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The Chemical Langevin Equation �CLE�, which is a stochastic differential equation driven by a
multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation
algorithm and the deterministic reaction rate equation when simulating �bio�chemical kinetics. The
CLE model is valid in the regime where molecular populations are abundant enough to assume their
concentrations change continuously, but stochastic fluctuations still play a major role. The
contribution of this work is that we observe and explore that the CLE is not a single equation, but
a parametric family of equations, all of which give the same finite-dimensional distribution of the
variables. On the theoretical side, we prove that as many Wiener processes are sufficient to
formulate the CLE as there are independent variables in the equation, which is just the rank of the
stoichiometric matrix. On the practical side, we show that in the case where there are m1 pairs of
reversible reactions and m2 irreversible reactions there is another, simple formulation of the CLE
with only m1+m2 Wiener processes, whereas the standard approach uses 2m1+m2. We demonstrate
that there are considerable computational savings when using this latter formulation. Such
transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model
reduction techniques. We illustrate our findings by considering alternative formulations of the CLE
for a human ether a-go-go related gene ion channel model and the Goldbeter–Koshland switch.
© 2010 American Institute of Physics. �doi:10.1063/1.3380661�

I. INTRODUCTION

It is now well known that intrinsic noise can drive im-
portant biochemical processes.1,2 Intrinsic noise is associated
with the uncertainty of knowing when a reaction occurs and
what that reaction is. These effects are particularly accentu-
ated when there are small numbers of molecules in the sys-
tem. Two important scientific fields where intrinsic noise ef-
fects are significant are genetic regulation3–7 and ion channel
dynamics.8 When there are small numbers of molecules in
the system, the kinetics between the species is best described
by discrete Markov processes. The stochastic simulation
algorithm �SSA� describes the time evolution of a set of
chemical species chemically reacting in a well-stirred
environment.9 As a stochastic process, it has a probability
mass function that is the solution of a discrete parabolic dif-
ferential equation described by the so-called chemical master
equation �CME�.10,11

The basic idea of the SSA is that, at each time point, a

waiting time to the next reaction must be sampled from an
exponential distribution, then the occurring reaction is
sampled based on how large the propensities of the different
reaction channels are relative to one another. In the limit that
the number of molecules of all species becomes large, the
waiting time becomes, on average, very small and under the
law of mass action the time evolution of the kinetics is de-
scribed by a system of ordinary differential equations
�ODEs�. This system is just the reaction rate equation and
describes, approximately, the time evolution of the mean of
the evolving Markov process described by the SSA.

There is also a representation of the SSA with Poisson
processes.12–14 On one hand, this facilitates an analytical ex-
amination of the asymptotics of the kinetic equations.13 On
the other hand, it naturally leads to a way of accelerating the
SSA by allowing all the reactions to fire within the one
step.14 If the number of reactions in this step are sampled
from a Poisson distribution the resulting method is called a
Poisson �-leap method,15 while if they are sampled from a
binomial distribution the method is called a binomial �-leap
method.16,17

What is less well known is that there is an intermediate
regime between the discrete stochastic and continuous deter-
ministic regimes. In this regime, the intrinsic noise is still
important, but there are sufficient number of molecules to
describe the evolving kinetics by continuous models. This
regime is called the chemical Langevin equation �CLE�
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regime11,18 and the mathematical framework is that of sys-
tems of Itô stochastic differential equations �SDEs� driven by
a multidimensional Wiener process.19 This system of SDEs is
called the CLE.

Gillespie18 derived a particular form of the CLE via two
simplifying assumptions; first, that the propensities of reac-
tion channels are independent of each other in short time
intervals, and second, that even in these short time intervals
the expected number of firings of each reaction channel is
sufficiently large. A number of authors have realized that the
CLE �and SDEs in general� can be written in alternative,
equivalent forms using arguments from stochastic analysis
and multivariate statistics.20–22 These changes to the equation
do not change the finite-dimensional distribution of its solu-
tion. As such, the alternative formulations do not arise from
model reduction. These authors used this insight solely to
reformulate the CLE with the minimum number of Wiener
processes.

