, 1992; Tomioka et al., 2004). It has already been mentioned in the Introduction
that this approximation is based on a second-order truncation of the Taylor expansion of the
propensity function. Under the law of mass action when all reactions are at most second-order
the approximation is actually exact.



The main goal of Section 2 is to explore the different possibilities of how the stochastic
process solution of the CME can be approximated by a multi-dimensional It6 diffusion process
given by a stochastic differential equation. We aim for a weak approximation, in other words,
a diffusion process of which the distribution at each time instance approximates that of the
distribution given by the CME. In particular, we design the diffusion process such that its
first two moments match those of the solution to the CME.

Formally, we seek f: [0,00["— R" and g : [0, oo[*— R™ % such that the solution to

with d-dimensional standard Brownian motion B, has its first two moments given in (2.0.1),
(2.0.2). This problem has been touched upon, for instance, by Wilkinson (2006) but has not
been explored in depth.

Notice that satisfying (2.0.1) is trivial. One takes the expectation on both sides of (2.0.3)

to get
d

aE(Xt) =E(f(Xy)).
Comparing this to (2.0.1) gives f:

f(x) = Sa(x).
Although this solution is not unique, this is the simplest choice (not only for matching the first
moments but also for the second moments as we will see shortly). We now need to calculate the
second moment for X; from (2.0.3) and in order to do this it is enough to calculate E(X; ;X ;)
for i,k € {1,...,n}. For the ease of notation we will often drop the time variable ¢ from X,
in the following calculations.

Lemma 2.0.1. For equation (2.0.3),

d

E(XiXkt) = E(fi(X0) Xp) + BE( X fe(X0)) + Z E(gij(X¢)grj (X1)). (2.0.4)
=1

4
dt

Proof. We apply the multi-dimensional It6’s formula. This claims that when substituting time
t and a diffusion process X; into a function u(t,z) : R x R” — R, then

du(t,Xt) 8u(t Xt 8 u t Xt
= —" —_— dX@ dX;dX;
dt + ; ox; et ]Z_ COx;0x; 0 tEAgE

d’LL(t, Xt)

holds, where the rules for computing dX;; dX;; aredtdt = dtdB;; = dBj;dt = 0,dB;;dBj ; =
d;;» dt (Kronecker delta). (One can find more details about It6’s formula in numerous standard
textbooks, e.g. Qksendal (2007).) Let us apply the formula with u(t,z) = z;x.

1
A(XiXp) = 0+ (Xp dX; + X;dXy) + 5 (AX; dX, + dXp dX)
= (Xk dX; + X; ka)

d d
1
+ 52 fi(X)dt + Z_: 9i;(X)dBj, | | fr(X)dt + Z grir(X) dBjr 4
d d
= (XpdX; + X;dXp) + > Y 9i5(X)gryr(X) dBjr dByry
j=1j'=1



d d

= | Xkfi(X)dt + X3 Y g5 (X) dBys + X, fo(X) dt + X; > grj(X) dByy
Jj=1 7=1

+ Z gzy gk] dt

Taking the expectation on both sides yields

d
dB(X; X;) = B(Xp fi(X)) dt + B(Xifo(X)) dt + > E(gi(X)gr; (X)) dt,
j=1

which is just another form of (2.0.4). O

If one compares (2.0.4) with (2.0.2), it is seen that enforcing

Zgw gk] = sz(x)

for all 4 and k is the most natural choice in order that the second moments match, which is
just (1.3.1),

g(x)g(z)" = S diag(a(x))S"".

Corollary 2.0.2. Any g: R™ — R" 9 for which (1.3.1) holds will give a chemical Langevin
equation

(B is d-dimensional standard Brownian motion) of which for every t the solution X has its
first two moments evolving exactly as what the approximation gave for the chemical master
equation, (2.0.1) and (2.0.2).

Before exploring the set of solutions g, first note this insight.

Lemma 2.0.3. Different solutions g in Corollary 2.0.2 all give chemical Langevin equations
which have the same finite-dimensional distributions. (In different terminology: which coincide
in law.)

This means that although Corollary 2.0.2 allows for different gs to result in CLEs of which
only the first two moments are the same, in fact, all their moments will be identical.

Proof. This can be easily derived by applying Theorem 8.4.3 of ®ksendal (2007), but we give a
direct proof. We will, however, assume previous knowledge of a standard tool, the Kolmogorov
forward equation (@ksendal, 2007). For the solution g of (2.0.5), the probability distribution
function py(Xo, X) of a transition from Xy to X in a time interval of length ¢ evolves according
to the partial differential equation

dps(Xo, X) _i A(pe(Xo, X)(Sa(X));) N 1 i 82(pt(X07X)(Q(X)Q(X)T)ik).

dt i X e 0X:0X,,

p+(Xo, X) evolves identically for all solutions g to (2.0.5), because po(Xo, X) = dx,(X) (the
Dirac delta function at X() does not depend on g, and the parameters in the Kolmogorov
forward equation Sa(X) and g(X)g(X)T = B(X) are identical for any g. O

10



2.1 Gillespie’s original solution

Construction 1. Using the physical and probabilistic assumptions discussed in Section 1.2,
in his seminal paper Gillespie (2000) derived that g is of the form

9(X) = Sdiag(v/a1(X), ..., Vam(X)).

This is trivially a special case of (1.3.1) with d = m. Here every independent Brownian
motion corresponds to one reaction channel. Hence the physical interpretation of this model
is quite clear. Every variable is forced by as many Brownian motions as there are reaction
channels which change its count.

Gillespie himself mentioned (Gillespie, 2000) that this is not the only possible formula-
tion, and other formulations with differing numbers of Brownian motions are conceivable. He
referred to his former work (Gillespie, 1996), where equations were laid down which if satis-
fied by both a g' and a ¢? then the two Langevin equations with either g or g% would have
increments with identical distributions. This is analogous to our Lemma 2.0.3.

2.2 The minimal solution

In this part we are exploring different natural choices for the formulation of the CLE and
hence for the choice of d. A natural question is what is the minimum number of Brownian
motions in the CLE (2.0.5), or equivalently, what is the minimum d for which the factorisation
of
B(X) = SA(X)SsT

in (1.3.1) is possible.

As B(X) is a symmetric square matrix for all X, it can be diagonalised by a change of
basis with an orthonormal matrix U(X) of which the columns are eigenvectors of B(X):

B(X)=UX)D(X)U(X)T. (2.2.1)

Let us partition the eigenvectors based on whether they belong to zero eigenvalue (Up(X)) or
some nonzero eigenvalue (U1(X)) and arrange them such that U(X) = [U;(X) Up(X)]. Then
there are n — dim(Ker B(X)) nonzero eigenvalues, so D(X) is of the form

D(X) = [ Dl(()X) 8 ]

with a diagonal D (X) c R (n—dim(Ker B(X))) x (n—dim(Ker B(X)))
The construction for g(X) is then

9(X) = U(X)D(X)"? = [Uy(X)D1(X)"* 0],
or simply ¢g(X) = Up(X)Dy(X)'/? ¢ Rrx(n—dim(Ker B(X))) ndeed,
§(X)g(X)T = U(X)D(X)2D(X) PU(X)T = B(X).

This formulation shows that n—dim(Ker B(X')) Brownian motions are enough to define (2.0.5).
This factorisation is minimal indeed, since the rank of g(X) cannot be less than the rank
of B(X) = g(X)g(X)T, that is, n — dim(Ker B(X)).
In order to avoid digression the proofs of the next two lemmas are found in the Appendix.

11



Lemma 2.2.1. For every strictly positive X (it is enough that for all X and each reaction
channel j, a;(X) > 0 holds), dim(Ker B(X)) is equal to the number of linearly independent
conservation laws of the reaction network, dim(Ker ST). In fact, a vector y € R™\ {0} is a
(right) nullvector of B(X) if and only if it is a left nullvector of the stoichiometry matriz S.

The following lemma explains when and by how much this construction decreases the
number of Brownian motions compared to the m of Gillespie’s construction.

