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ABSTRACT
In the bond percolation model on a lattice, we colour vertices with
nc colours independently at random according to Bernoulli distribu-
tions. A vertex can receivemultiple colours and each of these colours
is individually observable. The colours colour the entire component
into which they fall. Our goal is to estimate the nc + 1 parameters
of the model: the probabilities of colouring of single vertices and
the probability with which an edge is open. The input data is the
configuration of colours once the complete components have been
coloured, without the information which vertices were originally
coloured or which edges are open.

We use a Monte Carlo method, the method of simulated
moments, to achieve this goal. Under the unproven assumption of
identifiability, we show that this method is a strongly consistent esti-
mator by proving a uniform strong law of large numbers for the
vertices’ weakly dependent colour values. Our proof method quan-
tifies dependence among the spatially arranged random variables
using percolation theory: the FKG and BK inequalities, and the expo-
nential decay of the cluster size distribution.We evaluate themethod
in computer tests. We have made our software publicly available.
The motivating application is cross-contamination rate estimation
for digital PCR in lab-on-a-chip microfluidic devices.
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1. Bond percolation with colouring

We consider bond percolation [15] on the triangular lattice, but our arguments hold for
the square lattice as well. The vertex set of the infinite lattice is denoted by L. Edges are
open (that is, included in the graph, alternatively, receive weight 1 as opposed to 0) inde-
pendently at randomwith probabilityμ ∈ [0, 1]. There are nc ∈ N \ {0} colours given, and
for every colour � ∈ {1, 2, . . . , nc}, a parameter λ� ∈ [0, 1] is fixed. (Here � is an index in
superscript, not an exponent.) For every vertex i ∈ L, the vertex is coloured with colour
� ∈ {1, 2, . . . , nc} according to a Bernoulli randomvariablewith probabilityλ�. The colour-
ing with different colours is independent in any one vertex, and it is also independent
among different vertices. A vertex can receive multiple colours and each of these colours is
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individually observable. We call this colouring the seeding: X�
i ∈ {0, 1} for every i ∈ L and

� ∈ {1, 2, . . . , nc}.
These colours propagate through open edges and colour (‘contaminate’) the entire com-

ponent they are contained in. Let i ↔ jmean that vertices i, j ∈ L are connected by an open
path. The observed colour configuration is

Y�
i := X�

i ∨
∨
j∈L
j↔i

X�
j ∈ {0, 1}

for every i ∈ L and � ∈ {1, 2, . . . , nc}, where∨ is the maximum operator.We write i ∼ j for
adjacent lattice vertices i, j ∈ L regardless of the state of the connecting edge.

We also consider this process on finite, connected subsets of the lattice I ⊂ L. (Here
connected ismeant with respect to the relation ∼ , not onlywith respect to the open edges.)
Picking the vertex set I implicitly fixes its edge set, the edges which connect vertices of I.
We let nI := |I|.

Often we consider nested sequences of such I where each successor is a superset of its
predecessor and nI → ∞.We fix an ordering of the vertices of the infinite lattice Lwhich is
compatible with this sequence as nI → ∞, that is, each I comprises vertices labelled with
{1, . . . , nI}. We use I2 := {(i, j) ∈ I × I | i ∼ j, i < j} for the set of ordered pairs of adjacent
vertices (independently of whether the connecting edge is open or closed) and np := |I2|
for the total number of possible edges within I. We define the exterior vertex boundary of
a subset I by

�I := {j ∈ L | j /∈ I, ∃i ∈ I : i ∼ j}.
We always require that in our sequences, |�I|/|I| → 0. By the degree sum formula, this
assumption also implies np ∼ 3nI for the triangular lattice (asymptotic equality; np ∼ 2nI
is the corresponding condition for the square lattice).

For a fixed I, we define a variant of Y�
i that is determined exclusively by the seeding and

edges in I:

Ỹ�
i := X�

i ∨
∨
j∈I
j↔̃i

X�
j ∈ {0, 1}

for every i ∈ I and � ∈ {1, 2, . . . , nc}. Here ↔̃ means connectedness by open edges in the
edge set of I.

Our goal is to estimate the parameter θ = (λ1, . . . , λnc ,μ) from the data
(Ỹ�

i )i∈I,�∈{1,2,...,nc} (Figure 1). The spatial arrangement of (Ỹ�
i ) within the lattice is known,

but the seeding (X�
i ) and the open or closed state of the edges are unavailable. We bring

together four theoretical tools in this paper.
First, parameter estimation is conducted by the method of simulated moments (MSM;

described in Section 2) [13,14]. This is a simulation-based, computationally intensive but
parallelizable statistical method that yields a point estimate for θ which converges almost
surely to the correct value as nI → ∞.

Second, as the first step towards proving the strong consistency of the estimator, we
prove a strong law of large numbers (SLLN) with weakly dependent variables. We do this
in Section 3 by adapting Theorem 1 of [9].
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Figure 1. (top left) A realization of random seeding (X�
i )with (λred, λgreen, λblue) = (0.1, 0.05, 0.2). Red

and green together yield yellow, red and blue yield magenta, green and blue yield cyan, and red, green
and blue together yield white. (top right) A realization of bond percolation on the triangular lattice
withμ = 0.1. (bottom left) The bond percolation overlaid with the seeding. (bottom right) The resulting
configuration (̃Y�

i )which serves as the data.

Third, the SLLN result requires some grasp of how small the dependence is between
distant vertices of the lattice. The upper bounds on correlations are provided by the FKG
and BK inequalities of percolation theory and the exponential decay of the cluster size
distribution [1,5,10,15, Chapters 2 and 6,16,20] in Section 4.

Fourth, for the strong consistency of the estimator, we extend the SLLN to be uniform
in the parameter vector. We verify in Section 5 that the conditions of a sufficient condi-
tion for the uniform law of large numbers (ULLN) hold [25, p. 8, Theorem 2], [28, p. 25,
Lemma 3.1].

Our estimation method is tested on synthetic data with known parameter values in
Section 6 and its performance is evaluated. Our software is publicly available [4]. In
Section 7, the motivating problem is described, and the paper concludes with a discus-
sion of possible improvements in modelling and methodology. Some readers will benefit
from perusing Section 7 first, before progressing to Section 2. Readers interested only in
applying the estimationmethodmight choose tomove from Section 2 directly to Section 6.

2. Method of simulatedmoments (MSM)

2.1. General description

The MSM is a modification of the classical method of moments for parameter estimation
for the case when the moments of the sampling distribution cannot be computed from
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the parameters in closed form. The MSM proposes to simulate ns independent, identi-
cally distributed samples from the distribution, repeatedly with different parameter values
θ (usually, but not strictly necessarily, with common random variables as θ is changed),
and to choose the θ which gives the closest match between moments of the data and that
of the simulated data. For its detailed description, we recommend perusing a combination
of [13,14].

The data Y = (Yi)i∈I originates from a distribution which is parameterized by the
unknown θ0 ∈ �. θ0 is called the true value of the parameter. Normally, the Yi are inde-
pendent. A sample from this family of distributions with a general parameter is denoted by
Y = (Yi)i∈I . Let K be some nm-dimensional measurable function of the individual obser-
vations Yi. Let k(θ) be the expectation of K when K is evaluated on a draw Yi from the
distribution with parameter θ ∈ �, k(θ) := Eθ [K(Yi)]. Thus k is a vector of nm general-
ized moments of the distribution of Yi. (Eθ is the expectation under the distribution with
parameter θ . Similarly, Pθ is the probability of an event in that case.)

Let g be some multidimensional function that represents estimating constraints. In our
case these are distances between observedmoments andmoments of the model with given
parameter value θ :

g(Yi, θ) = K(Yi) − k(θ).

By introducing E0 as a shorthand for Eθ0 , it is immediate that E0[g(Yi, θ0)] = 0. However,
for the parameter estimation problem to be well posed, we require that

E0[g(Yi, θ)] = 0 ⇐⇒ θ = θ0. (1)

We call this condition identifiability (with respect to the criterion function). Implicit in
this is that we have at least as many independent equations as parameters. For the MSM to
work, identifiability is required in a broader sense (cf. [24, Corollary 3.2]): for all δ > 0,

inf
θ∈�:|θ−θ0|>δ

∣∣E0[g(Yi, θ)]
∣∣ > 0. (2)

In our particular problem we assume (1) but, as we show, (2) follows from it.
The MSM is used when k(θ) is not available in analytical form but there exists an

unbiased estimator k̃(Us
i , θ), and consequently an unbiased estimator for g, g̃(Yi,Us

i , θ) =
K(Yi) − k̃(Us

i , θ). Here (Us
i )i∈I,s∈{1,...,ns} is some source of randomness, typically vectors of

independent, uniform random variables on [0, 1] as provided by a pseudorandom number
generator. The estimators satisfy E[̃k(Us

i , θ)] = k(θ) and E[̃g(Yi,Us
i , θ) | Yi] = g(Yi, θ).

We introduce a weighting by a symmetric, positive definite matrix � ∈ Rnm×nm , and
consider the quadratic form α(η) = ηT�η.� = �nI might even be ameasurable function
of the data. The broad principle of the MSM is the following.

The principle of theMSM: LetY = (Yi)i∈I be a finite, independent random sample from
Pθ0 and (Us

i )i∈I,s∈{1,...,ns} an independent random sample from a fixed distribution. The
MSM estimator is defined as

θ̂ns,nI := argmin
θ∈�

α

(
1
nI

nI∑
i=1

(
K(Yi) − 1

ns

ns∑
s=1

k̃(Us
i , θ)

))
.
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If identifiability in the broader sense (2) holds, ns is fixed and nI tends to infinity, and the
almost sure convergence guaranteed by the SLLN

1
nI

nI∑
i=1

k̃(Us
i , θ) −→

nI→∞k(θ) (3)

is uniform in θ ∈ � for every s, then θ̂ns,nI is strongly consistent (that is, θ̂ns,nI converges to
θ0 almost surely). In the case when �nI is dependent on the data, it must satisfy a further
technical condition related to identifiability.

There are differentways of specifying the technical conditions to turn this into a theorem
[13,14,22,24]. For example, if k(θ) = Eθ [K(Yi)] is continuous in θ , then E0[g(Yi, θ)] is also
continuous in θ . If additionally � is compact, then (1) implies (2).

Notice that the number of simulations ns can remain bounded, it is only nI that must
tend to infinity for consistency. For practical implementations, it is a crucial point that the
(Us

i ) must be drawn at the beginning of the exploration of the parameter space and kept
fixed afterwards while different parameter values are proposed, in order to avoid intro-
ducing an extra layer of fluctuation [14, p. 29]. This way, a gradient-based search of the
parameter space is possible. At the theoretical level, in the limit nI → ∞, the estimator is
strongly consistent even without using common random numbers.

For any θ ∈ �, the only source of randomness in (3) is the shared collection
(Us

i )i∈I,s∈{1,...,ns} of random variables, which are not influenced by the value of θ . Through
themwe can define the probabilitymeasures Pθ in a consistent way on the same probability
space, enabling us to talk about uniform almost sure convergence in θ .

If �nI is a function of the data, then one needs to rule out pathologies where identifia-
bility is compromised in the limit: when �nI converges to a positive semidefinite but not
definite matrix, or when some directions picked out by �nI become overly dominant. We
suggest two alternative conditions on �nI ∈ Rnm×nm . The first condition is that �nI has a
positive definite limit �′, continuously in θ0, almost surely:

lim
nI→∞ �nI = �′ > 0. (4)

In the numerical example of Section 6, we specify �nI using sample moments such that
its limit is a diagonal matrix of generalized moments which are positive. An alternative
condition is that there exist constants 0 < c1 < c2 such that almost surely for all sufficiently
large nI , for all η ∈ Rnm and all θ0 ∈ �,

c1|η|2 ≤ ηT�nIη ≤ c2|η|2 (5)

holds. If � is compact, then condition (4) implies condition (5).
Under the additional condition that g̃(Yi,Us

i , θ) is twice differentiable with respect to
θ , asymptotic normality of the estimator also holds and the asymptotic variance can be
explicitly given [13,14,22,24].