Our contribution in this article is a detailed exploration
of this insight. We investigate the minimum number of
Wiener processes in the CLE in conjunction with a state
space reduction by removing linearly dependent variables
through conservation laws exhibited by the chemical system.
This will shed light on the structure of the CLE from a linear
algebraic viewpoint. Second, we show how from the stan-
dard form CLE one Wiener process can be omitted for each
pair of reversible reactions. If there are m1 pairs of reversible
reactions and m2 irreversible reactions then only m1+m2

Wiener processes are needed, rather than 2m1+m2. We dem-
onstrate that this simplification, in addition to its appealing
explanatory power, can significantly speed up numerical
simulations. Adalsteinsson et al.23 also use this formulation
but they failed to point out that this formulation is different
to the original one and did not compare the computational
costs. Singer et al.24 derived this new form for a certain
application from the Euler–Maruyama discretization25 of the
CLE which is not a rigorous method.

We will initially set out to construct the CLE in such a
way that its mean and variance match the mean and the vari-
ance of the CME at any time instance t. It will become clear
that with our current knowledge this is an insurmountable
task in the general case because the moment equations are
not closed. Still, we will arrive at the standard, well-known
form of the CLE �Ref. 18� and will use that as the best
approximation available. All our alternative formulations
will be equivalent to this standard form. The drift �determin-
istic� component of the CLE is just the right-hand side of the
ODE describing the deterministic regime �that is, of the re-
action rate equation�, while the diffusion �stochastic� compo-
nent takes a very special form as noted by Van Kampen11 by
using the linear noise approximation theory. Gillespie18 cap-
tured this stochastic component by using one Wiener process
per chemical reaction, whereas we will explore other possi-
bilities.

Thus in Sec. II we give the necessary background on
discrete and continuous stochastic models for biochemical
reaction kinetics. In Sec. III we give the mathematical frame-
work that allows us to manipulate the form of the CLE in
terms of the number of Wiener processes in it, and also the

dimension of the state space. In Sec. IV we illustrate our
approach on three instructive cases. These are a ring of re-
actions, a system of linear reversible kinetics describing dif-
ferent states of a human ether a-go-go related gene �HERG�
ion channel,26 and a nonlinear system known as the
Goldbeter–Koshland switch.27 In Sec. V we present numeri-
cal simulations of the corresponding CLEs for each of these
three problems which we use for computational benchmark-
ing and Sec. VI gives conclusions.

II. STOCHASTIC BIOCHEMICAL KINETICS

Let us suppose that there are N chemical species
S1 , . . . ,SN, undergoing m chemical reactions in an environ-
ment that is well stirred and of constant temperature
and fixed volume. Let xi�t� �i� �1, . . . ,N�� denote the
number of molecules of species Si at time t and let x�t�
= �x1�t� , . . . ,xN�t��T. Now any set of chemical reactions is
uniquely characterized by two sets of quantities. The first are
the update �stoichiometric� vectors �1 , . . . ,�m for each of the
m reactions. These column vectors form the stoichiometric
matrix �= ��1 . . .�m��ZN�m. The second set of quantities are
the propensity functions a�x�= �a1�x� , . . . ,am�x��T that reflect
the probabilities of each of the reactions to occur: if the
chemical system is in state x, then the probability of a single
firing of reaction channel j in an infinitesimal time interval of
length h is aj�x�h. Two very common assumptions are that in
any reaction at most two molecules interact �the reactions are
at most bimolecular, or second order� and that the kinetics
follow the law of mass action. Under these assumptions, the
propensity functions are polynomials of degree at most 2,
and specifically are of the form kr ,ksxi ,kuxixk or kvxi�xi−1�
�with kr ,ks ,ku ,kv�0 constants�. For example, given the re-
action

A + B→
k

C ,

then with x�t�= �xA�t� ,xB�t� ,xC�t��T, �1= �−1,−1,1�T, and
a1�x�t��=kxA�t�xB�t�.