Lemma 2.2.2. n — dim(Ker S7) = m — dim(Ker S).
We summarise the results of this section.

Construction 2. The previously described
9(X) = U\(X)Dy(X)'/?

gives a chemical Langevin equation (2.0.5) with n—dim(Ker ST) = m—dim(Ker S) independent
standard Brownian motions. Any CLE requires at least this many Brownian motions.

Note that Gillespie (2000) (Appendix B) and Wilkinson (2006) (p 189) are both inaccurate
when claiming that generally the number of Brownian motions d must be no less than n. We
will return to the problem of state space reduction where we prove that there is an equivalent
formulation of the CLE with n — dim(Ker ST) states, and as we see here, n — dim(Ker S7')
Brownian motions (Section 2.4).

The minimum number of Brownian motions needed is interesting for efficient numerical
simulation. Notice that the solution in Construction 2 is not satisfactory since U is dependent
on X. Hence in a numerical simulation scheme for each time step a new diagonalisation of
B(X) is required, which is computationally expensive.

As a first improvement, we propose another approach which results in a g of the same size,
but potentially decreases the requirement for repeated computation at the cost of increased
initial, one-off computation. A substantially different construction will be presented in the
next section (Construction 4).

Let W = [W; Wp] € R™™ be an orthogonal matrix such that the columns of Wy €
Rrxdim(Ker ST) g5 an orthonormal basis in the left nullspace of S, Ker ST, and the columns
of W € R (n—dim(Ker ST) are an othonormal basis in the orthogonal complement, Im S. Let
us define the square root M = /M of a square matrix M € RF** as any square matrix
M € R¥*F such that MMT = M, if such an M exists.

Construction 3.

9(X) = Wiy WTSA(X)STW

gives a chemical Langevin equation (2.0.5) with n—dim(Ker ST) = m—dim(Ker S) independent
standard Brownian motions.

Proof. We verify that §(X) = W/WTSA(X)STW is a valid diffusion term (it satisfies (1.3.1))
and that the stated g is equivalent to §. Note that W1 SA(X)STW and W SA(X)STW, are
symmetric positive semidefinite matrices, therefore their square root can be taken the way it
was done with B(X) earlier in this section.

dX)gX)T =wwTsAx)sTww?T = SA(X)ST

12



since W is orthogonal, so (1.3.1) is satisfied. Also,

WTSAX)STW = [ Wg S ] AX)[ 5T 0]
- [ WIS AX)STIV, 0]
o 0 0

shows that it is enough to use the top left block with Wi SA(X)STWi: on the right the
last dim(Ker ST) Brownian motions, on the left the columns of Wy would be multiplied by
Zeros. O

This is an improvement over Construction 2 in that here the square root of a state-
dependent (n — dim(Ker S7)) x (n — dim(Ker S7)) matrix is taken instead of an n x n matrix.

2.3 A general, state-independent, ‘small’ (as opposed to minimal)
solution

In the previous section a practical constraint for numerical simulations was discussed. Con-
structions which require in each time step an eigendecomposition of a state-dependent matrix
are computationally too costly. In the following we develop a construction in which to com-
pute g(X) only matrix products and taking the square root of a state-dependent diagonal
matrix are required. This construction will give a CLE which generally may need more than
n — dim(Ker ST) = m — dim(Ker S) independent standard Brownian motions, but certainly
not more than m.

For a positive integer k, let I, denote the k x k identity matrix. We say two nonzero vectors
y1,y2 € R™\ {0} represent the same direction, if there is a A € R\ {0} such that y; = Ays.

Construction 4. Let s be the number of different directions given by the columns of S. There
exist matrices J € R™%® and V € R**™ such that VA(X)VT € R**® is diagonal with only

nonnegative entries and
g(X) = ST\ /VAX)VT (2.3.1)

gives a chemical Langevin equation (2.0.5) with s independent standard Brownian motions,
m — dim(Ker S) < s < m.

Proof. Let us permute the columns of S € R™™ such that we have S = [S; Ss], where
S1 € R™ has one representative column vector for each direction given by the columns of S.
Then the columns that are left (S2) are each a constant multiple of one column in S;. One
has to permute the entries of A(X) accordingly.

Let

Sy = [Slv(l) - Slv(m_s)],

where for all 4, v(¥) € R® has one nonzero entry.
Introducing M = [v™M) ... v(m=9)] € R®*("=9) the definitions are

|: IS :| 6 Rm)(87

/ 0
V=[I, M]eR>™

13



First, partitioning A(X) according to the sizes of blocks of V,

VAX)VE = [ I M ] [Alf)X) AfX)HﬂiST}

= A1 (X) + Y (Aa(X)) 5000
j=1
where the last step follows from
(M Ap(X)M )i, = >~ (v);(Aa(X)) j; (0.
j=1

Since v1) have only one nonzero entry for all 7, > i (A2(X)) jjv(j)v(j)T is diagonal with only
nonnegative entries, and consequently VA(X)V7 too.
Secondly,

I, M

SJV =[Sy Ss] [ S

] =[S SiM]=[Si Sy =S.

Hence /VA(X)VT exists trivially, and

9(X)g(X)T = ST\ /VAX)VT <Sjw>T
= SIVAX)VEJTST = sA(X)sT

o (1.3.1) is satisfied. The actual form of g is

9(X) = [S1 So] [%Al +§4A2(X)MT]

:Sl\/Al(X)—l-MAQ(X)MT:Sl 1 -|— j]’U 7o)
j:l

T

O]

Corollary 2.3.1. There is a formulation of the chemical Langevin equation (2.0.5) which
is constructed from Gillespie’s original CLE by omitting one independent Brownian motion
for each pair of reversible reactions and assigning to the retained Brownian motion either
respective stoichiometry vector multiplied by the square root of the sum of the two propensities
and which is computationally inexpensive to numerically simulate. If m is the number of pairs
of reversible reactions, then in Gillespie’s formulation there would be 2m Brownian motions
for the reversible reactions, while in this formulation there would only be m.

In fact, the result is slightly more general than what Corollary 2.3.1 claims. Consider
chemical systems with reactions

A+B — C . A MoB
20 — 24+2B g on *2, op (-

In both cases one independent Brownian motion can be spared. Note that the reactions in
these examples are at most bimolecular.

14



2.4 State space reduction

Another form of model reduction we have not discussed yet is the reduction of the num-
ber of variables. The conservation laws describe linear dependencies between the counts of
molecular species. This can be used to express certain variables as functions of others. Having
dim(Ker ST) linearly independent conservation laws it is possible to reduce the number of
variables from n to n — dim(Ker ST).

To this end we specify an invertible matrix 7" € R™*"™ such that T'S will take over the role
of S. (For aesthetic reasons one may prefer 7' € Z"*™.)

T is just a change of basis of the state space. To see this, multiply the CLE (2.0.5) with T’
from the left to get an equation in a new variable Z = T X:

d(TXy) = TSa(T7 X)) dt + Tg(T T X;) dBy,

or, by letting o denote the composition of functions, and - multiplication (a special composi-
tion), we have

dZt = (T . S - a OT_I)(Zt) dt + (T +go T_l)(Zt) dBt

We define T such that the last dim(Ker ST) coordinates of the new state variable Z are
the conservation laws, which do not change at all.