2.2. TheMSM specialized to our problem

For the MSM applied to our percolation model with colouring, the data points Ỹi are nei-
ther identically distributed (because of boundary effects) nor independent, and the general
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principle of theMSM as currently stated in its conventional form does not imply the valid-
ity of the method. The main theoretical result of this paper is the proof of the strong
consistency of a particular MSM estimator for our estimation problem.

The generalized moment function K we propose contains, in addition to first moments
Y�
i , products Y

�
i Y

�
j for i ∼ j because these carry much information about open edges. We

mention the consequence that the original formalism ofK as a function of a single variable
(that is, of an individual Yi) no longer applies.

We assume without proof that for this generalized moment function, identifiability (1)
holds. For supporting evidence, turn to Section 1 of the Appendix. This assumption is
not true in some extreme cases which we exclude. If (λ1, . . . , λnc) = h ∈ {0, 1}nc , then Ỹ is
almost surely identically h for any choice ofμ (and so isY). For an h ∈ {0, 1}nc , the outcome
Ỹ is again hwith high probability as nI → ∞ ifμ = 1 and h� = χ{λ�>0}. (χ is the indicator
function.)

The percolation parameter μ is allowed to take any value in the subcritical regime
[0, pc[. pc is the critical probability of bond percolation. For the triangular lattice, its value
is pc = 2 sin(π/18) ≈ 0.3473, while for the square lattice, it is pc = 1/2 [15, Chapter 3,19,
27,29].

Section 3 details the steps leading to the SLLN result (3). Due to dependence between
the Yi, cross-correlations appear in the derivation in addition to variances. Section 4 deals
with upper bounding these correlations using percolation theory. Section 5 describes the
extension of the SLLN to the ULLN.

The observed colouring of the dataset is denoted by Y�
i (i ∈ I, � ∈ {1, 2, . . . , nc}),

whereas in the simulated data it is Ỹ�,s
i (s ∈ {1, 2, . . . , ns}). While it is clear that the sim-

ulated data must come from a finite I (or perhaps from some I′ : I � I′ � L), we leave
flexibility whether the data is of type (Ỹi)i∈I , which is the case in our practical applica-
tion, or of the theoretically appealing type (Yi)i∈I . We let (Yi)i∈I denote both cases, to be
interpreted as the context demands. Simulating on I′ � I is an attractive option when the
dataset (Yi)i∈I is generated by a process defined on a proper superset of I, perhaps on the
infinite L. The reason is that by simulating on I′, seeds and open edges outside I can con-
tribute to the realization on I, better reflecting the origin of the dataset. Lastly, we introduce
the following averages:

Ȳ� := 1
nI

∑
i∈I

Y�
i , Ȳ�,s := 1

nI

∑
i∈I

Ỹ�,s
i ,

Z̄� := 1
np

∑
(i,j)∈I2

Y�
i Y�

j , Z̄�,s := 1
np

∑
(i,j)∈I2

Ỹ�,s
i Ỹ�,s

j .

Our main theorem is the following.

Theorem 2.1: Let � be a compact subset of ([0, 1]nc \ {0, 1}nc) × [0, pc[. (For the tri-
angular lattice, pc = 2 sin(π/18) ≈ 0.3473, while in the square lattice case, pc = 1/2.)
Consider the bond percolation model with colouring and with the true parameter value
θ0 = (λ1, . . . , λnc ,μ) ∈ �. Let � ∈ R2nc×2nc be a symmetric, positive definite matrix, and
write α(η) = ηT�η for the resulting quadratic form. � = �nI might be a measurable func-
tion of the data, but in this case, one of the almost sure conditions (4) or (5)must hold. Under
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the assumption of identifiability (1), when ns is fixed and nI tends to infinity, the estimator

θ̂ns,nI := argmin
θ∈�

α

⎛⎜⎜⎜⎜⎜⎝

(
1
nI

∑
i∈I

(
Y�
i − 1

ns

ns∑
s=1

Ỹ�,s
i

))
�∈{1,...,nc}⎛⎝ 1

np

∑
(i,j)∈I2

(
Y�
i Y�

j − 1
ns

ns∑
s=1

Ỹ�,s
i Ỹ�,s

j

)⎞⎠
�∈{1,...,nc}

⎞⎟⎟⎟⎟⎟⎠

= argmin
θ∈�

α

⎛⎜⎜⎜⎜⎜⎝

(
Ȳ� − 1

ns

ns∑
s=1

Ȳ�,s

)
�∈{1,...,nc}(

Z̄� − 1
ns

ns∑
s=1

Z̄�,s

)
�∈{1,...,nc}

⎞⎟⎟⎟⎟⎟⎠
is strongly consistent.

In order to prove the claim, we want to establish that for the arithmetic means generated
under general θ , the following almost sure convergences hold as nI → ∞, uniformly in
θ ∈ �:

1
nI

∑
i∈I

Y�
i − 1

nI

∑
i∈I

EθY�
i −→ 0

and
1
np

∑
(i,j)∈I2

Y�
i Y

�
j − 1

np

∑
(i,j)∈I2

Eθ

[
Y�
i Y

�
j

]
−→ 0.

The relevant notion of uniform convergence is detailed in Section 5. The same proofs apply
with Ỹ , too. This unusual formulation of the SLLN is needed because the random variables
Ỹ are not identically distributed due to boundary effects. At the end of Section 5, we will
also see that these two SLLNs ultimately ensure that

α

⎛⎜⎜⎜⎜⎜⎝

(
Ȳ� − 1

ns

ns∑
s=1

Ȳ�,s

)
�∈{1,...,nc}(

Z̄� − 1
ns

ns∑
s=1

Z̄�,s

)
�∈{1,...,nc}

⎞⎟⎟⎟⎟⎟⎠

− α

⎛⎜⎜⎜⎜⎜⎝

(
1
nI

∑
i∈I

(
E0Y�

i − Eθ Ỹ�
i

))
�∈{1,...,nc}⎛⎝ 1

np

∑
(i,j)∈I2

(
E0[Y�

i Y
�
j ] − Eθ [Ỹ�

i Ỹ
�
j ]
)⎞⎠

�∈{1,...,nc}

⎞⎟⎟⎟⎟⎟⎠ −→
nI→∞0 (6)

uniformly with probability 1. The second term is minimal when it is asymptotically zero
(in the case when E0 acts on Y�

i and Y
�
i Y

�
j ; when it acts on Ỹ�

i and Ỹ
�
i Ỹ

�
j , then it is actually

zero), and this is achieved only when θ = θ0 under the assumption of identifiability (1).
This gives the strong consistency for θ̂ns,nI . The details are to be found in Section 5.
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3. Strong law of large numbers with weak dependence

We adapt the proof of Theorem 1 of [9] in this section to suit our purposes. We write out
the claims with Y, but they also hold for Ỹ and the necessary proof updates are presented
in Section 4.

Proposition 3.1: Let θ ∈ [0, 1]nc × [0, pc[, where pc is the critical probability of bond
percolation. If Y is generated with parameter value θ , then

1
nI

(∑
i∈I

Y�
i −

∑
i∈I

EθY�
i

)
−→
nI→∞ 0

almost surely. The claim also holds for Ỹ.

Proposition 3.2: Let θ ∈ [0, 1]nc × [0, pc[. If Y is generated with parameter value θ , then

1
np

⎛⎝ ∑
(i,j)∈I2

Y�
i Y

�
j −

∑
(i,j)∈I2

Eθ [Y�
i Y

�
j ]

⎞⎠ −→
nI→∞ 0

almost surely. The claim also holds for Ỹ.

Proof of Proposition 3.1.: For the ease of notation, let Yi := Y�
i for some fixed � ∈

{1, . . . , nc} (i ∈ I), created by our percolation process with θ = (λ1, . . . , λnc ,μ). Let a>1
and define the lacunary sequence kn := [an]. Let Sk :=

∑k
i=1 Yi.

By the application of Chebyshov’s inequality, for every ε > 0,
∞∑
n=1

P
(∣∣∣∣Skn − ESkn

kn

∣∣∣∣ > ε

)
≤

∞∑
n=1

Var Skn
ε2k2n

≤ 1
ε2

∞∑
n=1

1
k2n

kn∑
i=1

VarYi

+ 1
ε2

∞∑
n=1

1
k2n

∑
1≤i�=j≤kn

(E[YiYj] − EYi EYj). (7)

If we can prove that this is finite, then by the Borel–Cantelli lemma, as n → ∞, for every
θ ∈ �, ∣∣∣∣Skn − ESkn

kn

∣∣∣∣→ 0 a.s. (8)

We first notice that
∞∑
n=1

1
k2n

kn∑
i=1

VarYi < ∞

by recognizing that supi∈I VarYi ≤ 1, and that for a>1,
∞∑
n=1

1
kn

< ∞. (9)
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The upper bound (9) follows by the limit comparison test with
∑

n(1/a
n) and

∑
n(1/kn),

or by the ratio test for
∑

n(1/kn).
We prove in Section 4 that

∣∣∣∣∣∣
∑

1≤i�=j≤kn

(E[YiYj] − EYi EYj)

∣∣∣∣∣∣ = O(kn), (10)

so that by applying convergence (9) once again, we get that (7) is finite, as required.
In the case of a general k := nI , k is sandwiched between some kn ≤ k < kn+1 and

Sk − ESk
k

≤ Skn+1 − ESkn
k

≤
∣∣∣∣Skn+1 − ESkn+1

kn+1

∣∣∣∣ kn+1

kn
+ ESkn+1 − ESkn

kn
. (11)

Note that even for Skn+1 − ESkn < 0, one can change the denominator from k to kn in the
second inequality because the right-hand side is nonnegative. Here, for a fixed a>1,

kn+1

kn
= [an+1]

[an]
≤ an+1

an − 1
= a + a

an − 1
, (12)

which in turn is arbitrarily close to a when n is sufficiently large. (An analogous lower
bound can also be derived, giving kn+1/kn = a + o(1).) Additionally,

ESkn+1 − ESkn
kn

≤ (kn+1 − kn) supi∈I EYi

kn

≤
(
a + a

an − 1
− 1
)
sup
i∈I

EYi,

and combining this with (8) yields

lim sup
k→∞

Sk − ESk
k

≤ (a − 1) sup
i∈I

EYi ≤ a − 1.

A similar lower bound can also be obtained. Since a>1 can be chosen arbitrarily, the SLLN
for Yi (Proposition 3.1) holds once we prove the estimate (10). �

Proof of Proposition 3.2.: This proof goes entirely analogously to that of Proposition 3.1.
We keep using the notation Yi := Y�

i for some fixed � ∈ {1, . . . , nc} and fixed θ , and the
lacunary sequence kn = [an] for a>1. Let Tk :=

∑
(i,j)∈I2 YiYj for I = I(k) composed of

the first k vertices according to the fixed ordering. This sum has np(k) terms. Then, by the
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argument of (7), for every ε > 0,

∞∑
n=1

P
(∣∣∣∣Tkn − ETkn

np(kn)

∣∣∣∣ > ε

)
≤

∞∑
n=1

VarTkn
ε2np(kn)2

≤ 1
ε2

∞∑
n=1

1
np(kn)2

∑
(i1,i2)∈I2(kn)

Var[Yi1Yi2 ]

+ 1
ε2

∞∑
n=1

1
np(kn)2

∑
(i1,i2),(j1,j2)∈I2(kn)

(i1,i2) �=(j1,j2)

(
E[Yi1Yi2Yj1Yj2]

− E[Yi1Yi2] E[Yj1Yj2]
)
. (13)

By

sup
(i1,i2)∈I2(kn)

Var[Yi1Yi2 ] ≤ 1

and |I2(kn)| = np(kn) ∼ 3nI = 3kn, the convergence (9) gives

1
ε2

∞∑
n=1

1
np(kn)2

∑
(i1,i2)∈I2(kn)

Var[Yi1Yi2 ] ≤ 1
ε2

∞∑
n=1

1
np(kn)

< ∞.