Given x�t� at time t, the SSA draws a random waiting
time � to the next reaction from an exponential distribution
with parameter a0�x�t��=� j=1

m aj�x�t��. Then it randomly se-
lects which reaction to occur based on the relative sizes of
a1�x�t�� , . . . ,am�x�t��: reaction j is chosen with probability
aj�x�t�� /a0�x�t��. If reaction j is selected indeed, then the
state vector is updated as

x�t + �� = x�t� + � j ,

and the algorithm repeats.
Given an initial condition x�t0�=x0, the probability mass

function p�x , t� �t� t0� of the SSA is the solution of the CME
given by

�p�x,t�
�t

= �
j=1

m

aj�x − � j�p�x − � j,t� − �
j=1

m

aj�x�p�x,t� . �1�

In this representation, there is one equation for each configu-
ration x of the state space and if p�t� denotes the vector of
probabilities for each of these configurations then Eq. �1�
becomes
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ṗ�t� = Ap�t�, p�0� = p0,

with an appropriate matrix A. This is simply a linear ODE, so

p�t� = eAtp�0� .

Although the size of this system becomes very large very
quickly with the increase of N and of the upper bounds on
each molecular population �very often such upper bounds are
impossible to establish, in which case this system of ODEs is
infinite�, there are a number of techniques that allow the
computation of the probability mass function directly in even
quite complicated biochemical reaction systems. These in-
clude truncating the state space,28 the use of Krylov subspace
techniques29,30 and quasi-steady-state approximations.31,32

Given the CME �1�, it is possible to write down equa-
tions that describe the evolution of, for example, the mean
and the covariance matrix. In particular, by multiplying
Eq. �1� by xi and summing, we can show

d

dt
E�x�t�� = �

j=1

m

� jE�aj�x�t��� = �E�a�x�t��� . �2�

Similarly, the time evolution of the second moment is
given11,33 by

d

dt
E�x�t�x�t�T� = E�h�x�t��x�t�T� + E�x�t�h�x�t��T�

+ E�B�x�t��� , �3�

where h�x�=�a�x�, and the diffusion matrix B�x� is defined
by

B�x� = � diag�a�x���T.

The equation for the covariance matrix follows easily. Under
the law of mass action kinetics, both Eqs. �2� and �3� are
closed only if all reactions are at most first order �that is, all
propensity functions aj have degree at most one�. If there is
at least one bimolecular reaction, then the corresponding pro-
pensity function is a quadratic polynomial which will render
the right-hand side of Eq. �2� dependent on the appropriate
second moment. At the same time, Eq. �3� will become de-
pendent on third moments through the E�h�x�t��x�t�T� and
E�x�t�h�x�t��T� terms. Similarly, the equation for any higher
moment will be dependent on even higher moments. In such
a case, we say that the moment equations are not closed.

There are a few proposals on how to relax this problem
through approximation.34,35 We sketch another simple
method. With ��t�=E�x�t��, the simplest Taylor expansion of
the propensity functions �truncation after the first-order term�
leads to the approximate equality

d��t�
dt

= �
j=1

m

� jaj���t�� = �a���t�� . �4�

In the deterministic regime, under the law of mass action, the
ODE describing the evolution of the kinetics is just given by
Eq. �4�.

For the covariance matrix

��t� = E��x�t� − ��t���x�t� − ��t��T�

by the same-order truncation of the Taylor expansion of the
propensity functions, we can show that

d��t�
dt

= H���t����t� + ��t�H���t��T + B���t�� �5�

holds approximately, where H���t�� is the Jacobian matrix of
h�x� evaluated at x=��t�. Importantly, Eqs. �4� and �5� are
closed, they can be solved numerically. These two approxi-
mations are in fact exact when the law of mass action kinet-
ics is assumed and all reactions are at most first order. �That
is, there is at most one molecule on the reactant side of any
reaction channel.� More accurate expressions for � and �
can be developed by taking more terms in the Taylor series
expansion of f�x� and B�x�.22

III. THEORETICAL RESULTS

A. The CLE as a parametric family of SDEs

In the Langevin regime, one hopes to be able to con-
struct an SDE such that the evolution equations for its mean
and the second moments are exactly Eqs. �2� and �3� in order
to get the same mean and covariance as in the CME at any
time instance t. The approach of matching the first two mo-
ments is implicit in Gillespie’s derivation,18 and is more ex-
plicitly expressed by, for instance, Wilkinson20 but has not
been explored in depth. Formally, we are seeking f :RN

→RN and g :RN→RN�d such that the solution to

dx�t� = f�x�t��dt + g�x�t��dW�t� , �6�

with a d-dimensional standard Wiener process W, has its first
two moments given in Eqs. �2� and �3�. Recall that W�t�
= �W1�t� , . . . ,Wd�t��T is a vector of d independent one-
dimensional Wiener processes. A Wiener process W�t� start-
ing at zero has the properties

E�W�t�� = 0, for all t � 0,

Var�W�t� − W�s�� = �t − s�, for all t,s � 0,

and its increments on nonoverlapping intervals are indepen-
dent normal random variables.