We give T for Construction 1 first. Let us order the columns of S € R™ ™ such that
we have S = [S, S|, where the columns of S, € R (m—dim(Ker$)) form g basis for Im S,
and S, € Rxdim(KerS) i5 the collection of the rest of the column vectors. These are linearly
dependent on columns of Sy. Then, similarly to Construction 4, there are vectors

w(l) ., w(dim(Ker S)) e Rm—dim(Ker S)

LA )

and a matrix
N = [w(l) o w(dim(Ker S))] e R(mfdim(Ker S)) xdim(Ker S)

such that S. = SpV.
Let us define Sbl e Rrxdim(Ker ST) gch that its columns form a basis of the orthogonal
complement space of Im .S, and let

[ (sES)1SE
T‘{ ‘s ]

(To get an integer-valued 7', one may put an appropriate diagonal matrix
Dy € Z(n—dim(Ker ST))x (n—dim(Ker ST)) iy front of (SbTSb)_leT, and choose SbL g Znxdim(Ker ST).)
Hence

r T —-1QT

_ [ Im—dim(KerS) (ngsb)ilsgjsc :|

TS =

0 0

[ Im—dim(KerS) N
0 0 |

Therefore in no CLE formulation will the last dim(Ker S7) variables be affected by the drift
term T'Sa(X). Since in Constructions 1 and 4 the first factor in g(X) is S, the last dim(Ker ST)

15



rows of the diffusion term T'g(X) will vanish too. Consequently, the last dim(Ker ST') variables
of Z are constant, and can be omitted from a numerical simulation.

The same argument holds for Construction 3, using Wi and W; instead of Sp and SbL,
respectively, in 7. In the case of Construction 2, the state space reduction must precede the
reduction of Brownian motions. This method is actually very similar to Construction 3. For
Construction 4 a finer partitioning of matrices S, J,V is proposed. The detailed calculations
are in the Appendix. These considerations prove the following result.

Theorem 2.4.1. For Constructions 1-4 a state space transformation is possible which reduces
the number of variables from n to n — dim(Ker ST) = m — dim(Ker S) without changing the
number of independent Brownian motions.

We illustrate the reduction of the number of independent Brownian motions in the CLE
in three examples. In order to focus on the application of our main results we will not carry
out the fairly well-known state space reduction in any example.

2.5 Example 1: A cyclical reaction system

Consider the following ring of m = 3 reactions with n = 3 species, (A1, As, A3)T:

A B4,

k3 \ 1/ ko
As

The indexing of reactions R; follows that of rate constants k;. This specifies the order of
columns in the stoichiometry matrix,

As there are no parallel stoichiometry vectors, Construction 4 cannot reduce the number of
Brownian motions.

Constructions 2 and 3 can be computed analytically for such a small example. In Con-
struction 2 finding the eigenvalues of the rank 2, 3 x 3 matrix requires the solution of a cubic
equation (roots of the characteristic polynomial). But we know that one eigenvalue is zero
and this reduces the problem to quadratic. This gives D(X). Finding the eigenvectors is done
by solving a linear equation for each nonzero eigenvalue, and then the vectors need to be
normalised to create Up(X).
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The calculations giving Construction 3 can be coded up in step-by-step instructions. The
orthogonal matrix W can be chosen as

-1/vV/2 —1/V6|1/V3
W=[W Wo]=| 1/v2 -1/V6|1/V3
0 2/V/6 | 1/V3

This is computed only once, therefore its computational cost is almost irrelevant. Then one
needs
2a1(X) + Jaz(X) + a3(X)  —%Pas(X) + Pag(X)

WESAX)STW, = 3 02
! —Bay(X) + Lag(X) 3a5(X) + az(X)

To take the square root of this or, in general, of a matrix

[ My Myo

c RQXQ,
Mo M22]

one can compute the two eigenvalues as the roots of the characteristic polynomial, which is
quadratic. These are

_ My + Moo £ /(M — Ma)? + 4AM7,

A2

’ 2
The corresponding normalised eigenvectors are
oy — 1 (AL — Mag) M5! )
VO = Mo)2M2 41 1
-1
Vg = 1 ( (A2 = ]{ZZ)MH > .

\/()\2 — M22)2M1_22 +1
Thus

g*(X) = W1 [ VA0 (X)  VAa(XK)ea(X))

is the product of a 3 x 2 and a 2 X 2 matrix, and requires 2 Brownian motions.

Which construction requires the least computation time hinges on how the cost of these
computations compares to the cost of generating time increments of Brownian motions (that
is, normal random variables). This question is beyond the scope of this work.

2.6 Example 2: Markov model for a Kt channel

We model the transformations of human ether a-go-go related gene (HERG) encoded K™
channels between three closed states (C1,Ca,C3), one open state (O) and one inactivation
state (I) as n = 5 chemical species (C1, Cy, C3,0,I)T reacting through m = 10 reactions:

@)
¥ 7 ke
k1 kg &
C; = Cy — C; ks 117
ko kg &
ko N\ 1O
I
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(For details see Brennan et al. (2009) and references therein.) Thus the stoichiometry matrix
is

-11 0 0 0 0 0 0 0 O
1 -1 -1 1 0 0 0 0 0 0
S=| 0 o0 1 -1 -1 1 0 0 1 -1],
o 0 0 0 1 -1 -1 1 0 0
o 0 0 0 0 0 1 -1 -1 1

and the propensity function is

k1X4
ko Xo
k3 Xo
k4X3
ks X3
ke X4
k7 X4
ks X5
kg X5
k10 X3

The Gillespie formulation (Construction 1) from this is

9'(X) = Sy/diag(a(X)).

The rank of the stoichiometry matrix S is 4, which allows for a CLE specification with
4 Brownian motions. Thus our minimal solutions ¢g? and ¢* from Constructions 2 and 3,
respectively, are of the form

g*(X) = U1(X) Dy (X)'/2,

§*(X) = Wi\ JWTSACX)STW,

where Uy (X), Wy are 5 x 4, D1(X) and \/WlTSA(X)STwl are 4 X 4 matrices, respectively.
With the exception of Wi, we could only compute either of these matrices analytically if
we solved a quartic equation. To avoid this extremely laborious task one resorts to standard
numerical computations which we do not present here.

On the other hand, Construction 4 gives a simple closed form diffusion term. Indeed, this
is a classical example where the number of Brownian motions can be decreased by half, to 5:

-1 0 0 0 0 Vai(X) + as(X)
1 -1 0 0 0 \/ag(X)+a4(X)
dX)=] 0 1 -1 0 1 [|diag| as(X)+as(X)
0 0 1 -1 0 a7(X) + as(X)
o 0o 0 1 -1 Vag(X) + aro(X)

2.7 Example 3: The Goldbeter—-Koshland switch

This example studied by Goldbeter and Koshland (1981) is a system of covalent modifications
facilitated by two converter enzymes, Fy and E5. A typical example is a phosphorylation—
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dephosphorylation system. It consists of the following m = 6 reactions:

S+ 4

P+ FEs

with n = 6 chemical species, (S, F1,C1, P, By, Co)”

18

k1
—_—
—

ko
ka

—
—

ks

1 —> P+ Eq,

Cy —

S+E2’

. The corresponding stoichiometry matrix

[ -1 1 0 0 0 1
-1 1 1 0 0 0
g 1 -1 -1 0 0 0 7
o 0 1 -1 1 0
0 0 0 -1 1 1
o o o0 1 -1 -1 |
while the propensity function a(X) is given by
k1 X1 X5
ko X3
B k3 X3
X =1 XX
ks X
keXe

The Gillespie formulation (Construction 1) from this is

gH(X) = Sy/diag(a(X)).

However, the rank of the stoichiometry matrix S is 3, which implies that we only need 3
Brownian motions in the CLE. As with the K channel, this can only be practically computed
through numerical computations.