In Section 4, it is shown that∣∣∣∣∣∣∣∣
∑

(i1,i2),(j1,j2)∈I2(kn)
(i1,i2) �=(j1,j2)

(
E[Yi1Yi2Yj1Yj2 ] − E[Yi1Yi2 ] E[Yj1Yj2 ]

)∣∣∣∣∣∣∣∣ = O(kn), (14)

and by (9), we get that the sum (13) is finite. By the Borel–Cantelli lemma,∣∣∣∣Tkn − ETkn
np(kn)

∣∣∣∣→ 0 a.s. (15)

For a general k = nI with kn ≤ k < kn+1,

Tk − ETk

np(k)
≤
∣∣∣∣Tkn+1 − ETkn+1

np(kn+1)

∣∣∣∣ np(kn+1)

np(kn)
+ ETkn+1 − ETkn

np(kn)
. (16)

For a fixed a>1, by using np(kn) ∼ 3kn and the remark after (12),

np(kn+1)

np(kn)
∼ 3kn+1

3kn
= a + o(1).

Additionally,

ETkn+1 − ETkn
np(kn)

≤ (np(kn+1) − np(kn)) sup(i1,i2)∈I2(kn) E[Yi1Yi2]
np(kn)

,
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hence

lim sup
n→∞

ETkn+1 − ETkn
np(kn)

≤ (a − 1) sup
(i1,i2)∈I2(kn)

E[Yi1Yi2].

Combining this with (15) and (16), we get

lim sup
k→∞

Tk − ETk

np(k)
≤ (a − 1) sup

(i1,i2)∈I2(kn)
E[Yi1Yi2] ≤ a − 1.

A similar lower bound can also be obtained. Since a>1 can be chosen arbitrarily, the SLLN
for YiYj, i ∼ j (Proposition 3.2) holds once we prove the estimate (14). �

4. Upper bound on correlations

We prove the estimates (10) and (14) in greater generality, for every positive integer n.
Let � be a compact subset of [0, 1] × [0, pc[, where pc is the critical probability of bond
percolation.

Lemma 4.1: As n → ∞, we have

sup
θ∈�

∣∣∣∣∣∣
∑

1≤i�=j≤n

(E[YiYj] − EYi EYj)

∣∣∣∣∣∣ = O(n).

Lemma 4.2: As n → ∞, we have

sup
θ∈�

∣∣∣∣∣∣∣∣
∑

(i1,i2),(j1,j2)∈I2(n)
(i1,i2) �=(j1,j2)

(
E[Yi1Yi2Yj1Yj2] − E[Yi1Yi2 ] E[Yj1Yj2 ]

)∣∣∣∣∣∣∣∣ = O(n).

For background, first we recapitulate from the fundamentals of percolation theory the
meaning of increasing events, the FKG inequality, disjoint occurrence, the BK inequality
and pivotality [15, Chapter 2]. It is well known that these concepts do not rely on the spe-
cific structure of the lattice graph and can be cast more generally in terms of functions of
Boolean variables.

In this vein, one can consider a probability space (�,F , P)with sample space� = {0, 1}S
(S is finite or atmost countably infinite) where the set of eventsF is theσ -algebra generated
by the finite-dimensional cylinder sets and the measure is a product measure

P =
∏
s∈S

νs

where νs is specified by some vector (p(s))s∈S ∈ [0, 1]S via

νs(ω(s) = 1) = p(s), νs(ω(s) = 0) = 1 − p(s)

for sample vectors (ω(s))s∈S ∈ {0, 1}S [15, Chapter 2, p. 33].
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In our application, we have already fixed a colour � ∈ {1, . . . , nc} and look at colours
independently. We extend the set of vertices Lwith an additional vertex that we call∞�, or
simply ∞ when the colour is fixed and unimportant: L∗ := L ∪ {∞}. We also extend the
edge set of the triangular lattice, L2, with edges between each vertex and ∞, and the value
assigned to such an edge indicates the presence or absence of seeding. We call these edges
source edges. For the source edges, p(s) = λ�, and for the edges of the latticewhich represent
contamination, p(s) = μ. The interpretation is that Y�

i = 1 if and only if i ↔∗ ∞�, where
the asterisk refers to connection in the extended graph.

An eventA ∈ F of the σ -algebra is called increasing, if wheneverω ≤ ω′,ω ∈ A implies
ω′ ∈ A.

Theorem 4.3 (FKG inequality [10,15, pp. 34–36,16]): If A and B are increasing events in
F , then P(A ∩ B) ≥ P(A)P(B).

Let e1, e2, . . . , eN be N distinct edges of the graph, and A,B ∈ F two increasing events
which depend on the vector of the states of these N edges ω = (ω(e1), . . . ,ω(eN)) only.
Such vectors ω are characterized uniquely by the set of edges with value 1: J(ω) = {ei | i ∈
{1, . . . ,N},ω(ei) = 1}.

For the increasing events A,B, the event A ◦ B (we say A and B occur disjointly) is the
set of all ω ∈ � for which there exists an H := H(ω) ⊆ J(ω) such that ω′ determined by
J(ω′) = H belongs to A, and ω′′ determined by J(ω′′) = J(ω) \ H belongs to B. In words,
A ◦ B is the set of assignments of 0 and 1 to the edges for which there exist two disjoint sets
of edges assigned the value 1 (open edges) such that the first such set ensures the occurrence
of event A and the second set ensures the occurrence of B. It is easy to verify that A ◦ B is
also increasing and A ◦ B ⊆ A ∩ B.

The classical example for disjoint occurrence is whenA is the event that there is an open
path joining i1 to j1 within the finite subgraph given by {e1, . . . , eN} and B is the event that
there is an open path between i2 and j2 within the same finite subgraph. Then A ◦ B is the
event that there exist two edge-disjoint paths, the first between i1 and j1 and another one
joining i2 to j2.

Theorem 4.4 (BK inequality [5,15, pp. 37–41]): If A and B are increasing events in F ,
then P(A ◦ B) ≤ P(A)P(B).

The validity of the inequality extends to the existence of arbitrarily long (but finite-
length) edge-disjoint open paths, which is what we need it for, by taking a sequence of
growing, nested subsets of L [15, p. 38].

The notion of pivotality is not used until Section 5. For any event A an edge e is pivotal
if its open or closed state is crucial to whether A occurs or not. In more detail, the edge e
is pivotal for the pair (A,ω) if for the indicator function χA of A, χA(ω) �= χA(ω′), where
the configuration ω′ ∈ {0, 1}S is defined by ω′(e) = 1 − ω(e), and ω′(f ) = ω(f ) for every
edge f �= e. The event that e is pivotal for A is the set of ω for which e is pivotal for (A,ω).

Proof of Lemma 4.1.: In the extended lattice graph that has source edges with weight zero
or one at every vertex for seeding, the event {Yi = 1} for i ∈ I is increasing because it is
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increasing in both seeding (source edges) and contamination edges. For any i, j ∈ I,

E[YiYj] − EYiEYj = P(YiYj = 1) − P(Yi = 1)P(Yj = 1) ≥ 0

by the FKG inequality. Hence, for every θ ∈ �,∑
1≤i�=j≤n

(E[YiYj] − EYi EYj) ≥ 0.

For the upper bound, consider that

P(YiYj = 1) − P(Yi = 1)P(Yj = 1)

= P
({Yi = 1} ◦ {Yj = 1})− P(Yi = 1)P(Yj = 1)

+ P
(
{YiYj = 1} \ {Yi = 1} ◦ {Yj = 1}

)
≤ P

(
{YiYj = 1} \ {Yi = 1} ◦ {Yj = 1}

)
(17)

by the BK inequality. Cooccurrence of {Yi = 1} and {Yj = 1} which is not disjoint is one
where i and j are in the same component in the edge set on the non-extended lattice:

{YiYj = 1} \ {Yi = 1} ◦ {Yj = 1} ⊆ {i ↔ j}.
We show that ∑

1≤i�=j≤n

P(i ↔ j) = O(n) (18)

forμ < pc, and uniformly so forμ ∈ [0, pc − ε] for every ε ∈]0, pc[. This follows from the
exponential decay of the cluster size distribution and it will complete the proof of Lemma
4.1.

Let C(i) denote the set of vertices in the component of i ∈ L according to the non-
extended edge set of L. Then∑

1≤i�=j≤n

P(i ↔ j) =
∑
1≤i≤n

∑
1≤j≤n
j �=i

Eχ{i↔j} =
∑
1≤i≤n

E[|C(i)| − 1].

Theorem 4.5 (Exponential decay of the cluster size distribution [1,15, Theorem 6.75]
and [20]): For μ ∈]0, pc[, there exists g(μ) > 0 such that for all k ≥ 1 and i ∈ I, for the
bond percolation with parameter μ, it holds that P(|C(i)| ≥ k) ≤ e−kg(μ).

Take μ∗ = pc − ε. As P(|C(i)| ≥ k) is nondecreasing in μ, we get a uniform bound in
θ ∈ � if the bound is valid for μ∗:

n∑
i=1

E[|C(i)| − 1] =
n∑

i=1

(( ∞∑
k=1

P(|C(i)| ≥ k)

)
− 1

)

≤
n∑

i=1

∞∑
k=1

e−kg(μ∗) = n
1

eg(μ∗) − 1
. (19)

This proves Lemma 4.1, which in turn completes the proof of Proposition 3.1 for Y. �



670 F. BECK AND B. MÉLYKÚTI

Proof of Proposition 3.1 for the case of Ỹ.: To go from the case of Y to Ỹ , first we cou-
ple the realizations of (Yi)i∈L and (Ỹi)i∈I with varying lattices I (and later with vary-
ing parameter vectors) by defining them via shared random variables (U�

i )i∈L,�∈{1,2,...,nc}
and (Vij)(i,j)∈L2 that are independent and all uniformly distributed on [0, 1]. For θ =
(λ1, . . . , λnc ,μ) ∈ �, i ∈ L, (i, j) ∈ L2 and � ∈ {1, 2, . . . , nc}, the seeding is defined by
X�
i := χ{U�

i <λ�}, and edges are open according to ξij := χ{Vij<μ}.
Let us drop the superscript � again. Notice that any Ỹi can change in a nondecreasing

manner when I is increased. In the proof of Proposition 3.1, the only occasion where Yi
from different I are compared is inequality (11).Wemark the lattice size as a variable in the
superscript of Ỹi. Observe that Ỹkn

i ≤ Ỹk
i ≤ Ỹkn+1

i ≤ Yi for kn ≤ k < kn+1 and i ∈ I(kn).
With S̃kn :=∑n

i=1 Ỹ
k
i , noting S̃

kn
kn ≤ S̃kk ≤ S̃kn+1

kn+1
,

S̃kk − ẼSkk
k

≤
S̃kn+1
kn+1

− ẼSknkn
k

≤
∣∣∣∣∣∣
S̃kn+1
kn+1

− ẼSkn+1
kn+1

kn+1

∣∣∣∣∣∣ kn+1

kn
+

ẼSkn+1
kn+1

− ẼSknkn
kn

,

where, similarly to inequality (11), the second inequality holds for different reasons when
S̃kn+1
kn+1

− ẼSknkn is negative and when not. The first term on the right-hand side is treated as
in the original proof of Proposition 3.1. The second term is

ẼSkn+1
kn+1

− ẼSknkn
kn

= 1
kn

kn+1∑
i=kn+1

EỸkn+1
i + 1

kn

kn∑
i=1

(
EỸkn+1

i − EỸkn
i

)
. (20)

Here

1
kn

kn+1∑
i=kn+1

EỸkn+1
i ≤ kn+1 − kn

kn
sup

i∈I(kn+1)
EỸkn+1

i

is dealt with as in the original proof of Proposition 3.1. For the other term of (20),

1
kn

kn∑
i=1

(
EỸkn+1

i − EỸkn
i

)
≤ 1

kn

kn∑
i=1

(
EYi − EỸkn

i

)
.