We can derive ODEs that describe the evolution of the
first two moments of Eq. �6�. By taking the expectation on
both sides of Eq. �6�, it is easily seen that

d

dt
E�x�t�� = E�f�x�t��� . �7�

To calculate the second moment for x�t� it is enough to cal-
culate E�xi�t�xk�t�� for all i ,k� �1, . . . ,N�, i�k.

Proposition III.1. For Eq. �6�,

d

dt
E�xi�t�xk�t�� = E�f i�x�t��xk�t�� + E�xi�t�fk�x�t���

+ �
j=1

d

E�gij�x�t��gkj�x�t��� . �8�

Proof. The proof of this proposition is found in the
Appendix. �
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Comparing Eq. �2� with Eq. �7� suggests we should
choose

f�x� = �a�x� . �9�

Once this is fixed, a comparison between Eqs. �3� and �8�
suggests that

�
j=1

d

gij�x�gkj�x� = Bik�x�

for all i and k is the most natural choice for g, that is,

g�x�g�x�T = � diag�a�x���T. �10�

It is important to point out here that such a choice of f
and g can only guarantee that the first two moments for the
CME and the CLE are the same when all reactions are at
most first order �under the law of mass action�. In the case
when there is at least one bimolecular reaction �when the
moment equations are not closed�, the mere formal matching
of the two pairs of equations is not sufficient to match the
first and second moments because Eqs. �3� and �8� are de-
pendent on higher moments which we do not attempt to
match.

Gillespie’s argument18 gave the CLE in the following
form:

dx�t� = �a�x�t��dt + �
j=1

m

� j
	aj�x�t��dWj�t� . �11�

This is the CLE as the scientific community knows and uses
it. Clearly, it satisfies both Eqs. �9� and �10� with d=m.

Corollary III.2. Under the law of mass action kinetics,
if all reactions are at most first order, then the CLE �11� gives
the same first and second moments (means and covariances)
as the CME.

This result has already appeared in Ref. 36 �Theorem
4.1� but we think our notations are more succinct and there-
fore this derivation is more transparent. As we have just
noted, in the general case, this does not imply that the first
two moments of the CLE are the same as those of the CME.
Instead of further studying the relationship of the CME and
the CLE, we accept Eq. �11� as the standard reference SDE
model for biochemical reaction systems and derive alterna-
tive formulations thereof based on the following insight.

Proposition III.3. Different solutions g to the factoriza-
tion problem �10� all give CLEs that have the same finite-
dimensional distributions (in different terminology, which co-
incide in law).

Proof. This can be easily derived by applying Theorem
8.4.3 of Ref. 19, but there is a direct proof. We will,
however, assume previous knowledge of a standard tool, the
Kolmogorov forward equation �also known as the Fokker–
Planck equation�.19 For the solution g of Eq. �10�, the prob-
ability distribution function pt�x0 ,x� of a transition from x0 to
x in a time interval of length t evolves according to the
partial differential equation

�pt�x0,x�
�t

= − �
i=1

N
��pt�x0,x���a�x��i�

�xi

+
1

2 �
i,k=1

N
�2�pt�x0,x��g�x�g�x�T�ik�

�xi � xk
.

pt�x0 ,x� evolves identically for all solutions g to Eq. �10�
because p0�x0 ,x�=	x0

�x� �the Dirac delta function at x0� does
not depend on g, and the parameters in the Kolmogorov for-
ward equation �a�x� and g�x�g�x�T=B�x� are identical for
any g. �

This proposition implies that the SDE

dx�t� = �a�x�t��dt + �
j=1

d

gj�x�t��dWj�t� �12�

defined with different g, which each satisfy Eq. �10� are
equivalent in the sense that the distributions of their solutions
are the same at any time instance t. It follows that all their
moments will be identical.