The closed form diffusion term from Construction 4 requires 4 Brownian motions. Remov-
ing the stoichiometry vectors corresponding to reactions 2 and 5, we have

\/al(X) —|—CL2(X) 0 0 CL6(X)
Va1 (X) +ax(X)  az(X) 0 0
X = Var(X) +aa(X)  —/a3(X) 0 0
0 az(X) - a4(X) + a5(X) 0

0 0 —\/CL4(X)+OL5(X) \/CLG(X)

0 0 Vay(X)+a5(X)  —/asg(X)

These examples demonstrated cases in which the stoichiometry matrix is rank deficient
and a reduction in the number of Brownian motions is possible. In Example 1 there were
no parallel stoichiometry vectors, thus Construction 4 could not be deployed. In Examples 2
and 3 some Brownian motions could be spared for reversible reactions. These were also cases
in which Constructions 2 and 3 could reduce the system size even further.
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3 Estimating the fluctuations of a biochemical reaction
system around a strictly positive steady state by the
linearisation of the chemical Langevin equation

3.1 Mean and variance

Let us revisit the discussion of the CLE mean and second moment at the beginning of Section 2.
We called an n-variable It6 stochastic differential equation the chemical Langevin equation if
it is the form

with a g : [0, 00["— R™*9 that satisfies
g(x)g(z)T = S diag(a(z))ST. (1.3.1)

Theorem 3.1.1. In the chemical Langevin equation, the mean X, = E(X}) satisfies the
ordinary differential equation

%E(Xt) = SE(a(X1)), (2.0.1)
whereas the covariance P, = B((X; — X;) (X; — X;)") satisfies
%Pt = 5(B(a(X0)X]) ~ B(a(X))E(X)") + (B(X; a(X))") ~ B(X)E(a(X,)") 57
+ iE(%‘(Xt))5~j(S~j)T~ (3.1.1)
p

Proof. We have proved the equation for the mean in the introduction of Section 2. For the
covariance matrix P = E(XtX;f ) — XtXtT , we compute the infinitesimal increments of these
two terms separately. Lemma 2.0.1 gave the equation for the second moment,

%E(XtXtT ) = SE(a(X)X{) + E(Xsa(Xy)") ST + zm:E(aj (X1))S,5(S5)T. (2.0.4)
j=1

More generally, the same calculation with It6’s formula gives that for n-dimensional 1t6 pro-
cesses X and Y,

A(X V) = (dX)Y! + X, dy + dXx, dy/!. (3.1.2)
If we apply this to d(XtXtT), we get
A(X X)) = (X)X + X, dXT + dX,dX]
= SE(a(Xy)) X[ dt + X,E(a(Xy)") ST dt,

by (2.0.1). The third term vanishes. These two equations give

%pt = S(E(a(Xt)XtT) — E(a(Xt))XtT> + (E(Xta(Xt)T) — XtE(a(Xt)T)>5T
+ 3 B(a;(X1)S5(55)"
j=1
and the proof is complete. O
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Let us examine what this result tells us. For every ¢, P; is a symmetric matrix. Its en-
tries together with the entries of X, form an n + W—dimensional ODE. Given the initial
conditions for the mean and covariance, one wishes to numerically integrate this ODE.

We now make two already familiar assumptions. First, that the kinetics follow the law
of mass action. Secondly, that reactions are at most second-order. This means that for all 7,
a;j(X;) is either a constant (if reaction R; is zeroth-order), or its form is ¢; X;; or ¢; X; ;1 Xp 4
for some constant ¢; > 0 (for first-order or second-order reactions, respectively). If i = k in a
second-order reaction, then we will approximate the propensity a;(X;) = ¢; X; (X, ¢ — 1) with
Cj th

A zeroth-order reaction (a reaction of the form @ — ...) means the consecutive production
of molecules. For instance, if the number of genes from which a protein is expressed is fixed, and
all constituents of the molecular machinery involved are present in a constant concentration,
then the modelling assumption of consecutive expression is reasonable.

If no reactions are second-order, then the ODE (2.0.1) can be integrated separately from (3.1.1).
In this case equation (3.1.1) is basically the fluctuation-dissipation theorem (Paulsson, 2004,
2005) and it also can be integrated numerically.

However, if there is at least one second-order reaction, then this (quadratic) nonlinearity
will render the integration impossible. To see this note that the right-hand side of (2.0.1) can
be computed if one knows P;. If a;(X;) = ¢;X; X}, then E(aj(Xt)) = cj(Xi,tXm + Piyt)-
But the right-hand side of (3.1.1) cannot be determined: E(a(X;)X{") will have third-order
moments of the coordinates of X;.

In fact, to compute any moments the knowledge of higher moments is required, which leads
to an infinite lattice of dependent tasks. It is not known how this problem can be solved. There
are only approximative methods, in which higher-order moments are estimated with nonlinear
functions of lower-order moments. (See, for instance, Singh and Hespanha (2006a).) Often
this function is just the product of lower moments. This may arise when the random variable
is assumed to be approximately following a certain known distribution, and the higher-order
moments of this distribution can be expressed from lower-order ones (Singh and Hespanha,
2006b). How the infinite problem can best be turned into a finite one by some approximation
is generally called the moment closure problem.

3.2 Linearisation

Since one cannot integrate the ODE (3.1.1) in the general nonlinear case, we approximate the
system equation (2.0.5) with its linearisation. In this linear case the equations for the mean
and covariance will be self-contained, and will allow integration. Partly because fluctuations
are most important in states where there is no deterministic drift, and partly because of the
relative mathematical simplicity of linearisation in a steady state compared to other states,
we will initially linearise only around steady states. But first let us see the definition.

We call X* € R" a steady state of the CLE, if Sa(X*) = 0. If there is no zeroth-order
reaction in the model, then we can get a steady state by setting ‘enough’ X; to zero (that
is, by ensuring that all reaction channels are switched off). However, here we are interested
in the system behaviour in a steady state where all reaction channels are active. From now
on we require that for all j € {1,...,m}, a;(X*) > 0. Let us consider what this restriction
means. An inactive reaction channel has no effect on the system dynamics in the steady state,
consequently it could be excluded from the model. However, in a perturbed state it may be
switched on, so if the gradient of such an a; is small, then the linearisation with the assumption
of strict positivity may still be rather accurate.
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For a differentiable function f: R™ — R the derivative of f in z € R™ is an n-dimensional
row vector (the gradient vector), which we denote by the nabla symbol:

f(@) = Viz) = (ailfm, - £nf<x>) |

The derivative of the differentiable g = (g1,...,9,)7 : R® — R" in z € R” is an n x n matrix,
the Jacobian: for all i,k € {1,...,n},

(@) = (D9l = i),

We expect that the linearisation of (2.0.3) with respect to the state space is
dX, = f(X*)dt + f/(X*) (X — X*) dt + g(X*) dBy + ¢/ (X*) (Xy — X*) dBy (3.2.1)

now with a new stochastic process X. Let us drop the tilde, keeping in mind that this new X
is an approximation of the original one. Here f(X*) = 0 by the definition of a steady state.
However, (3.2.1) is incorrect (even dimensions do not match) as long as we do not explain how
we mean the differentiation of g.

For simplicity, let us only consider Gillespie’s original construction:

dX, = Sa(Xy)dt + ) " 1\/a;(Xy) S dBjy. (3.2.2)
j=1

/24

From this form it is clear that we can linearise the R — R" functions = +— (aj (w)) ¥
(j € {1,...,m}) independently. Their differentiation is straightforward, then we multiply by
X — X*, and by dB,;.

Proposition 3.2.1. The linearisation of Gillespie’s CLE in a steady state X* € R™ where
forall j € {1,...,m}, aj(X*) >0 is

dX, = F(X; - X*)dt + GdB, + Y  G;(X, — X*) dBjy, (3.2.3)
j=1

where
F = SDa(X*) € R,

G=[Va (X851 o V(X)) S| e R,
1

a;(X*)

S Vaj(X*) e R™", forall j € {1,...,m}.

3.3 Displacement mean and variance

Let us define the displacement of the state as the difference between the state and the steady
state: z; := Xy — X™*. In this section we derive the ordinary differential equations governing
the time evolution of the mean

Ci‘t = E(SCt)

and the covariance
Pt = E((:Ut — .i't) (%t - i’t)T)
of the displacement for the linearised model (3.2.3) of Proposition 3.2.1.
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Theorem 3.3.1. In a steady state X* € R™ of the linearised chemical Langevin equation in
which for all j € {1,...,m}, a;(X*) > 0, the mean displacement &; = E(X; — X*) satisfies
the ordinary differential equation

d

g =Fin, (3.3.1)

whereas the covariance P; = E((J:‘t — J%t) (xt — J%t)T) satisfies

d m . . m
Gh=FP+PF ;(G.j + Gy (G + Ga)T + ; G;PGT. (3.3.2)

Proof. The proof closely follows that of Theorem 3.1.1 and is to be found in the Appendix. [

One should appreciate that through linearisation we could derive an equation for the
covariance matrix that can be integrated without further obstacles. This covariance matrix is
informative, but has its weaknesses.