According to the next proposition, this vanishes in the limit, leaving us with

lim sup
k→∞

S̃kk − ẼSkk
k

≤ a − 1,

as required.

Proposition 4.6: For a compact subset � ⊂ [0, 1] × [0, pc[,

sup
θ∈�

1
nI

∣∣∣∣∣∑
i∈I

Eθ Ỹi −
∑
i∈I

EθYi

∣∣∣∣∣ −→
nI→∞0.
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Proof: As Yi ≥ Ỹi almost surely,

E
[
Yi − Ỹi

] = P
(
Yi = 1, Ỹi = 0

)
≤ P

(
Yi = 1 and ∃ j ∈ L \ I : Xj = 1, i ↔ j

)
≤ P (i ↔ �I) ,

which expresses that Yi and Ỹi can differ only if i ∈ I is connected to the exterior vertex
boundary of I. Further,

∑
i∈I

P (i ↔ �I) = E

[∑
i∈I

χ{i↔�I}

]
.

But this is the expected size of the open component that is grown from all vertices of �I
towards the inside of I. It is bounded from above by |�I| × E[|C(0)|]. On the compact
�, the mean size of the open component of any vertex has a universal finite upper bound
by (19). Hence,

sup
θ∈�

1
nI

∣∣∣∣∣∑
i∈I

Eθ

[
Ỹi − Yi

]∣∣∣∣∣ ≤ |�I|
nI

sup
θ∈�

Eθ [|C(0)|] → 0

as nI → ∞, due to our assumption |�I|/|I| → 0 about the nested sequence of I. �

As in the case of Y, a lower bound for (̃Skk − ẼSkk)/k does not pose any additional diffi-
culty. In the proof of Lemma 4.1, the covariances cannot increase whenwe constrain the set
of edges to those among the firstn vertices. Concretely, E[|C(i)|] cannot increase. Therefore
Proposition 3.1 stays true for Ỹ . �

Proof of Lemma 4.2.: The proof follows closely that of Lemma 4.1. For any two pairs
(i1, i2), (j1, j2) ∈ I2,

E[Yi1Yi2Yj1Yj2] − E[Yi1Yi2 ] E[Yj1Yj2] ≥ 0

due to the FKG inequality applied to {Yi1Yi2 = 1} and {Yj1Yj2 = 1}. Therefore, for any
θ ∈ �, ∑

(i1,i2),(j1,j2)∈I2(n)
(i1,i2) �=(j1,j2)

(
E[Yi1Yi2Yj1Yj2] − E[Yi1Yi2 ] E[Yj1Yj2 ]

)
≥ 0.

The first step towards the upper bound, similarly to (17), uses the BK inequality:

P(Yi1Yi2Yj1Yj2 = 1) − P(Yi1Yi2 = 1)P(Yj1Yj2 = 1)

≤ P
(
{Yi1Yi2Yj1Yj2 = 1} \ {Yi1Yi2 = 1} ◦ {Yj1Yj2 = 1}

)
.

Cooccurrencewhich is not disjoint is onewhere at least one of i1 and i2 is connected to at
least one of j1 and j2 in the non-extended edge set, or in symbols for the case i1, i2 /∈ {j1, j2},

{Yi1Yi2Yj1Yj2 = 1} \ {Yi1Yi2 = 1} ◦ {Yj1Yj2 = 1}
⊆ {i1 ↔ j1} ∪ {i1 ↔ j2} ∪ {i2 ↔ j1} ∪ {i2 ↔ j2}.
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So for every fixed θ ∈ �,∑
(i1,i2),(j1,j2)∈I2(n)

(i1,i2) �=(j1,j2)

(
E[Yi1Yi2Yj1Yj2 ] − E[Yi1Yi2] E[Yj1Yj2]

)

≤
∑

(i1,i2),(j1,j2)∈I2(n)
i1,i2 /∈{j1,j2}

(
P
(
i1 ↔ j1

)+ P
(
i1 ↔ j2

)+ P
(
i2 ↔ j1

)+ P
(
i2 ↔ j2

))

+
∑

(i1,i2),(j1,j2)∈I2(n)
i1∈{j1,j2}

1 +
∑

(i1,i2),(j1,j2)∈I2(n)
i2∈{j1,j2}

1 (21)

The second and third terms are easier, and we show the estimate for the second only.∑
(i1,i2),(j1,j2)∈I2(n)

i1∈{j1,j2}

1

=
∑

(j1,j2)∈I2(n)

∑
(i1,i2)∈I2(n)
i1∈{j1,j2}

1

≤
∑

j1∈I(n)

∑
j2∼j1

⎛⎝ ∑
i2∼i1=j1

1 +
∑

i2∼i1=j2

1

⎞⎠
≤ n 6 (6 + 6) = O(n),

where in the first inequality, instead of (j1, j2), we sweep for j1, and then for its neighbours
j2 separately, and similarly for (i1, i2). In the last inequality, we replace the sums for j2 ∼ j1,
i2 ∼ j1 and i2 ∼ j2 by factors of 6 (for the triangular lattice). Clearly, the goal with the first
sum on the right-hand side of (21) is to reduce it to an already tackled sum. For example,
for the first term in the sum,∑

(i1,i2),(j1,j2)∈I2(n)
i1,i2 /∈{j1,j2}

P
(
i1 ↔ j1

)

≤
∑

j1∈I(n)

∑
j2∼j1

∑
i1∈I(n)\{j1,j2}

∑
i2∼i1

P
(
i1 ↔ j1

)
≤ 36

∑
j1∈I(n)

∑
i1∈I(n)\{j1}

P
(
i1 ↔ j1

)
≤ 36 n

1
eg(μ∗) − 1

= O(n).

In the first two inequalities, we usemanipulations from above and extend i1 ∈ I(n) \ {j1, j2}
to i1 ∈ I(n) \ {j1}. In the last inequality, we use the previous case (19). This completes the
proof of Lemma 4.2 and the proof of Proposition 3.2 for Y. �
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Proof of Proposition 3.2 for the case of Ỹ.: The proof of Proposition 3.2 can be adapted to
Ỹ . For example, the following variant of Proposition 4.6 also holds:

sup
θ∈�

1
np

∣∣∣∣∣∣
∑

(i,j)∈I2
Eθ

[
ỸiỸj

]−
∑

(i,j)∈I2
Eθ [YiYj]

∣∣∣∣∣∣ −→
nI→∞ 0. (22)

�

5. Uniform law of large numbers (ULLN) for our process

In the interests of conciseness, we continue assuming that there is only one colour: nc = 1.
This leads to no loss of generality. We prove that the SLLNs, Propositions 3.1 and 3.2, hold
uniformly over the compact parameter set� ⊂ [0, 1] × [0, pc[. Similarly to the preceding,
we write out everything for Y, but the result is also valid for Ỹ .

To prove the uniform version of Proposition 3.1, we check that the conditions of the
following theorem hold, where we adapted [25, p. 8, Theorem 2] or [28, p. 25, Lemma
3.1] to our setting. For the rewriting of the theorem, we exploited that for a sample
((Ui)i∈L, (Vij)(i,j)∈L2) of the seeds and edges, any Yi is nondecreasing in both λ and μ.

Theorem 5.1 (cf. [25, p. 8, Theorem 2], [28, p. 25, Lemma 3.1]): Suppose that for every
ε > 0 there exists a finite set of pairs of parameter vectors

P =
{(

θLr , θ
U
r
) ∈ ([0, 1] × [0, pc[

)2 ∣∣∣ r ∈ {1, . . . ,N(ε)}
}

such that

(1) for every r ∈ {1, . . . ,N(ε)}, the SLLN holds for θLr and θUr ; that is, if Y is generated with
parameter value θLr , then

1
nI

(∑
i∈I

Yi −
∑
i∈I

EθLr
Yi

)
−→
nI→∞0

almost surely, and similarly for θUr ;
(2) for every θ ∈ �, there is an r ∈ {1, . . . ,N(ε)} such that θLr ≤ θ ≤ θUr coordinatewise;
(3) for every r ∈ {1, . . . ,N(ε)} and i ∈ I, EθUr

Yi − EθLr
Yi ≤ ε.

Then the ULLN holds, that is,

sup
θ∈�

1
nI

∣∣∣∣∣∑
i∈I

Yi −
∑
i∈I

EθYi

∣∣∣∣∣ −→
nI→∞0

almost surely, where Y is generated with parameter value θ .

We construct P such that the rectangles Rr spanned by θLr = (λLr ,μL
r ) and θUr =

(λUr ,μU
r ), that is, the closed rectangles [λLr , λUr ] × [μL

r ,μU
r ], cover�. By this construction,

Condition (2) holds. No matter how we choose finitely many pairs (θLr , θUr ), Condition (1)
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holds for each byProposition 3.1.We achieveCondition (3) by proving Lipschitz continuity
of the expectation EθYi in θ .

Lemma 5.2: For any μ∗ ∈]0, pc[, the expectation EθYi is Lipschitz continuous in θ over the
set [0, 1] × [0,μ∗] with some Lipschitz constant L0, which is universal for i ∈ L.

For the ε required by Theorem 5.1 and specifically by Condition (3), we pick a δ ∈
]0, ε/L0]. We cover � with rectangles Ru of the form(

]λLu, λ
U
u [× ]μL

u,μ
U
u [
)

∩
(
[0, 1] × [0, pc[

)
with μU

u < pc (but negative λLu and μL
u, and 1 < λUu are possible) and |θUu − θLu | = δ. This

way the diameter of the rectangles is not greater than δ and they are relatively open in
[0, 1] × [0, pc[. Because of compactness, there is a finite subcover of�with such rectangles
Ru: {Ru1 . . . . ,RuN(ε)

}. We define P via the ‘bottom left’ and ‘top right’ vertices of these
finitely many rectangles:

P :=
{(

(λLur ∨ 0,μL
ur ∨ 0), (λUur ∧ 1,μU

ur)
)∣∣∣r ∈ {1, . . . ,N(ε)}

}
.

These specify closed rectangles with diameter at most δ. Due to the Lipschitz condi-
tion with Lipschitz constant L0, Condition (3) is satisfied and Theorem 5.1 applies. In
conclusion, a proof of Lemma 5.2 proves the ULLN for Y.

Proof of Lemma 5.2.: Consider θ , θ ′ ∈ [0, 1] × [0,μ∗], θ = (λ,μ) and θ ′ = (λ′,μ′). We
can assume that θ ≤ θ ′ coordinatewise. If this were not the case, we would prove the
inequality for θL := (λ ∧ λ′,μ ∧ μ′) and θU := (λ ∨ λ′,μ ∨ μ′). This suffices since |θ −
θ ′| = |θL − θU |, and both EθYi and Eθ ′Yi are contained in [EθLYi, EθUYi] due to mono-
tonicity.