The main goal of this paper is to explore the different
possibilities of how the SDE �12� can be parameterized with
different g such that the multidimensional Itô diffusion pro-
cesses given by these different parameterizations all preserve
the distribution of the standard CLE �11�. Note that although
the number of rows of g is fixed from the beginning to be the
number of chemical species N, the number of columns, d, is
not a priori specified. Our first line of inquiry will examine
the minimum d for which the factorization �10� is possible—
this is also the minimum number of Wiener processes neces-
sary to describe the Itô diffusion process. Then, using the
mathematical framework we have developed, we will be able
to construct and prove the validity of a reduced formulation
of the original CLE where there is only one Wiener process
associated with each pair of reversible reactions. This formu-
lation may be considered as a more natural model of chemi-
cal reaction systems than the original model �11�. We will
also demonstrate that this reduced formulation can speed up
numerical simulations considerably without compromising
accuracy.

B. Gillespie’s original formulation

Construction 1. Assuming that the number of firings of
different reaction channels are independent in short time in-
tervals and that the expected number of firings is large
enough for each reaction channel, in his seminal paper,
Gillespie18 derived that g is of the form

g�x� = � diag�	a1�x�, . . . ,	am�x�� .

As we said, this will be our reference model and is also
a special case of Eq. �10� with d=m. Here every independent
Wiener process corresponds to one reaction channel. Hence
the physical interpretation of this model is quite clear. Every
variable is forced by as many Wiener processes as there are
reaction channels which change its count.

Gillespie mentioned18 that this is not the only possible
formulation and that other formulations with differing num-
bers of Wiener processes are possible. He referred to his
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former work,37 where equations were laid down which if
satisfied by both a g1 and a g2 then the two Langevin equa-
tions with either g1 or g2 would have increments with iden-
tical distributions. This is analogous to our Proposition III.3.

C. The minimal formulation

In what follows, we will often refer to dim�Ker ��, the
dimension of the �right� nullspace of �, and to dim�Ker �T�,
the dimension of the left nullspace of �. Left nullvectors
correspond to conservation laws in the reaction system, that
is, to preserved linear combinations of different species’
counts. Each right nullvector corresponds to a sequence of
firings of reaction channels such that if starting in state x all
reactions occur the number of times given by the right
nullvector, then the chemical system will eventually return to
the original molecular counts x.

In this communication, we are exploring different natu-
ral choices for the formulation of the CLE �12� and hence for
the choice of d. A natural question to ask is what is the
minimum number of Wiener processes in the CLE, or
equivalently, what is the minimum d for which the factoriza-
tion of

B�x� = � diag�a�x���T

in Eq. �10� is possible?
As B�x� is a symmetric, positive semidefinite square ma-

trix for all x, it can be diagonalized by a change of basis with
an orthonormal matrix U�x� whose columns are eigenvectors
of B�x�,

B�x� = U�x�D�x�U�x�T.

We partition the eigenvectors based on whether they belong
to zero eigenvalue �U0�x�� or some positive eigenvalue
�U1�x�� and arrange them such that U�x�= �U1�x� U0�x��.
Then there are N−dim�Ker B�x�� nonzero eigenvalues, so
D�x� is of the form

D�x� = 
D1�x� 0

0 0
�

with a diagonal

D1�x� � R�N−dim�Ker B�x�����N−dim�Ker B�x���.

The construction for g�x� is then

g�x� = U�x�D�x�1/2 = �U1�x�D1�x�1/2 0 � ,

or simply

g�x� = U1�x�D1�x�1/2 � RN��N−dim�Ker B�x���.

Indeed, g�x�g�x�T=U�x�D�x�1/2D�x�1/2U�x�T=B�x�. This for-
mulation shows that d=N−dim�Ker B�x�� independent
Wiener processes are enough to define Eq. �12�.

This factorization is minimal indeed since the rank of
g�x� cannot be less than the rank of B�x�=g�x�g�x�T, that is,
N−dim�Ker B�x��.

The next proposition shows that the number of columns
of g�x� is independent of the state x. In order to avoid digres-
sion the proofs of the following two propositions are found
in the Appendix.