First, as with any linearisation, we can only expect it to be reliable if the state remains in
a small neighbourhood of the steady state X* around which we linearise.

We suspect that this linearisation method will give incorrect estimates in certain situations
where nonlinearity plays an important role. This can be expected, for instance, in bistable
systems, where in equilibrium internal noise causes occasional jumps between neighbourhoods
of two steady states (which corresponds to a bimodal probability mass distribution). A well-
known example is the lysogeny-to-lysis switching of A phage (Arkin, Ross, and McAdams,
1998; Hasty, Pradines, Dolnik, and Collins, 2000).

Secondly, this first requirement cannot be enforced. To see this, note that there are two
different notions of steady state we must deal with. One is what we defined as a steady state:
X* € R™ for which Sa(X*) = 0. This can be found numerically. More relevant here is the
steady state of the ODE (2.0.1). If the CLE is in its equilibrium distribution (let us assume
it has one and it is unique), then the mean of this distribution Xei € R is a steady state
of (2.0.1): 0 = & Xed = SE(a(X*)).

This is a general phenomenon with nonlinear stochastic differential equations. Taking the
expectation of (2.0.3), we get an ODE describing the time evolution of the mean of the process,

dE(X;) = E(f(Xy)) dt.

Even if at time ¢ we know E(X;) (at ¢ = 0 from the initial condition), hence f(E(Xy)), we
could integrate further only if we knew E( f (Xt)). For a nonlinear f these two are not equal
in general and one usually cannot know much about their difference.

3.4 Iterated linearisation

It was discussed after Theorem 3.1.1 that in the CLE, if one stipulates law of mass action
kinetics and at most second-order reactions, the previously presented difficulty becomes more
benign. Consider the jth propensity function. The problematic term on the right-hand side
of (2.0.1) can be expressed as

B(a;(X0)) = a;(X1) + (B(;(X0) — a5 (X0) ).
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For zeroth and first-order reactions E(aj (Xt)) = aj (Xt) For second-order reactions, when
a;(X¢) = ¢jX; 1 X1, the term in brackets is just

E(a;(X1)) — aj(Xt) = ¢ P

Therefore we could compute the time evolution of the mean approximately if we had an
estimate for the covariance matrix. For simplicity, let us investigate the system in stationary
distribution only. It is natural to use the linearisation around the steady state, for which we
can compute the covariance, and use this to update the steady state in the hope that this will
be closer to the true mean. This procedure of linearisation, followed by the computation of
the covariance for the linear approximation, and updating of the point of linearisation based
on this covariance can be repeated indefinitely. Algorithm 1 is just this method which aims to
estimate the mean of the equilibrium distribution.

As we will linearise in points other than steady states, we need to extend the scope of
(3.2.3) slightly. The linearisation in a point X € R" is

dX; = f(X)dt + F(X; — X)dt + GdB; + Z G;(X: — X)dBj,. (3.4.1)
Jj=1

Repeating the calculation in Theorem 3.3.1 with z; := X; — X, (3.3.1) becomes

d . 5 "

i =1(X) + Fi, (3.4.2)
but the ODE for the covariance remains (3.3.2). F ~! may not exist, hence computing & =
X—-Xasg:=—F! f(X ) may be impossible, but in equilibrium Z is just zero, therefore
(3.1.1) will be well approximated by

FP+PFT +3" 6,65 +Y 6,PGT =o. (3.4.3)
i=1 j=1

We will use this form in our algorithm.

In order to illustrate the use of the linearisation technique and to assess its accuracy we
will present two examples. The iterated linearisation method has also been applied to some
simple problems. Experience shows that in these examples it converges and the convergence
is very quick (some 5-7 steps are enough to reach a fixed point). However, it has so far
remained unclear how much this iteration improved the estimate of the mean in comparison
with our simple linearisation method. We have pursued to find a general sufficient condition
for convergence of the iteration method and to understand its connection with previously
proposed solutions to the moment closure problem. Establishing such a connection would give
an interpretation of the fixed point. Further scrutiny is required to achieve these goals.

Before discussing our two examples, first a technical point needs to be addressed.

3.5 Transforming the chemical Langevin equation between counts and
concentrations formulations

Although the CLE model was developed to describe changes in molecular counts (Gillespie,
2000), it is often beneficial to track changes in molecular concentrations. In our second example
reaction volume will change while the reactions take place, and we will only talk about the
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Algorithm 1 Iterated linearisation
1:=0;fixe>0
X©) .= X*, for which f(X*) =0 (steady state)
while i = 0 or | X — X(-D| > ¢ do
linearise around X ()
solve (3.4.3) for P symmetric, and call its solution P(+1)
for all j do
if R; is second-order then
let 7, s be the indices of the reactants in reaction R;

&j(X) = Cj (XrXs + (P(iJrl))rS)
else if R; is first-order then
let  be the index of the reactant in reaction R;

a;(X) = ¢; Xy
else if R; is zeroth-order then
dj (X) = Cj
end if
end for
solve Sa(X) = 0, and call its solution X (*+1)
=1+ 1
end while

Output: X@

steady state of concentrations, and not counts, which must increase to keep up with the volume
growth.
Let v¢ denote the volume of the solution in which the reaction system is found (e.g. the
cytoplasm) at time ¢. This may be constant, or may change deterministically (and smoothly).
With N4 denoting the Awvogadro constant, the relationship between counts X; € R™ and
concentrations ¢; € R" is

Xt = NA’UtCt. (351)

(The units we use are litres for volume, and mol/¢ for concentrations.) If one assumes varying
volume, then it follows that the propensities should be modelled as a function of concentrations
and not counts: in a solution with expanding volume and constant molecular counts the
collisions of molecules would become rarer and therefore reactions would slow down. However,
this phenomenon is captured directly by using concentrations.

Let Gillespie’s original CLE, (3.2.2), be our starting point. If we assume that there are
at most bimolecular reactions, then it is enough to consider zeroth, first and second-order
reactions. The propensity of a zeroth-order reaction is just a constant: the number of molecules
produced in a unit of time. For first-order reactions, the propensity is proportional to the
number of reactant molecules already present. However, for second-order reactions in changing
volume, propensity is not just simply proportional to the product of the two molecular counts,
because it has to vary inversely with volume: if we assume for a moment that the molecular
count of one reactant species is fixed, then the number of collisions between the two different
species (and consequently the number of reactions) is proportional to the concentration of the
other species. Hence the reaction rate coefficient can be formulated as a constant divided by
the volume, and (for aesthetic reasons) by the Avogadro constant. Bearing this in mind, let
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us consider just three representative entries of a, for some i,k € {1,...,n}

CL(Xt) = leit

Applying the product rule (3.1.2) to (3.5.1) we have
dXt = NA(d’Ut)Ct + NAUt dCt + 0. (3.5.2)

The last term vanishes because of the computation rules from the proof of Lemma 2.0.1.
(Recall that we assumed v; is deterministic.) Now modify a so that it becomes a function of
concentrations,

ko
B k'() N vt
a(cy) == a(Xy) = k1 Navgcig = Nav kici
N (Nave)? cigcr ko citCry
Furthermore let B}
0
Nave
a(ey) = kicit
ko ciicr e

We substitute these into the CLE (3.2.2) and have
m
NAUt dCt = NAUt S&(Ct) dt — NACt dvt + Z vV NAUt &j (Ct) S.j dBjJ,
i=1

or after dividing by Nav

d’Ut

de; = Sa(ct)dt—ct— j(ct) S.;dBj;. (3.5.3)