We identify the vertices of L with the source edges, and fix an ordering of all source and
contamination edges: L ∪ L2 = {e0, e1, e2, . . .}. Let ϑ : N → [0, 1] be such that ϑk = λ if
ek is a source edge, and ϑk = μ if ek is a contamination edge. Define ϑ ′ analogously with
λ′,μ′ in place of λ,μ, respectively. Finally, let θk, θ ′k : N → [0, 1] be defined by

(θk)j :=
{

ϑ ′
j if j < k,

ϑj if j ≥ k,
(θ ′k)j :=

{
ϑ ′
j if j ≤ k,

ϑj if j > k,

for k, j ∈ N. Let ωθ be the configuration that is specified by ((Ui)i∈L, (Vij)(i,j)∈L2) and
parameter θ via (Xi)i∈L and (ξij)(i,j)∈L2 . Then

Eθ ′Yi − EθYi = Pθ ′(Yi = 1) − Pθ (Yi = 1)

=
∞∑
k=0

P
(
Yi(ωθ ′k) = 1 andYi(ωθk) = 0

)
=

∞∑
k=0

(ϑ ′
k − ϑk)Pθk

(
ek is pivotal for Yi = 1

)
,

where the second equality is just the law of total probability when we know that {Yi = 1}
is an increasing event, and the third equality is elaborated in [15, pp. 41–43] as such a step



STOCHASTICS 675

is used in the proof of Russo’s formula. Note that the concerns in that derivation related to
an infinite edge set do not apply here because we have always got only one edge ek whose
parameter differs between θk and θ ′k. (The price we pay is that each pivotality is with a
different parameter vector θk.) If ek is a source edge, then ϑ ′

k − ϑk = λ′ − λ, and if ek is a
contamination edge, then ϑ ′

k − ϑk = μ′ − μ. Further,

Pθk
(
ek is pivotal for Yi = 1

)

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if ek is the source edge of vertex i,
Pθk(j ↔ i), if ek is the source edge of vertex j �= i,
1, if ek is an edge incident with i,
Pθk(i1 ↔ i) + Pθk(i2 ↔ i), if ek is the edge (i1, i2), i �= i1, i2.

Then ∑
ek source edge

(ϑ ′
k − ϑk)Pθk

(
ek is pivotal for Yi = 1

)

≤ (λ′ − λ)

⎛⎝1 +
∑

j∈L\{i}
Pθk(j ↔ i)

⎞⎠
≤ (λ′ − λ)

(
1 + 1

eg(μ∗) − 1

)
by (19). Using tricks from the proof of Lemma 4.2,∑

ek contamination edge

(ϑ ′
k − ϑk)Pθk

(
ek is pivotal for Yi = 1

)

≤ (μ′ − μ)

⎛⎝6 +
∑

(i1,i2)∈(L\{i})2

(
Pθk(i1 ↔ i) + Pθk(i2 ↔ i)

)⎞⎠
≤ (μ′ − μ)

⎛⎝6 + 2 × 6
∑

j∈L\{i}
Pθk(j ↔ i)

⎞⎠
≤ (μ′ − μ)

(
6 + 12

eg(μ∗) − 1

)
.

Consequently,

Eθ ′Yi − EθYi

≤ (λ′ − λ)

(
1 + 1

eg(μ∗) − 1

)
+ (μ′ − μ)

(
6 + 12

eg(μ∗) − 1

)
≤ (λ′ − λ + μ′ − μ)

(
6 + 12

eg(μ∗) − 1

)
≤ L0|θ ′ − θ |

for some L0 > 0 because in finite dimensions, all norms are equivalent. �
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Lemma 5.2 for Eθ [YiYj] (i ∼ j) can be shown by a now straightforward adjustment of
the original proof. This then implies that the followingmodification of Theorem 5.1 holds.

Theorem 5.3: Suppose that the conditions of Theorem 5.1 hold with the following updates
to points (1) and (3) :

(1’) for every r ∈ {1, . . . ,N(ε)}, if Y is generated with parameter value θLr , then

1
np

⎛⎝ ∑
(i,j)∈I2

YiYj −
∑

(i,j)∈I2
EθLr

[YiYj]

⎞⎠ −→
nI→∞0

almost surely, and similarly for θUr ;
(3’) for every r ∈ {1, . . . ,N(ε)} and (i, j) ∈ I2, EθUr

[YiYj] − EθLr
[YiYj] ≤ ε.

Then the ULLN holds, that is

sup
θ∈�

1
np

∣∣∣∣∣∣
∑

(i,j)∈I2
YiYj −

∑
(i,j)∈I2

Eθ [YiYj]

∣∣∣∣∣∣ −→
nI→∞0

almost surely, where Y is generated with parameter value θ .

The derivations and results of this section until now hold with Ỹ , too. All elements of
the proof of our main theorem, Theorem 2.1, are in place.

Proof of Theorem 2.1.: We introduce the following vectors as shorthand:

b1 =
⎛⎝( 1

nI

∑
i∈I

(
Y�
i − E0Y�

i

))nc

�=1

,

⎛⎝ 1
np

∑
(i,j)∈I2

(
Y�
i Y�

j − E0[Y�
i Y

�
j ]
)⎞⎠nc

�=1

⎞⎠
b2 =

⎛⎝( 1
nI

∑
i∈I

(
E0Y�

i − E0Ỹ�
i

))nc

�=1

,

⎛⎝ 1
np

∑
(i,j)∈I2

(
E0[Y�

i Y
�
j ] − E0[Ỹ�

i Ỹ
�
j ]
)⎞⎠nc

�=1

⎞⎠
b3 =

⎛⎝( 1
nI

∑
i∈I

(
E0Ỹ�

i − Eθ Ỹ�
i

))nc

�=1

,

⎛⎝ 1
np

∑
(i,j)∈I2

(
E0[Ỹ�

i Ỹ
�
j ] − Eθ [Ỹ�

i Ỹ
�
j ]
)⎞⎠nc

�=1

⎞⎠
b4 =

((
1
nI

∑
i∈I

(
Eθ Ỹ�

i − 1
ns

ns∑
s=1

Ỹ�,s
i

))nc

�=1

,

⎛⎝ 1
np

∑
(i,j)∈I2

(
Eθ [Ỹ�

i Ỹ
�
j ] − 1

ns

ns∑
s=1

Ỹ�,s
i Ỹ�,s

j

)⎞⎠nc

�=1

⎞⎠ .

The left-hand side of (6) is just

α

⎛⎝ 4∑
j=1

bj

⎞⎠− α (b2 + b3) = bT1�b1 + bT4�b4 +
∑
j �=k

bTj �bk − 2bT2�b3 (23)
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We write out the case when the dataset is of type (Yi)i∈I . When the data is of type (Ỹi)i∈I ,
then b2 = 0 and the calculations of the general case can be easily adapted.

One of conditions (4) and (5) is assumed to hold, hence there is some c2 > 0 such that
with probability 1 for large enough nI , for all η ∈ R2nc and for � = �nI ,

0 ≤ ηT�η ≤ sup
θ∈�

ηT�η ≤ c2|η|2. (24)

It follows by the ULLN as implied by Theorems 5.1 and 5.3 that

sup
θ∈�

bT1�b1 ≤ c2 sup
θ∈�

|b1|2 −→
nI→∞0,

sup
θ∈�

bT4�b4 ≤ c2 sup
θ∈�

|b4|2 −→
nI→∞0.

The remaining terms on the right-hand side of (23),∑
j �=k

bTj �bk − 2bT2�b3,

consist of terms bTj �bk where at least one of j and k is either 1 or 4. For b1 and b4, the
ULLN holds and they converge to zero almost surely, uniformly in θ . For b2, we can apply
Proposition 4.6 and (22), so it also converges to zero. In the case of b3, Lipschitz continu-
ity by Lemma 5.2 and its variant for Eθ [YiYj] guarantee boundedness on the compact �.
Consequently, property (24) of � ensures that (23) (and (6)) converges to zero uniformly
in θ almost surely. Of

α (b2 + b3) = bT2�b2 + bT3�b3 + 2bT2�b3,

bT2�b2 and 2bT2�b3 converge to zero as nI → ∞ due to Proposition 4.6 and (22).
In analogy with (24), there exists a constant c1 > 0 such that almost surely for all

sufficiently large nI and for all η ∈ R2nc ,

c1|η|2 ≤ inf
θ∈�

ηT�η. (25)

By the continuity of expectations in θ on the compact set � assured by Lemma 5.2 and its
variant for Eθ [YiYj], the assumption of identifiability (1) implies identifiability (2) (one can
take |θ − θ0| ≥ δ/2 to prove it for the infimum for |θ − θ0| > δ). By this stronger notion
of identifiability, the coordinatewise infimum of b3 for any θ with |θ − θ0| ≥ δ for some
fixed δ > 0 is positive. Let ε denote the least of these 2nc positive infima. Now substitute
η = b3 and use (25): its right-hand side will be bounded below by c1 2nc ε2 > 0.

At the heart of the MSM estimator is the minimization of α(
∑4

j=1 bj) to define θ̂ns,nI .
We have seen that (23) converges to zero uniformly in θ almost surely. For the reasons that
bT3�b3 ≥ 0, that it is zero if and only if θ = θ0, and it has the lower bound c1 2nc ε2 > 0
for |θ − θ0| ≥ δ, the minimization forces bT3�b3 to converge to zero. We conclude that
θ̂ns,nI → θ0 almost surely as nI → ∞. �

We followed the philosophy that the datasetY comes from the infinite lattice L although
only a finite subset is observed. This is an idealized view that assumes the existence of a
process on the infinite lattice. Otherwise, when the dataset is of type Ỹ , the derivation is
simpler because Proposition 4.6 and (22) are not needed.
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6. Computer testing of the proposedmethod

6.1. Implementation

We implemented the proposed MSM parameter estimator in the Matlab software (The
MathWorks, Inc.) [4], and we report our findings in this section. See also [3] for an early
version with nc = 3 colours. For the objective function

α

⎛⎜⎜⎜⎜⎜⎝

(
Ȳ� − 1

ns

ns∑
s=1

Ȳ�,s

)
�∈{1,...,nc}(

Z̄� − 1
ns

ns∑
s=1

Z̄�,s

)
�∈{1,...,nc}

⎞⎟⎟⎟⎟⎟⎠ , (26)

we chose the quadratic form α(η) = ηT�η the following way:

� = diag
(
(Ȳ1)−2, . . . , (Ȳnc)−2, (Z̄1)−2, . . . , (Z̄nc)−2

)
. (27)

In the unlikely case that a Ȳ� or a Z̄� is zero, the corresponding diagonal element of �

is set to 1. Through this normalization, we expect each coordinate to contribute roughly
equally to the sum.

Common randomnumbers are used during the exploration of the parameter space. This
removes an element of fluctuation as different θ = (λ1, . . . , λnc ,μ) ∈ � are tested.We pro-
pose two alternative methods for sampling synthetic datasets. Method 1 is the canonical
approach. We draw and fix independent random variables from the uniform distribu-
tion on [0, 1]: (U�,s

i ) for � ∈ {1, . . . , nc}, s ∈ {1, . . . , ns}, i ∈ I, and (Vs
ij) for s ∈ {1, . . . , ns},

(i, j) ∈ I2. Thereafter, for each parameter vector, seeding and the open or closed state of
edges are defined by

X�,s
i :=

{
1 if U�,s

i < λ�,
0 otherwise,

for � ∈ {1, . . . , nc}, s ∈ {1, . . . , ns}, i ∈ I;

ξ sij :=
{
1 if Vs

ij < μ,
0 otherwise,

for s ∈ {1, . . . , ns}, (i, j) ∈ I2.

This method gives a binomially distributed number of open edges and of seeded vertices
for each colour �.

We test whether it is beneficial for the parameter estimation to remove the randomness
in the numbers of seeds and open edges, and to make exactly as many edges open as their
expected number, ζ(μnp), where ζ is the rounding to the nearest integer with some tie-
breaking rule. The same is stipulated for seeds: ζ(λ�nI) random vertices shall be seeded
with colour �. This is what Method 2 does. We see this as a variance-reduction trick that
achieves lower variance by introducing dependencies between randomdraws: for example,
by knowing the state of all edges but one, we can infer the state of the remaining edge.