Proposition III.4. For every strictly positive x (it is
enough that for all x and each reaction channel j, aj�x��0
holds), dim�Ker B�x�� is equal to the number of linearly in-
dependent conservation laws of the reaction network,
dim�Ker �T�. In fact, a vector y�RN \ �0� is a (right) nullvec-
tor of B�x� if and only if it is a left nullvector of the stoichi-
ometric matrix �.

The following proposition states that this construction
reduces the number of Wiener processes compared to the m
Wiener processes of Gillespie’s construction by the dimen-
sion of the right nullspace of �.

Proposition III.5. N−dim�Ker �T�=m−dim�Ker ��.
We summarize the results of this section.
Construction 2. The previously described

g�x� = U1�x�D1�x�1/2

gives a CLE �12� with N−dim�Ker �T�=m−dim�Ker �� inde-
pendent Wiener processes. Any CLE requires at least this
many independent Wiener processes.

Note that Ref. 18 �Appendix B� and Ref. 20 �p. 189� are
both inaccurate when claiming that generally the number of
Wiener processes d must be no less than N. We will return to
the problem of state space reduction where we prove that
there is an equivalent formulation of the CLE with N
−dim�Ker �T� states, and as we see here, N−dim�Ker �T�
Wiener processes �Sec. III E�.

The minimum number of Wiener processes needed is
interesting for efficient numerical simulation.25 Notice that
the solution in Construction 2 is not satisfactory since U1 is
dependent on x. Hence, in a numerical simulation scheme at
each time step a new diagonalization of B�x� is required,
which is computationally expensive.

As a first improvement, we propose another approach
that results in a g of the same size, but potentially decreases
the requirement for repeated computation at the cost of in-
creased initial, one-off computation. A substantially different
construction will be presented in Construction 4. Let W
= �W1W0��RN�N be an orthogonal matrix such that the col-
umns of W0�RN�dim�Ker �T� form an orthonormal basis in the
left nullspace of �, Ker �T, and the columns of W1

�RN��N−dim�Ker �T�� are an orthonormal basis in the orthogo-
nal complement, the image space of �, Im �. Let us define

the square root M̄ =	M of a square matrix M �Rk�k as any

square matrix M̄ �Rk�k such that M̄M̄T=M, if such an M̄
exists.

Construction 3. For notational brevity let A�x�
=diag�a�x��. Then

g�x� = W1
	W1

T�A�x��TW1

gives a CLE �12� with N−dim�Ker �T�=m−dim�Ker �� inde-
pendent Wiener processes.

Proof. We verify that ĝ�x�=W	WT�A�x��TW is an
equally valid diffusion term �it satisfies Eq. �10�� and that the
stated g is equivalent to ĝ. Note that WT�A�x��TW and
W1

T�A�x��TW1 are symmetric positive semidefinite matrices,
therefore their square root can be evaluated as for B�x� ear-
lier. Thus
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ĝ�x�ĝ�x�T = WWT�A�x��TWWT = �A�x��T

since W is orthogonal, so Eq. �10� is satisfied. Also,

WT�A�x��TW = 
W1
T�

0
�A�x���TW1 0 �

= 
W1
T�A�x��TW1 0

0 0
�

shows that it is enough to use the top left block with
W1

T�A�x��TW1. This is because when constructing g�x� from
this, on the left the columns of W0 would be multiplied by
zeros, and when constructing the CLE �12� on the right the
last dim�Ker �T� Wiener processes would be multiplied by
zeros. Hence we can omit those. �

This is an improvement over Construction 2 in that here
the square root of a state-dependent �N−dim�Ker �T��� �N
−dim�Ker �T�� matrix is used instead of an N�N matrix.

D. A general, state-independent reduction technique

In the previous subsection, a practical constraint for nu-
merical simulations was discussed. Constructions that re-
quire in each time step an eigendecomposition of a state-
dependent matrix are computationally too costly. In the
following, we develop a construction in which to compute
g�x� only matrix products and taking the square root of a
state-dependent diagonal matrix are required. This
construction will give a CLE that generally may need more
than N−dim�Ker �T�=m−dim�Ker �� independent Wiener
processes, but certainly not more than m.

For a positive integer k, let Ik denote the k�k identity
matrix. We say two nonzero vectors y1 ,y2�RN \ �0� represent
the same direction, if there is a 
�R \ �0� such that y1=
y2.