Zm

This is the CLE for concentrations.
Now let us calculate what the transformation is in the other direction. If we start with

d’l}t

dCt Sb(Ct) dt — Cti Ct S dB] ts

*Z\/m

for some b of typical entries

ko
Navt

b(ce) = kicit
kac;icr

Recall that any zeroth-order reaction is the production of a given number of molecules of some
molecular species in a unit of time. Therefore its contribution to the change in concentration is
inversely proportional to the volume. Hence the division in the first entry of b(c;). Substituting
de from (3.5.2) and introducing

ko "
~ ]\/iAUt 1 0
b(Xy) :=b(cr) = kllNWXi’t = Nav, 1k1Xi’t

ko sz Xt Xkt ko nor Xt X
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and

ko
b(Xt) = lei,t
k2ﬁ Xit Xkt

we have

1 1 R m 1 1 -
dX, = Sb(Xy) dt + bi(X,)) S dB;,.
7R R ) ]; NAUt< Nyor Vil t>> 7625

We just multiply both sides with Nv; to finish this calculation,
m
dXy = Sb(Xe)dt+ Y \/b;j(Xy) S5 dBjy.
j=1

3.6 Example 4: Protein dimerisation

The goal of the following two sections is to compare the estimate of the covariance matrix P; of
the displacement from steady state by the linearisation technique (Section 3.3) to computer-
simulated data. The chemical systems will be simulated with the exact Stochastic Simulation
Algorithm (Gillespie, 1976, 1977), which we also compare to simulations of the approximative
CLE and the linearised CLE systems by a fixed step-size semi-implicit Euler scheme (Kloeden
and Platen, 1992).

In a paper by Hayot and Jayaprakash (2004) protein production, dimerisation, and decay
are modelled in the most straightforward way by

g kB op
P * 5
k1
2P = P
ko

In addition to N4 = 6 x 10%®> mol™!, we will use slightly adjusted parameter values k =
0.0007 s7%, k1 = 0.03 x 10° £(mol s)~ %, ko = 0.5 571, k3 = 0.07 x 107 mol(¢s) ™!, and a fixed
volume of v := v; = 10715/3 £ to ensure that the steady state is exactly X; = 20 for the
protein monomer and X3 = 120 for the dimer. Note that these rate coefficients correspond to
b of the previous section, and we convert them to 5,

k=k, ko = ko,

];‘3 = NA’U/i’g,

to write the CLE in the usual counts formulation,

dX1 = —kXy, dt — 2k X3, dt + 2koXo, dt + ks dt

— \kX14dBoy — 2y/k1 X2, dByy + 2/ ks X0 dBay + \/ k3 dBsy,
dXQ’t = l;/'lX12,t dt — ]%QXQ,t de + A/ lgilez’t dBl,t — 1/ EQXQJ dBQ,t.
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(Note that reaction indexing starts at zero.) By Proposition 3.2.1, the linearised CLE is
3

dX; = F(X,— X*)dt + GdB, + Y _ G;(X; — X*)dBj,
j=0
with matrices
k 0
-1 -2 2 1 2k X* 0 —k — Ak XF 2k
F = SDa(X*) = S R Lot
a(X7) [0 1 -1 0] 0k [ 2 Xt ko |’
0 0

\/k:X* —2\/l<:1 (X7)2 2\/1%2)(* JE

b(XD)2 —\[ho X3

1 __VE
Go=——=959 Vao(X*) = 2 H
2y/ao(X¥) 0 0
1 oV 0
Gl=———81Va1(X") =
! 2 al(X*) ! 1( ) i \/k‘l 0]
. I \/E
Gog= ———— S5 Vay(X*) = ;
2 2 QQ(X*) 2 2( ) O kz
L 2/X;
Gom — 1§ Vay(X*) =
T az(X*) o B 0 0

Everything is ready to write up the differential equation (3.3.2) for P;. The following tables
and graphs present statistics (means, variances, cross-correlations) for the protein monomer
and dimer counts from the SSA, the CLE and the linearised CLE simulations, (5000 simula-
tions in each case, each simulation recorded at various time points; the CLE and the linearised
CLE simulations used 0.001 s time steps.) and compare these to the estimate from (3.3.2)
(solved by numerical integration). In each simulation the initial state was chosen to be the
steady state (X1(0), X2(0)) = (20,120), consequently the initial covariance matrix was zero.

Mean X1 Xo

Time (s) | SSA CLE lin.CLE X,, | SSA CLE Ilin.CLE Xy,
0.0120.0 200  20.0 20 | 1200 1200 1200 120

0.1 199 20.0 20.0 20 120.0 120.0 120.0 120
11195 19.8 20.1 20 120.2  120.1 120.0 120
10 | 19.7 19.5 20.0 20 120.2 120.3  120.0 120

100 | 19.6 19.7 20.0 20 120.2 120.1  120.0 120

Variance X4 X9
Time (s) | SSA CLE lin.CLE (P);; | SSA CLE Ilin.CLE (P)a2
0.01] 7.1 1.0 1.0 4.3 1.8 0.3 0.3 1.1
0.1 179 5.2 5.2 18.0 4.5 1.3 1.3 4.5
1] 19.3 18.6 18.6 19.7 4.8 4.6 4.6 4.9
10 | 19.7 184 19.4 19.7 5.0 4.6 4.9 5.0
100 | 19.2 19.5 19.4 19.7 5.3 4.9 4.9 5.6
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Cross-correlation

Time (s) | SSA CLE lin.CLE (P)2
0.01 | -3.5 -0.5 -0.5 -2.1
0.1]-9.0 -2.6 -2.6 -9.0
1]-96 -93 -9.3 -9.8
10 | -9.8 -9.2 -9.7 -9.8
100 | -9.4 -9.7 -9.7 -9.8
: S v _

mar

o

175 " L L L 105 z
10 10 10 10 10 10 10 10 10 10

Figure 1: Comparison of the means of X; (left) and X» (right) from the different simulations with their
estimates (X1, and Xo 4, respectively).

©  S5A
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+ LinCLE [
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58A
CLE
+  LinCLE
*  Prediction

Figure 2: Comparison of the variances of X1 (left) and X» (right) from the different simulations with their
estimates ((P)11 and (P%)22, respectively).

The simulation data demonstrates that the estimation method is very accurate. The only
discrepancy is that at 0.01 s and 0.1 s the CLE and linearised CLE simulations show much
smaller covariance values as either our estimate or the SSA simulation. We repeated these
simulations with shorter step sizes (down to 0.000001 s) but this further decreased the covari-
ances. The good correspondence between the SSA simulations and the estimates based on the
linearised CLE suggests that this problem may be rooted in numerical issues in the CLE sim-
ulations, that is, the semi-implicit scheme may prevent the emergence of greater fluctuations
on this time scale. Simulations longer than 100 s were impractical due to the computation
cost of the SSA, but pose no problems to the estimation method. In fact, the latter becomes
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Figure 3: Comparison of the covariance of X; and X» from the different simulations with their estimates

((P)12).

the most powerful tool to learn about the system behaviour. It predicts that ultimately P;
converges to its own steady state

pe_ [ 2052 —0.195
~ | -0195 1209

That is, fluctuations in the protein dimer increase and become ever less anticorrelated to
the fluctuations of the monomer. The apparent reason for this is that on a longer time scale
protein production and decay blunt the anticorrelation between the fluctuations of monomer
and dimer counts.

3.7 Example 5: The ColE1l bacterial plasmid replication control system

In a model of plasmid replication control studied by various groups (see Bremer and Lin-Chao
(1986), Ehrenberg (1996), Paulsson and Ehrenberg (1998), Paulsson and Ehrenberg (2001),
Lestas, Vinnicombe, and Bishop (2005) and references therein) RNA molecules are transcribed
from plasmids and act as a negative feedback signal by inhibiting the plasmid replication
process with a certain probability. We propose the following model in which plasmids P
generate RNA I molecules R;, which decay at a certain rate. Attempts of plasmid replication
are either blocked by an RNA I molecule binding to the complementary single-stranded RNA II
molecule which is being transcribed from the plasmid or not, but in either case the replication
primer precursor RNA IT will soon pair up with one RNA I, and will effectively remove it from
the system.