Let Sn denote the set of permutations of {1, . . . , n}. In Method 2, we draw permutations
(σ �,s) from SnI independently, uniformly at random for � ∈ {1, . . . , nc}, s ∈ {1, . . . , ns}, and
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independent permutations (τ s) from Snp uniformly at random for s ∈ {1, . . . , ns}. With
these permutations fixed, for each θ ∈ �, we let

X�,s
i :=

{
1 if σ�,s(i) ≤ ζ(λ�nI),
0 otherwise,

for � ∈ {1, . . . , nc}, s ∈ {1, . . . , ns}, i ∈ I;

ξ sij :=
{
1 if τ s

(
(i, j)

) ≤ ζ(μnp),
0 otherwise,

for s ∈ {1, . . . , ns}, (i, j) ∈ I2.

Minimization over the parameter space � is conducted with the Matlab routine
fminsearchbnd [8] for constrained optimization. λ�

max := Ȳ� is certainly an upper
bound on what λ� any point estimator might estimate (� ∈ {1, . . . , nc}) as this is the
moment estimate in caseμ = 0. The upper boundμmax onμ is left to the user’s judgement.

The last user input in addition to ns, Method and μmax is nopt which specifies how
many different initial states to try in the optimization runs. We expect an inverse rela-
tionship between seeding rates and the contamination rate, given the data. Thus the initial
parameter values for k ∈ {1, . . . , nopt} are chosen as

λ�
initial(k) =

(
1 − k − 1

nopt

)
λ�
max, for � ∈ {1, . . . , nc},

μinitial(k) = χ{nopt>1}
k − 1

nopt − 1
μmax.

6.2. Results

In order to test the performance of the proposed estimation procedure, we created a num-
ber of synthetic datasetswithnc = 3 colours, different sizes anddifferent, knownparameter
vectors using Method 1. Tables 1–4 report the results of estimating θ0 = (λ1, λ2, λ3,μ)

using different input settings (ns, nopt,μmax).

Table 1. Six estimates for a synthetic dataset with nI = 25 × 25 = 625 vertices (np = 1776)
and θ0 = (0.1, 0.05, 0.07, 0.06).

ns nopt μmax θ0 θ̂
(M1)
ns ,nI d(M1) α

θ̂
(M1)
ns ,nI

θ̂
(M2)
ns ,nI d(M2) α

θ̂
(M2)
ns ,nI

10 10 0.1 0.1 0.1292 29.16% 0.0124 0.1277 27.74% 0.0215
0.05 0.0595 19.00% 0.0637 27.39%
0.07 0.0611 12.71% 0.0538 23.11%
0.06 0.0433 27.86% (107 s) 0.0376 37.28% (94 s)

50 10 0.1 0.1 0.1289 28.92% 0.0128 0.1267 26.75% 0.00875
0.05 0.0641 28.26% 0.0611 22.18%
0.07 0.0603 13.79% 0.0588 15.94%
0.06 0.0394 34.37% (523 s) 0.0422 29.65% (467 s)

100 10 0.1 0.1 0.1350 35.01% 0.0108 0.1259 25.87% 0.0107
0.05 0.0631 26.18% 0.0623 24.53%
0.07 0.0613 12.44% 0.0595 15.00%
0.06 0.0360 40.00% (1.03e+03 s) 0.0403 32.84% (922 s)

Notes: In this synthetic dataset, the relative frequency of the incidence of the three colours in the seeding is X̄ =
(0.107, 0.0528, 0.064), while in the contamination-impacted observed data, it is Ȳ = (0.15, 0.0752, 0.08). The
relative frequency of adjacent vertices having an open edge between them is 0.0574.
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Table 2. Four estimates for a synthetic dataset with nI = 100 × 100 = 10000 vertices (np =
29601) and θ0 = (0.07, 0.05, 0.04, 0.03).

ns nopt μmax θ0 θ̂
(M1)
ns ,nI d(M1) α

θ̂
(M1)
ns ,nI

θ̂
(M2)
ns ,nI d(M2) α

θ̂
(M2)
ns ,nI

20 10 0.05 0.07 0.0734 4.79% 1.55e−05 0.0739 5.52% 0.00044
0.05 0.0508 1.52% 0.0492 1.66%
0.04 0.0390 2.49% 0.0392 2.07%
0.03 0.0259 13.77% (3.08e+03 s) 0.0262 12.79% (3.01e+03 s)

40 10 0.05 0.07 0.0737 5.28% 5.96e−06 0.0733 4.78% 0.000108
0.05 0.0505 0.93% 0.0500 0.06%
0.04 0.0392 2.05% 0.0393 1.82%
0.03 0.0253 15.54% (5.9e+03 s) 0.0252 16.00% (5.63e+03 s)

Notes: In this synthetic dataset, the relative frequency of the incidence of the three colours in the seeding is X̄ =
(0.0717, 0.0497, 0.0387), while in the contamination-impacted observed data, it is Ȳ = (0.085, 0.0585, 0.0455).
The relative frequency of adjacent vertices having an open edge between them is 0.0303.

Table 3. Eight estimates for a synthetic dataset with nI = 300 × 300 = 90000 vertices (np =
268801) and θ0 = (0.05, 0.06, 0.03, 0.02).

ns nopt μmax θ0 θ̂
(M1)
ns ,nI d(M1) α

θ̂
(M1)
ns ,nI

θ̂
(M2)
ns ,nI d(M2) α

θ̂
(M2)
ns ,nI

2 8 0.05 0.05 0.0472 5.57% 0.00241 0.0488 2.43% 0.000149
0.06 0.0572 4.71% 0.0593 1.18%
0.03 0.0308 2.71% 0.0298 0.51%
0.02 0.0225 12.59% (4e+03 s) 0.0220 9.86% (3.95e+03 s)

4 4 0.05 0.05 0.0480 4.03% 0.000968 0.0489 2.12% 6.11e−05
0.06 0.0578 3.59% 0.0589 1.90%
0.03 0.0305 1.65% 0.0298 0.83%
0.02 0.0223 11.64% (3.8e+03 s) 0.0213 6.45% (3.19e+03 s)

8 2 0.05 0.05 0.0483 3.32% 0.000904 0.0481 3.75% 0.000612
0.06 0.0586 2.35% 0.0586 2.26%
0.03 0.0299 0.40% 0.0301 0.45%
0.02 0.0223 11.60% (3.53e+03 s) 0.0220 10.11% (3.83e+03 s)

5 5 0.05 0.05 0.0481 3.81% 0.000964 0.0485 2.97% 0.000495
0.06 0.0580 3.29% 0.0588 1.99%
0.03 0.0302 0.79% 0.0303 1.04%
0.02 0.0221 10.69% (6.08e+03 s) 0.0219 9.72% (6.12e+03 s)

Notes: In this synthetic dataset, the relative frequency of the incidence of the three colours in the seeding is X̄ =
(0.0498, 0.0595, 0.0299), while in the contamination-impacted observed data, it is Ȳ = (0.0558, 0.0667, 0.034).
The relative frequency of adjacent vertices having an open edge between them is 0.0198.

Table 4. Four estimates for a synthetic dataset with nI = 500 × 500 = 250000 vertices (np =
748001) and θ0 = (0.03, 0.04, 0.05, 0.02).

ns nopt μmax θ0 θ̂
(M1)
ns ,nI d(M1) α

θ̂
(M1)
ns ,nI

θ̂
(M2)
ns ,nI d(M2) α

θ̂
(M2)
ns ,nI

1 1 0.04 0.03 0.0336 11.86% 0.0243 0.0331 10.47% 0.025
0.04 0.0444 10.96% 0.0450 12.59%
0.05 0.0553 10.70% 0.0555 10.94%
0.02 0.0141 29.27% (355 s) 0.0136 31.91% (340 s)

5 5 0.04 0.03 0.0297 1.08% 0.000894 0.0297 1.04% 0.00106
0.04 0.0394 1.43% 0.0395 1.13%
0.05 0.0518 3.57% 0.0519 3.86%
0.02 0.0196 1.94% (2.8e+04 s) 0.0194 3.01% (2.48e+04 s)

Notes: In this synthetic dataset, the relative frequency of the incidence of the three colours in the
seeding is X̄ = (0.0299, 0.0402, 0.0503), while in the contamination-impacted observed data, it is Ȳ =
(0.0336, 0.0451, 0.057). The relative frequency of adjacent vertices having an open edge between them is
0.01996.
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The two estimators, which are based onMethods 1 and 2 of randomnumber generation,
are denoted by θ̂

(M1)
ns,nI and θ̂

(M2)
ns,nI , respectively. We display the relative bias of the estimators

in percentage terms:

d(M1) = 100
∣∣∣1 − θ̂ (M1)

ns,nI /θ0

∣∣∣
(the operations are coordinatewise), and analogously, d(M2) for θ̂

(M2)
ns,nI . Finally, we let

α
θ̂

(M1)
ns ,nI

and α
θ̂

(M2)
ns ,nI

denote the value of the objective function α in (26) at θ̂
(M1)
ns,nI and θ̂

(M2)
ns,nI ,

respectively.
The computations were conducted on a laptop computer equipped with a 2.8 GHz Intel

Core i7-2640M dual-core processor and 8 GB RAM. Although it is clear that the nopt
parameter searches, as well as the ns simulations in each step of each search lend themselves
to parallelization, our implementation does not benefit from this insight. The columns of
α

θ̂
(M1)
ns ,nI

andα
θ̂

(M2)
ns ,nI

display in brackets running times in seconds for completing the parameter
estimation procedure. These times are indicative only and their use for comparisons is lim-
ited as less demanding other tasks were also running on the computer simultaneously. As
far as we can tell, the parameter estimation ran in RAMwithout resorting to swapmemory
on disk.

We foundnodefinitive answer as towhetherMethod 1 or 2 is preferable. Table 3 suggests
Method 2, but Table 4 is as inconclusive as smaller-sized datasets.

Broadly, the relative bias of the estimates becomes smaller as nI grows. From nI = 25 ×
25 = 625 to nI = 500 × 500 = 250000, the relative bias of the μ estimate improves from
about 35–40% to below5%.Wehave also observed that asnI grows, there is ever less need to
try several initial states because the solutions tend to converge to the same estimator. In our
experience, the existence of local optima that necessitate a greater nopt were characteristic
of the smaller lattice sizes only.

In the smallest dataset, Table 1, one can observe that λ1 and λ2 are consistently overes-
timated, whereas λ3 and μ are underestimated in all six estimations. This turned out to be
due to a quirk of the randomly generated dataset. While (λ1, λ2, λ3) = (0.1, 0.05, 0.07), in
reality, the dataset had

X̄ = 1
nI

(∑
i∈I

X 1
i ,
∑
i∈I

X 2
i ,
∑
i∈I

X 3
i

)
= (0.1072, 0.0528, 0.0640).

One can notice that in Table 1, λ1 and λ2 are overestimated to a greater extent than how
much λ3 is underestimated. Then the observed systemic underestimation ofμ is consistent
with this in light of the expected inverse relationship between seeding and contamination
described at the end of Section 6.1.

In Table 3, where the lattice size nI = 300 × 300 = 90000 is most relevant to our
practical application in Section 7, (ns, nopt) ∈ {(2, 8), (4, 4), (8, 2)} allow a comparison of
different input choices with approximately identical computational cost. (ns, nopt) = (4, 4)
and right behind it (8, 2) proved to be the best choices, beating (ns, nopt) = (2, 8). Against
the expectations, (ns, nopt) = (5, 5) happened to not improve the estimate with input (4, 4).
On this lattice size,μ is estimated to 12% accuracy with 1–2 hours running time. In Table 4,
we get better than 5% accuracy on a larger lattice with 7–8 hours running time.
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In Tables 1–4, for fixed nI , α
θ̂

(M1)
ns ,nI

and α
θ̂

(M2)
ns ,nI

tend to decrease for increasing ns. This
is reassuring, although not a necessity because it is possible that the synthetic dataset is
atypical and more simulations (higher ns) do not make it easier to approximate it. Instead,
overfitting might yield the lowest α values.