Construction 4. Let s be the number of different direc-
tions given by the columns of �. There exist matrices
J�Rm�s and V�Rs�m such that VA�x�VT�Rs�s is diagonal
with only nonnegative entries and

g�x� = �J	VA�x�VT �13�

gives a CLE �12� with s independent Wiener processes, m
−dim�Ker ���s�m.

Proof. Permute the columns of ��RN�m such that
�= ��1�2�, where �1�RN�s has one representative column
vector for each direction given by the columns of �. Then the
columns that are left ��2� are each a constant multiple of one
column in �1. We permute the entries of A�x� accordingly.

Let

�2 = ��1v
�1� . . . �1v

�m−s�� ,

where for all i, v�i��Rs has one nonzero entry.
Introducing M = �v�1� . . .v�m−s���Rs��m−s�, the definitions

are

J = 
Is

0
� � Rm�s,

V = �Is M � � Rs�m.

First, partitioning A�x� according to the sizes of blocks
of V,

VA�x�VT = �Is M �
A1�x� 0

0 A2�x� �
 Is

MT�
= A1�x� + MA2�x�MT

= A1�x� + �
j=1

m−s

�A2�x�� j jv
�j�v�j�T

,

where the last step follows from

�MA2�x�MT�ik = �
j=1

m−s

�v�j��i�A2�x�� j j�v�j��k
T.

Since v�j� has only one nonzero entry for all j,
� j=1

m−s�A2�x�� j jv�j�v�j�T
is diagonal with only nonnegative en-

tries, and consequently VA�x�VT is too.
Second,

�JV = ��1�2�
Is M

0 0
� = ��1 �1M � = ��1�2� = � .

Hence 	VA�x�VT exists trivially, and

g�x�g�x�T = �J	VA�x�VT��J	VA�x�VT�T

= �JVA�x�VTJT�T

= �A�x��T

so Eq. �10� is satisfied. The actual form of g is

g�x� = ��1�2�
	A1�x� + MA2�x�MT

0
�

= �1
	A1�x� + MA2�x�MT

= �1	A1�x� + �
j=1

m−s

�A2�x�� j jv
�j�v�j�T

.

�

Corollary III.6. There is a formulation of the CLE �12�
that is constructed from Gillespie’s original CLE by omitting
one independent Wiener process for each pair of reversible
reactions and assigning to the retained Wiener process either
respective stoichiometric vector multiplied by the square root
of the sum of the two propensities. This is computationally
inexpensive to numerically simulate. If m1 is the number of
pairs of reversible reactions, then in Gillespie’s formulation
there would be 2m1 Wiener processes for the reversible re-
actions, while in this formulation there would only be m1.

In fact, the result is slightly more general than this. Con-
sider chemical systems with reactions

�A + B → C

2C → 2A + 2B 
 or � A →
k1

B

2A →
k2

2B

 .

In both cases, one independent Wiener process can be
spared. Note that the reactions in these examples are at most
bimolecular.
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E. State space reduction

Another form of model reduction we have not discussed
yet is the reduction of the number of variables. The conser-
vation laws describe linear dependencies between the counts
of molecular species. This can be used to express certain
variables as functions of others. With dim�Ker �T� linearly
independent conservation laws it is possible to reduce the
number of variables from N to N−dim�Ker �T� without loss
of accuracy.

To this end, we specify an invertible matrix T�RN�N

such that T� will take over the role of �. �For esthetic reasons
one may prefer T�ZN�N.� T is just a change of basis of the
state space. To see this, multiply the CLE �12� with T from
the left to get an equation in a new variable z=Tx:

d�Tx� = T�a�T−1Tx�dt + Tg�T−1Tx�dW�t� ,

or, by letting � denote the composition of functions, and ·
multiplication �a special composition�, we have

dz = �T · � · a � T−1��z�dt + �T · g � T−1��z�dW�t� .

We define T such that the last dim�Ker �T� coordinates
of the new state variable z are the conservation laws, which
do not change at all.