P 5 PyR
R 2 g
p BEmLp g
T )

We are interested in the change of plasmid and RNA I counts in a single cell over one
complete cell cycle in which cell volume doubles with exponential growth v(t) = v(0)24/7
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(t € [0,7]). Keeping to experimentally measured values as much as we can, we set parameter
and initial values such that the steady state of concentrations corresponds to a doubling of
plasmid count from 10 to 20, and RNA I count from 400 to 800 during the cell cycle. Our
parameters are as follows.

Length of cell cycle: T'= 50 min.
Initial intracellular volume: vy = 1071° £.

Dilution rate: k; = 10%2 =0.000231... s~ L

Avogadro number: N4 =6 x 10% mol™'.
RNA I transcription frequency: k; = 0.1 s71.
RNA I degradation rate: ko = 0.002 s™! — k; = 0.00176... s~ 1.

RNA II transcription frequency: kj; = k1 —(ko+kg) cc? = 0.02 s7!. This is set such that
the stipulated ratio between the two steady state concentrations is achieved (cf, /cp =

40).

Rate of failed plasmid replication attempts: k3(Xg,) = ki1 — k4(Xg, ). This is the rate
coefficient of replication attempts (that is, RNA II transcriptions) minus the successful
attempts.

Plasmid replication rate: k4(Xg,) = krrQoo. This is the rate coefficient of RNA II tran-
scription multiplied by the probabilities that replication priming is not inhibited by
RNA I:RNA II complex formation and that a mature primer eventually initiates plas-
mid replication.

The probability that replication priming by RNA II is not inhibited by RNA I This
is where one makes a distinction between two cases. Following Ehrenberg (1996) and
Paulsson and Ehrenberg (1998), we let

hyp 1 _ 1
0o - Xr,t Nacgry
1 1,Y
1 + K?yp 1 + K;‘)’P

exp XRl,t . NACRl,t
0 =exp _K§vat = exp —W

in the exponential case.
The probability that a mature primer initiates plasmid replication: o = 0.5.

Inhibition constant for RNA I:RNA II complex formation This is set such that if the
initial value is the steady state ((cp(0),cg,(0)) = (cp,cy,)), then exactly one replication
occurs per plasmid until the end of the cell cycle thus providing an exact duplication of
the plasmid population. In other words, we choose it such that it guarantees a constant
plasmid concentration: k4 (c”l‘%l) = kq gives



and * exp
_Nacg,

eXp _
KI = Tog ki
& % Y

The system equations for molecular counts are

dXpy = ka(Xp,¢) Xprdt + \/ka(Xg, 1) Xpt dBug,

AXp, ¢ = k1 Xpedt — ko Xp, o dt — (k;», (Xp,4) + ks (XRht))Xp,t dt
+ k1 XpidB1y — \/koXR, 1 dBoy
—\/k3(Xp, ) XprdBsy — \/ka(Xp, ) XpsdBay.

In this example steady state only makes sense for concentrations therefore we will transform
the CLE into concentrations formulation. We have already derived how to do this (see (3.5.3)
in Section 3.5). Note that we have a fairly simple situation since all reactions are first-order.
This was achieved by hiding the nonlinearities of interactions and their volume dependencies
into the k3 and k4 coefficients.

dCPjt = ky (CRl,t)CP,t dt — dep’t dt + Cpy dB47,57

N ()
VNV ’
dep, + = kicpy dt — kocp, 4 dt — (kg (cros) + Ky (ch,t))CP,t dt — kgep, 4 dt
1 1
+ ——+/kicpydB1; — \V k2cRr, + dBay
VvV INav VvV Ny '
1 1
v/ N 404 \% Navy
We can now proceed to the differential equation (3.3.2) for P,. Due to the changing volume,
this time the matrices involved will be time-dependent. This does not matter though, as the
linearisation was done with respect to space.

k3(cr,t)cpedBsy —

ky (CR1 ,t) Cpit dB4,t-

ki —kir —ka — kg
[ 1
Gy = ! ’ 0 Ve \ Fa ()P
1 * 1 * 1 * * 1 N " 5
| VR —uam R A Rs(Ch)eb — gy ha(ch,)p
[ 0 0
let = L 0 )
| 2VNaviy/cp
[0 0
Gor=1|¢g __ vk __ |,
L 2V Navi\ /e,
0 0 T
G = Fa(Chy) K (chy ) :

2/ Navin/Ccp 2\/NAvt\/k3(c}‘%1)c}3

ka(ck,) ki(ck,)cp
o 2NV 2VNave, [ha(ch, )ep
4t — *
) Ki(ch )ep

2V Navi\/ch 2v/Navt \/k4(c’;21 )eh
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Note that for the purpose of simulation both forms of the CLE are equally valid. The trans-
formation was only necessary for the linearisation.

A comparison similar to that of the previous section can be carried out. The initial state
is again the steady state with probability 1 (hence the initial covariance is zero). In each block
the first three columns show statistics from 5000 simulations in each case, the fourth column
is the prediction. Here we are only interested in statistics at one time instance, the end of the
cell cycle. For clarity, concentrations are converted to counts.

Mean Xp XR1
Case SSA CLE lin.CLE XpyT SSA CLE lin.CLE XRl,T
hyperbolic | 19.97 19.94  20.01 20 799.2  T797.7 799.1 800
exponential | 20.24 20.27  20.02 20 808.8 807.8 800.0 800
Variance Xp Xp,
Case SSA CLE lin.CLE (PT)ll SSA CLE lin.CLE (PT)22
hyperbolic | 12.17 11.99 11.73 11.95 | 17222 16941 16939 17065
exponential | 4.92  4.87 4.72 4.86 6764 6464 6571 6709
Cross-correlation
Case SSA CLE lin.CLE (PT)IQ
hyperbolic | 419.3 413.2  408.6 413.2
exponential | 136.9 131.8 132.0 134.7

The only unsolicited finding is that the average plasmid count in the exponential case is
above 20.2 in the nonlinear simulations (SSA, CLE). This is apparently caused by a difference
between the steady state of the ordinary differential equation and the mean of the state in
the stochastic models (SSA, CLE) which is fundamentally a consequence of the nonlinearity
of chemical reaction models.

The linearisation method proposed to estimate steady state fluctuations of molecular
counts proved reliable and accurate in our two examples. It cut computation time from hours
needed for the intensive simulations to less than a second. In both examples we had n = 2
state variables, which led to ordinary differential equations in five variables. In the general
n-dimensional case one would have an n + "(nTJrl)—dimensional ordinary differential equation
to solve.

Assuming that one has a matrix differential equation solver, our method is easy to imple-
ment numerically and it only requires calculations that can be automated. There is no obstacle
to applying the method in a system with many more variables. (However we note that in our
examples we used direct calculations to derive ordinary differential equations in five scalar
variables.) These are major advantages over van Kampen’s linear noise approximation (van
Kampen, 1992) that was used by Hayot and Jayaprakash (2004) who pointed out that with
increasing number of reactants and reactions van Kampen’s analytical results are ‘typically
difficult to obtain’ and ‘cumbersome to analyse’.
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4 Direction of future research

Today there is no general stochastic theory of reaction networks that would allow algorithmical
analysis. Any idea that has a chance of making progress in this direction is well worth studying.
Both for the analysis and design of intracellular reaction systems it is fundamentally im-
portant to understand how the biochemical workings of microbes achieve robust behaviour
under a wide range of (external and internal) circumstances. In this report we have briefly
discussed why stochastic models are better suited to biochemistry than ODE models, which
were originally developed for the chemistry of solutions of volume much greater than a cell.
In addition to developing system size reduction techniques and consequent computational im-
provements, we showed that Gillespie’s chemical Langevin equation gives the same first two
moments as the widely accepted chemical master equation. This, in conjunction with the fact
that in experiments typically only the means and the correlations among the concentrations
of reactant species are measured, supports the use of the CLE as a substitute for the CME.