For further analysis, we introduce two more symbols. One might consider a trivial esti-
mator which assumes no contamination occurring: μ̂ = 0, λ̂� = Ȳ�. The corresponding
αtriv denotes a realization of α with parameters from this trivial estimator, computed from
ns simulations with Method 1 or 2. αθ0 denotes a realization of α with the true parameter
θ0 and ns simulations.

Table 5 compares α
θ̂

(M1)
ns ,nI

and α
θ̂

(M2)
ns ,nI

, αtriv and αθ0 for the four computer-generated
datasets of Tables 1–4. Except for the smallest case, nI = 625, αθ0 is always smaller than
αtriv, as expected. Whereas αθ0 decreases with increasing nI , αtriv stays roughly constant.
α

θ̂
(M1)
ns ,nI

and α
θ̂

(M2)
ns ,nI

decrease only initially as nI increases. One would expect them to be
between αθ0 and αtriv, which tends to hold for larger lattice sizes. In reality, their value is
much lower than αθ0 , but the ratio becomes ever less extreme as nI grows. This is indicative
of initially very strong, but later ever less pronounced overfitting.

To test the behaviour of the objective function αθ0 as nI → ∞, we generated fresh syn-
thetic datasets of different sizeswith a common θ0 = (0.03, 0.04, 0.05, 0.02). Just generating
the single dataset of size 1000 × 1000 took 42 seconds. For this exercise, the single datasets
were compared to simulations with common simulation count ns = 10. Table 6 shows that

Table 5. A comparison of the values of the objective functions for the true value θ0, for the trivial
estimator and for the MSM estimator.

nI np ns nopt α
(M1)
θ0

α
(M2)
θ0

α
(M1)
triv α

(M2)
triv α

θ̂
(M1)
ns ,nI

α
θ̂

(M2)
ns ,nI

25 × 25 1776 10 10 1.06 1.77 0.6 0.555 0.0124 0.0215
25 × 25 1776 50 10 0.82 0.919 0.61 0.618 0.0128 0.00875
25 × 25 1776 100 10 1.19 1.09 0.597 0.589 0.0108 0.0107
100 × 100 29601 20 10 0.042 0.0454 0.59 0.61 1.55e−05 0.00044
100 × 100 29601 40 10 0.0496 0.0576 0.598 0.601 5.96e−06 0.000108
300 × 300 268801 2 8 0.0179 0.0048 0.646 0.604 0.00241 0.000149
300 × 300 268801 4 4 0.00948 0.0014 0.653 0.624 0.000968 6.11e−05
300 × 300 268801 8 2 0.00792 0.00659 0.654 0.614 0.000904 0.000612
300 × 300 268801 5 5 0.0104 0.00786 0.651 0.622 0.000964 0.000495
500 × 500 748001 1 1 0.0223 0.0119 0.628 0.621 0.0243 0.025
500 × 500 748001 5 5 0.00626 0.00791 0.633 0.624 0.000894 0.00106

Note: The four synthetic datasets used are the same as in Tables 1–4.

Table 6. Realizations of the objective function α for the true parameter value θ0 for dif-
ferent synthetic dataset sizes and of the not normalized variant of the objective function
α̃(η) = ηTη.

Size nI np ns α
(M1)
θ0

α
(M2)
θ0

α̃
(M1)
θ0

α̃
(M2)
θ0

25 × 25 625 1776 10 0.202 0.16 6.65e−05 4.21e−05
100 × 100 10000 29601 10 0.0427 0.0277 7.29e−06 2.57e−06
300 × 300 90000 268801 10 0.00624 0.00807 1.68e−06 1.57e−06
500 × 500 250000 748001 10 0.000799 0.0015 3.87e−07 3.97e−07
707 × 707 499849 1496720 10 0.000521 0.000365 5.08e−07 3.99e−07
1000 × 1000 1000000 2996001 10 0.00127 0.00117 9.78e−08 9.04e−08

Note: Here θ0 = (0.03, 0.04, 0.05, 0.02) across fresh synthetic datasets.
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both αθ0 and α̃(η) = ηTη converge to zero, although αθ0 has larger values because of the
normalization by � in (27). This is numerical evidence in support of Propositions 3.1
and 3.2, even with fixed ns.

7. Cross-contamination rate estimation for digital PCR in lab-on-a-chip
microfluidic devices

Ourmotivation for investigating this problem is the need for quality control in parallelized
biochemical experiments run in novel, lab-on-a-chip microfluidic devices for applica-
tions in basic research, biotechnology,medical diagnostics and rapid vaccine development.
Our collaborators Dr Günter Roth and his group (Centre for Biological Systems Analysis
[ZBSA], University of Freiburg) develop such microfluidic devices. The central element of
their system is a rectangular well plate with 15 mm edge lengths, with more than 100,000
wells of 19 p� volume each. The wells on this chip are arranged in a hexagonal tiling pattern
(honeycomb lattice).

Whereas the rival microfluidic technology uses an emulsion of water droplets flowing
in an oil medium, this array-based setup fixes a spatial structure, allowing the otherwise
neglected analysis of cross-contamination between reaction volumes. Our focus is on eval-
uating an experiment particularly well suited for this purpose, whose results generalize to
other experiments conducted in this lab-on-a-chip device.

In the digital PCR experiment, a solution of DNA samples is injected onto the well plate,
at such a low concentration that most wells receive 0 or 1 DNAmolecule (hence the name
digital). In the particular case, the solution is a mixture of three different DNA species.
We call these template molecules seeds. The well plate is covered with a lid (a microscope
slide) that is pre-coated with covalently bound DNA primers [17]. The well plate together
with the lid serve to insulate the reaction volumes from each other. The DNA templates are
amplified in each of the wells independently with a polymerase chain reaction (PCR). In
more detail, the template molecules hybridize to the surface-bound primers and the PCR
elongates these primers to form the complementary strand of the template. In the next
heating step, the templates become resolved, whereas the generated complementary DNA
strands stay covalently bound to the surface. The single-strand templates will bind to other
surface-bound primers and turn them too into complementary strands via polymerization.
The result of the PCR cycles is that the whole glass surface above the well gets covered with
immobilized complementary DNA strands. They mirror the spatial arrangement of the
initial seed pattern of the wells.

After the PCR, the three complementary DNA species on the slide are identified via
three specifically binding fluorescent hybridization probes (fluorophores) and their pres-
ence or absence can be determined by imaging [18]. In the fluorescent image of the slide
(Figure 2), we see either black background (where there was no seed), spots in one of the
three primary colours indicating a single seed, and sometimes a mixture of two or three
primary colours indicating heterogeneous seeding by multiple seeds. Sometimes we also
see clusters of one colour, or an unusually high number of mixed colours, indicating cross-
contamination between adjacent wells. This happens when the lid is not fitted tightly and
during thermal cycling, liquid exchange occurs between reaction volumes around trapped
air bubbles and dust particles. In the readout it remains unclear if two neighbours with the
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Figure 2. (top) Image of a glass slide from a digital PCR experiment with little sign of cross-
contamination [26]. (bottom) Image of a slidewith clustering fluorescent signals and a higher prevalence
of cyan and yellow colours, suggesting higher cross-contamination rate.

same colour (or a single well with a mix of two colours, which has coloured neighbours)
were initiated by two seeds or one contaminated the other (Fig. 2, bottom panel).

For cross-contamination rate estimation for this experimental setup it is necessary to
define a mathematical model of the physical process. It has to involve the triangular lattice,
which is the dual of the hexagonal tiling, and colouring of its vertices. The total numbers of
DNA templates of each type � ∈ {1, . . . , nc} present in the chip are likely well approximated
by nc discretized normal random variables. We can safely assume that each well receives a
Poisson distributed random number of DNA templates of type � because then due to the
superposition property, the total number of type � templates in the chip is also Poisson
distributed, which is close to a normal distribution. The Bernoulli distributed (X�

i ) used
in our model for seeding are really just a proxy to the either zero or positive value of the
corresponding Poisson distribution. From a value λ� of the Bernoulli parameter, we can
infer the parameter λ̃� of the respective Poisson distribution through the identity λ� =
1 − e−λ̃�

.
It is also natural to model the possibility of contamination by open edges. It is a useful

shortcut to draw the state of the edges independently of the seeding so that an open edge
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means only the possibility of propagation, which is contingent on the presence of seeds.
There are modelling choices to be made. Contamination might be

(i) unidirectional (there is the possibility of a pair of independent, oppositely oriented
directed edges ξi→j and ξj→i between any two adjacent vertices i ∼ j), or

(ii) symmetric (undirected edges ξij).

Open edges might be best represented by

(1) independent Bernoulli variables, or by
(2) locally correlated 0–1 random variables.

Contamination might be

(A) confined to neighbours, or
(B) it might propagate via a series of open edges.

The choice of (ii,1,B) yields the model put forward in Section 1 (Figure 3). Its strength
is that it can use standard percolation theory. Our MSM estimator was developed for this
model.

For the quality certification of this lab-on-a-chip device, it is useful to estimate, in addi-
tion to μ, the total number of vertices which belong to a non-trivial component of the
percolation graph. These vertices are the wells which were not insulated from their neigh-
bours. Beyond the digital PCR paradigm, in experimental setups where most wells are
expected to give some signal, vertices that are connected to any other are likely to give false
signals.

Figure 3. (left) Computer simulation of a glass slide from a digital PCR experiment under model
(ii,1,B) with θ0 = (λred, λgreen, λblue,μ) = (0.02, 0.07, 0.05, 0.01) and relatively little sign of cross-
contamination. (right) Computer-simulated slide with clustering fluorescent signals and a higher
prevalence of cyan colour, suggesting higher cross-contamination rate. Here θ0 = (0.02, 0.07,
0.05, 0.06).
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An easy upper bound results from noticing that each additional edgemakes at most two
additional vertices connected. For small values of μ, edges are actually unlikely to share
endpoints. The number of edges is distributed according to a binomial distribution with
parameters np andμ. Therefore themean number of potentially contaminated vertices can
be estimated as

E

⎡⎣∑
|C|≥2

|C|
⎤⎦ ≤ 2μnp ∼ 6μnI

where the asymptotic equality holds under the assumption that the boundary of I is ‘small’.
For concrete examples, the conversion from np to nI can be accurately determined.

Another approach results by noticing

E

⎡⎣∑
|C|≥2

|C|
⎤⎦ = E

[
nI −

∑
i∈I

χ{|C(i)|=1}

]

= nI − nI(1 − μ)6 + e

=
(
6μ − 15μ2 +

6∑
k=3

(
6
k

)
(−1)k+1μk

)
nI + e,

where e is the correction for boundary vertices.
Simpler cases are given by (i,1,A) and (ii,1,A) where the moments E[Y�

i ], E[Y
�
i Y

m
i ] and

E[Y�
i Y

�
j ] (� �= m, i ∼ j) can be computed explicitly. We used Mathematica (Wolfram

Research, Inc.) to deal with the many terms [4], and here we report truncations of the
complete result for space considerations in the case (i,1,A). It is anticipated in the practical
application that μ < λ� for every �. For non-boundary vertices, under this assumption on
the anticipated magnitudes, the dominant terms of the moments of interest in decreasing
order are given as

E[Y�
i ] = P(X�

i = 1) + P(X�
i = 0)

6∑
k=1

(
6
k

)
μk(1 − μ)6−k

(
1 − (1 − λ�)k

)
= λ� + 6λ�μ − 6(λ�)2μ − 15(λ�)2μ2 + O((λ�)5

)
,

E[Y�
i Y

m
i ] = P(X�

i X
m
i = 1) + P(X�

i = 1,Xm
i = 0)

6∑
k=1

(
6
k

)
μk(1 − μ)6−k

(
1 − (1 − λm)k

)

+ P(X�
i = 0,Xm

i = 1)
6∑

k=1

(
6
k

)
μk(1 − μ)6−k

(
1 − (1 − λ�)k

)

+ P(X�
i = Xm

i = 0)
6∑

k=1

(
6
k

)
μk(1 − μ)6−k

(
1 − (1 − λ�)k

) (
1 − (1 − λm)k

)
= λ�λm + 18λ�λmμ − 12

(
(λ�)2λm + λ�(λm)2

)
μ

+ 30λ�λmμ2 + O(max{λ�, λm}5).
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For E[Y�
i Y

�
j ] (i ∼ j), in the case X�

i + X�
j = 1, the empty vertex might have been contam-

inated by the seeded vertex, or it might have been contaminated from its five remaining
neighbours. If X�

i = X�
j = 0, then one can separate cases according to the seeding status of

the two shared neighbours of i and j. These considerations give

E[Y�
i Y

�
j ] = (λ�)2 + 2λ�μ + 8(λ�)2μ + 2λ�μ2 − 10(λ�)3μ + 9(λ�)2μ2 + O((λ�)5

)
.

These n2c/2 + 3nc/2 moment equations provide the opportunity to estimate the nc + 1
parameters via the method of moments. Of these, it is E[Y�

i Y
�
j ] where the first term withμ

is highest up in the magnitude ranking, underpinning the physical intuition that the cooc-
currence of a colour in two adjacent vertices is the most informative moment about the
contamination rate μ.

Notably, the model (ii,1,A) gives exactly the above moment equations if for any (i, j) ∈
I2,

P(ξi→j = 1) = P(ξj→i = 1) = μ in model (i,1,A), and

P(ξij = 1) = μ in model (ii,1,A),

that is, if the numerical values on the right-hand sides are shared between the two mod-
els. The reason is that the propagation of colours is limited to neighbours, already second
neighbours are ruled out. An edge between i and j makes a difference in any of the above
three moments if and only if X�

i + X�
j = 1. Say, X�

j = 1 = 1 − X�
i . Then ξj→i has the same

effect on these moments as ξij, and also the same probability because one can marginalize
over the state of ξi→j. However, E[Y�

i Y
�
j Y

m
i Y

m
j ] would differ between the models (i,1,A)

and (ii,1,A). See also [11, Appendix].

8. Discussion and open problems

This paper describes the solution of a statistical problemmotivated by a concrete practical
need. The mathematical modelling part is solved in one of multiple possible ways, and
the choice of (ii,1,B) brings in bond percolation into the statistical model. We assume that
the percolation is subcritical. The parameter estimation method we propose is the MSM,
which gives a point estimate.Weprove that it is strongly consistent in the limit as the sample
size nI tends to infinity (under the assumption of identifiability). It is an important point
that the number of simulations per proposed parameter vector, ns, can remain bounded to
achieve this result.

What is unusual in our setting is that although the sample size is large, it is not indepen-
dent (nor identically distributed). Introductory percolation theory provides upper bounds
on long-range dependencies between the nI samples.

We have implemented the method and its accuracy is tested on synthetic datasets in
practically relevant parameter ranges. Estimates for wetlab data are to be published by our
collaborators Günter Roth and his co-workers in the microfluidics literature.

Parameter estimation in connection with a (static) percolationmodel is not common in
the literature, apart from the quest for the critical value. Dynamic percolation models and
dynamic random graphs on a fixed vertex set provide a framework for the contact network
in modelling the spread of epidemics. Gilligan and Gibson have been particularly active in
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studying statistical problems for spatiotemporal models of plant epidemic spread [12,21].
Gilligan and co-workers also conducted experiments with the fungal pathogenRhizoctonia
solani grown in a Petri dish to test how infection probability between a pair of lattice points
(that is, the parameter μ of percolation in the directed case (i)) depends on their distance
and how invasive spread (percolation) probability depends on nutrient availability in lattice
points and on the distance between lattice points [2]. They also demonstrated that the
random removal (blocking) of sites can hinder and even stop disease spread by driving it
subcritical [23].

Beyond the almost sure convergence and the numerical studies with synthetic data, we
cannot predict the accuracy of our estimator for instance in terms of confidence intervals. It
is known that under regularity conditions, especially that the estimator is continuously dif-
ferentiable with respect to the parameter θ ,

√
nI(θ̂ns,nI − θ0) is asymptotically normal with

known limiting variance [14, Section 2.3.1]. It is also possible to choose � optimally, that
is, to minimize this asymptotic variance [14, Section 2.3.4]. However, our estimator is not
even continuous in θ because we use what is called a frequency simulator. It is unknown to
uswhether it is possible to replace the frequency simulatorwith some importance sampling
to achieve asymptotic normality.

Maximum likelihood estimation (MLE) would have the advantage over MSM that its
output is reproducible. Its computational cost might also be lower. Consider the following.
We know that black areas have no seeds but we have no information about contamination
(edges) in them. We also know that at boundaries between different colours, there is no
open edge. Therefore, for a MLE, one needs to establish the probabilities of patches with
a fixed colour without knowing which vertices were seeded and which got contaminated
only.

We wonder if it is possible by using a generating function that encodes the probabilities
of seeding and open edges to compute the total probability that the particular patch was
created: each vertex in a patch has been seeded or contaminated from a seed somewhere
within the patch. We were only able to derive this generating function for patches that are
a linear chain of vertices.

General finite, connected patch shapes (subgraphs) are called (lattice) animals. Mireille
Bousquet-Mélou did much work on characterizing them via generating functions [6,7].
Our patches can arise as a disjoint union of adjacent connected components (animals). For
our application, it would suffice to develop a recursion which allows one to compute gen-
erating functions of small patches (large patches are rare) with a computer algebra system.
The difficulty is that the problem is two dimensional, and a patch must be split in all possi-
ble ways into two disjoint parts in the recursion. Any newly added vertex might have been
seeded, or contaminated from the rest of the patch, but it might have itself contaminated
other empty vertices of the patch.

Notably, the MSM estimator can be turned into an approximate Bayesian computation
(ABC) method very easily. One needs to fix a prior distribution on � and a small ε > 0.
The ABC rejection algorithm draws finitely many independent θ ∈ � parameter values
from the prior distribution. The objective function (26) is evaluated for each proposed θ .
The simulations used for the evaluation should no longer use common random numbers
but independent ones, and ns can be set to one. If the value of the objective function is
less than ε, then the proposed θ is accepted, otherwise it is rejected. This way the set of
accepted θ is a good approximation of the posterior distribution.
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We have not yet tested model fit due to the lack of experimental data. As contami-
nation is caused by the imperfect fit of the glass lid, and trapped bubbles and dust, we
anticipate that locally positively correlated open edges might be needed in the model. That
is, case (ii,2,B) deserves close attention. One way of modelling positive correlations is to
apply the Ising model to the edges. Let ξ̃ij = 2ξij − 1 ∈ {−1,+1}. Then the energy or the
Hamiltonian function of a configuration ξ of open edges is

H(ξ) = −J
∑
i<j<k

(̃ξij̃ξik + ξ̃ij̃ξjk + ξ̃ik̃ξjk) − μ̃
∑

(i,j)∈I2
ξ̃ij

for some J>0 and μ̃ < 0, and in the first sum, out of the three terms those are missing
where an adjacency condition is notmet: ξ̃ij = 0 if i � j, so that every pair of incident edges
appears once. The probability of the system being in state ξ is proportional to e−βH(ξ) for
some β > 0. Although we have two new parameters J and the inverse temperature β in
addition to μ̃, the increase in degrees of freedom is really just one, βJ and βμ̃ relative toμ.
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Appendix 1. Identifiability and numerical estimates of the selectedmoments

We outline why we conjecture that the parameter θ = (λ1, . . . , λnc ,μ) is identifiable from the
moments ((EY�

i )�∈{1,2,...,nc}, (E[Y�
i Y

�
j ])�∈{1,2,...,nc}) (i ∼ j). If we focus on just one colour �, then the

graph of the function (λ�,μ) �→ EY�
i on the domain [0, 1] × [0, pc] has level curves which go from

high λ� and low μ to low λ� and high μ. In words, the density EY�
i of colour � is constant if we

compensate for a decreasing seeding rate λ� by an appropriately increasing contamination rate μ.
The function (λ�,μ) �→ E[Y�

i Y
�
j ] (i ∼ j) has level curves with the same property.

However, we conjecture that the level curves of EY�
i and E[Y�

i Y
�
j ] do not coincide, instead any

pair intersect in a single point.While either one of the twomoments narrows down the possible value
of the parameter vector to one of its level curves, the two moments jointly specify the intersection
point of two level curves, which uniquely identifies the parameter value (λ�,μ).

We provide numerical evidence to back up this claim. For nc = 1, we sampled EYi and E[YiYj]
in 142 logarithmically spaced parameter vectors. We made an exception to the logarithmic rule to
additionally sample along the line of critical μ (Figure A1). Dataset A contains a broader coverage
of 100 parameter vectors. For each of these, we generated independently ns = 5 realizations of the
process on a lattice I′ of size 300 × 300, and took its central 100 × 100 sublattice I ⊂ I′ as our data.
EYi and E[YiYj] are estimated as averages over the central sublattice over ns = 5 realizations.

In Dataset B, 56 parameter vectors are considered which have lower λ values in comparison with
Dataset A, save for an overlap of 14 parameter vectors. For each vector, we generated independently
ns = 5 realizations of the process on a lattice I′ of size 1500 × 1500, and its central 1000 × 1000
sublattice I ⊂ I′ serves as our data.

The sublattice sizes were selected such that in both datasets, the mean number of seeds is at least
5 in the central sublattice used for sampling, even for their respective lowest λ values (λ = 5 × 10−4

in Dataset A, and approximately 5.23 × 10−6 in Dataset B). At the larger lattice size used for Dataset

Figure A1. Sampled parameter values θ = (λ,μ). Dataset A spans [5 × 10−4, 0.4676] × [10−4, 0.5]
and Dataset B spans [5.23 × 10−6, 0.00107] × [10−4, 0.0595].

http://www.jstor.org/stable/1426685
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Figure A2. (top) Empirical means of Yi for the various parameter vectors of Dataset A. (bottom) Level
curves of this function. The red lines mark the critical value pc .

B, for μ values larger than what we tested, the step of finding the connected open components to
generate the data became prohibitively time-consuming.

Figures A2–A4 display graphs and level curves of the two coordinates of

(λ,μ) �→
⎛⎝ 1
nsnI

ns∑
s=1

∑
i∈I

Ys
i ,

1
nsnp

ns∑
s=1

∑
(i,j)∈I2

Ys
i Y

s
j

⎞⎠ .

Close observation of the level curves seems to show that those in Figure A2 fan out with different
slopes from a smaller region, while those in Figure A3 are closer to parallel. This supports our con-
jecture that level curves of one type intersect level curves of the other type in exactly one point, giving
identifiability, except perhaps for a null set or otherwise small subset of � where the two types of
level curves coincide.
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Figure A3. (top) Empirical means of YiYj (i ∼ j) for the various parameter vectors of Dataset A. (bottom)
Level curves of this function. The red lines mark the critical value pc .
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Figure A4. (top left) Empirical means of Yi for the various parameter vectors of Dataset B. (bottom left)
Level curves of this function. (top right) Empirical means of YiYj (i ∼ j) for the various parameter vectors
of Dataset B. (bottom right) Level curves of this function.
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