In the second half of the report we studied the covariance properties of concentrations.
The linearisation method pointed out that around a positive steady state of the underlying
ODE noise affects the concentrations both additively and multiplicatively even in a first-order
approximation to the CLE.

This brings us to our research question how the robustness of biochemical systems, their
reliability and capability to avoid break-down caused by internal or external noise could be
assessed. We think that we have identified a gap between the theory of stochastic processes
for biochemical reactions and the theory of Lyapunov and storage functions from dynamical
systems and control theory, and our main aim is to establish a connection here. We envisage
an approach based on stochastic Lyapunov functions (Kushner, 1967).

The observation that the CLE is inherently loaded with an additive noise term implies
that even in equilibrium distribution the state will have a sustained nonzero covariance. Hence
convergence to a single state in the state space cannot be expected. Instead, such a Lyapunov
function would inform us about how likely it is that the system escapes the safe region of
its activity—this is what simulations cannot practically assess. Initially our focus will be the
appropriate specialisation of stochastic safety verification methods (Prajna, Jadbabaie, and
Pappas, 2004, 2007) to the chemical Langevin equation. Constructing the barrier certificates
that lie at the heart of this method can be most easily done by the sum of squares (SOS)
technique (Parrilo, 2000), and for practical implementation the corresponding SOSTOOLS
algorithm package can be used (Prajna et al., 2002). This line of enquiry would extend and
generalise work by El Samad and Khammash (2004) and El-Samad et al. (2006) in that it
would be based on the CLE formulation instead of certain less rigorous stochastic models.

Another research question we are interested in is estimating the time it takes for biochem-
ical reaction systems to reach the proximity of their equilibrium distribution from a perturbed
state. This assessment would broaden our understanding of the performance of these systems:
it is not only the reliability to avoid break-downs that matters in a living organism, but also the
speed with which a system can return to normal behaviour. The mathematical challenges to
develop such results for specific examples in the CLE (or the CME) setting would be substan-
tial due to the multivariable, nonlinear nature of these systems. The only result we are aware of
about the expected time to reach equilibrium in a chemical system considers a single-variable
system (Vellela and Qian, 2007). However, the author has experience in deriving estimates for
the time that discrete time Markov chains (especially Markov chain Monte Carlo methods) on
combinatorial structures require to reach equilibrium distribution (Mélykuti, 2006) and wishes
to explore whether similar methods can be applied in this setting.
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Appendix

Proof of Lemma 2.2.1

Proof. Let us denote the factor in Gillespie’s factorisation by

o(X) = Sdiag(v/a1(X), ..., vVan(X)).

First we prove that the nullvectors of B(X) are the same as the left nullvectors of o(X).

If y € R™\ {0} is a nullvector of B(X), then 0 = B(X)y = o(X)o(X)Ty, hence 0 =
yTo(X)o(X)Ty = |o(X)Ty||? = |yl o(X)||?, so yTo(X) = 0, and y is a left nullvector to
o(X).

In the other direction, if y”o(X) = 0, then 0 = (y"o(X))(c(X)Ty) = y* (¢(X)o(X)Ty), s0
y L o(X)o(X)Ty. But then y is contained in (Im(c(X)o(X)T))*+ = Ker ((o(X)o(X)T)T) =
Ker(o(X)o(X)T). Hence B(X)y = o(X)o(X)Ty = 0.

We only need to prove that the left nullvectors of ¢(X) and S are the same. But this is
obvious, since \/a1(X),..., /an(X) are all positive by assumption. O

Proof of Lemma 2.2.2

Proof. The column rank of S € R™*™ is just dim(Im S). It is well known that
dim(Im S) + dim(Ker S) = m.
The row rank of S is the column rank of ST, or dim(Im ST). Similarly,
dim(Im ST) + dim(Ker ST) = n.
It is also well known that the column and row ranks are always equal. Therefore

m — dim(Ker S) = rank S = n — dim(Ker S7).

State space reduction for Construction 4

For Construction 4 a finer partitioning of the matrices is proposed. Let us order the columns of
S € R™™ such that we have S = [S1 S2 S3 S4], where the columns of S} € R7x (m—dim(Ker 5))
form a basis for Im S; Sj is the collection of the column vectors which are constant multiples
of any single column of S; the columns of S represent all the directions specified by columns
of S that are distinct to directions of the columns of S; (columns of Sy are linearly dependent
on columns of Sp, they are a linear combination of more than one); and finally Sy is the
collection of the column vectors which are constant multiples of any single column of Ss. Let
the sizes of these matrices define ro, r3 and r4: Sy € R"*"™2, S5 € R"*"3, 5, € R™*", Obviously,
m — dim(Ker S) 4+ ro = s, and ro + r3 + r4 = dim(Ker S). The entries of A(X) are permuted
accordingly, and then A(X) is partitioned to blocks.
This uniquely specifies the matrices

N e R(mfdim(Ker S))><1"27
M3 — [U(l) o U(Tg)] e R(m—dim(KerS))Xrg’

My =[w® .. wm)] e Rr2Xm
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such that Sy = S1N, S3 = 51 M3, S4 = SoMy, and all v@ and w®) have only one nonzero
entry each. Then let

_ 0 —[7‘2 mxs
J = 0 0 eR
0 0

_ Imfdim(KerS) 0 M 0 sxXm
V‘[ 0 L, 0 M SR

J having first r3 then r4 rows of zeros.
The construction is again (2.3.1). For the sake of notational clarity, let

Cr(X )+ Z (As3(X ”v (J) ¢ R(m—dim(Ker 5))x (m—dim(Ker s))’

Cy ( —I— Z A4 ]j’ll) ()T c Rr2Xr2,

Then

_ | Gix) 0
v =[5 ol |

is diagonal. SJV = S and (1.3.1) hold. Defining 7" with S; in the role of S,
=51 VOi(X) NyC(X) ],

x)= [ VR Ve |

0

(m—dim(Ker S)) x

of which the nonzero blocks together are in R 8, as required.

Proof of Theorem 3.3.1
Proof. We will follow the calculation for Theorem 3.1.1. Since dX* = 0, (3.2.3) becomes

dz; = Fxtdt+GdBt+ZG x; dBj . (A1)
7j=1
Taking expectation on both sides one arrives at
dz; = Fi, dt. (A.2)
This proves the first claim.
For the covariance matrix P = E(xyx!) — 2], we will apply (3.1.2) to d(zsz!) and
d(#;2]), and then substitute the right-hand sides of (A.1) and (A.2), respectively.
d(zzl) = Faxl dt 4+ (G dBy)x! + Z(ijt dB;)x!
J
+ l‘tl‘?FT dt + .’,Ut(G dBt)T —+ x4 Z(Gjl‘t dBjﬂg)T
J

+ | Foedt + GdBy+ Y GyzydBjy | | o FTdt +(GdB)" + > (GjaedB;)T |
J J

A2



by substituting (A.1). Then by the computation rules from the proof of Lemma 2.0.1

d(z2l) = Faxl dt + (G dBy)x] + Z(Gj:ct dB;,)xf
J
+ CL‘tl',tTFT dt + .CL't(G dBt)T + Tt Z(Gjl't dBj7t)T
J

+ D GHGEHT D Gl GT + > G Gy)" + Y Gy G | dt.
J J J J
After taking expectations one gets
dE(zix] ) = FE(xafl) dt + E(ma)FT dt + [ > G4(G5)"+
J
+ > G GT + > GG y)" + > GiE(w!)G] | dt.

J J J
Formula (3.1.2) for the differential of a product can be used to compute d(#;27 ) too:

d(@al) = ()@l + &y dal + dz, da)

= Fial dt 4+ 227 FT dt

by (A.2). The third term vanishes. dP; is given by the difference of the last two equations.

AP = (FP,+ PFT)dt+ ) (G + Gjdy) (G5 + Gjdy)" dt
J
=Y GG T dt+ > GiB(wa] )GT dt
J J

= | FP+ PFT 4+ (G + Gyin) (G + Gji)" + Y G RGT | dt,
j J

and this completes the proof.
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