We give T for Construction 1 first. Order the columns
of ��RN�m such that �= ��b �c�, where the columns of
�b�RN��m−dim�Ker ��� form a basis for Im �, and
�c�RN�dim�Ker �� is the collection of the rest of the column
vectors. These are linearly dependent on columns of �b.
Then, similarly to Construction 4, there are vectors

w�1�, . . . ,w�dim�Ker ��� � Rm−dim�Ker ��,

and a matrix

R = �w�1� . . . w�dim�Ker ���� � R�m−dim�Ker ����dim�Ker ��

such that �c=�bR.
Define �b

��RN�dim�Ker �T� such that its columns form a
basis of the orthogonal complement space of Im �, and let

T = 
��b
T�b�−1�b

T

��b
��T � .

�To get an integer-valued T, we may put an appropriate
diagonal matrix D0�Z�N−dim�Ker �T����N−dim�Ker �T�� in front of
��b

T�b�−1�b
T, and choose �b

��ZN�dim�Ker �T�.�
Hence

T� = 
��b
T�b�−1�b

T

��b
��T ���b�c�

= 
Im−dim�Ker �� ��b
T�b�−1�b

T�c

0 0
�

= 
Im−dim�Ker �� R

0 0
� .

Therefore, in no CLE formulation will the last dim�Ker �T�
variables be affected by the drift term T�a�x�. Since in Con-
structions 1 and 4 the first factor in g�x� is �, the last
dim�Ker �T� rows of the diffusion term Tg�x� will vanish too.

Consequently, the last dim�Ker �T� variables of z are con-
stant and can be omitted from a numerical simulation.

The same argument holds for Construction 3, using W1

and W0 instead of �b and �b
�, respectively, in T. In the case of

Construction 2, the state space reduction must precede the
reduction of the number of Wiener processes. This method is
very similar to Construction 3. For Construction 4, a finer
partitioning of matrices � ,J ,V is proposed. The detailed cal-
culations are in the Appendix. These considerations prove
the following result.

Theorem III.7. For Constructions 1–4, a state space
transformation is possible which reduces the number of vari-
ables from N to N−dim�Ker �T�=m−dim�Ker �� without
changing the number of independent Wiener processes.

IV. EXAMPLES

We demonstrate the reduction of the number of indepen-
dent Wiener processes in the CLE by three examples. The
first example is a simple one merely to illustrate our ideas,
while the other two systems are models of real interest to
biologists, namely, a Markov model for a HERG encoded K+

channel,26 and the Goldbeter–Koshland switch,27 which
plays a vital role in many cellular pathways.38 In order to
focus on the application of our main results, we will not
carry out the fairly well-known state space reduction in any
example.

A. A cyclical reaction system

Consider the following ring of m=3 reactions with
N=3 species, �A1 ,A2 ,A3�T:

The indexing of reactions follows that of rate constants kj.
This specifies the order of columns in the stoichiometric ma-
trix

� = �− 1 0 1

1 − 1 0

0 1 − 1
� ,

which has rank 2. The propensity vector function is just

a�x� = �k1x1,k2x2,k3x3�T.

Gillespie’s diffusion term �Construction 1� is

g1�x� = �− 	k1x1 0 	k3x3

	k1x1 − 	k2x2 0

0 	k2x2 − 	k3x3

� .

As there are no parallel stoichiometric vectors, Construction
4 cannot reduce the number of Wiener processes.

Constructions 2 and 3 can be computed analytically for
such a small example. In Construction 2, finding the eigen-
values of the rank 2, 3�3 matrix requires the solution of a
cubic equation �roots of the characteristic polynomial�. But
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we know that one eigenvalue is zero and this reduces the
problem to a quadratic. This gives D�x�. Finding the eigen-
vectors is done by solving a linear equation for each nonzero
eigenvalue, and then the vectors need to be normalized to
create U1�x�.

The calculations giving Construction 3 can be coded in
step-by-step instructions. The orthogonal matrix W can be
chosen as

W = �W1W0� = �− 1/	2 − 1/	6 1/	3

1/	2 − 1/	6 1/	3

0 2/	6 1/	3
� .

This is computed only once, therefore, its computational cost
is almost irrelevant. Then

W1
T�A�x��TW1

= �2a1�x� +
1

2
a2�x� +

1

2
a3�x� −

	3

2
a2�x� +

	3

2
a3�x�

−
	3

2
a2�x� +

	3

2
a3�x�

3

2
a2�x� +

3

2
a3�x� � .

To take the square root of this or, in general, of a matrix


M11 M12

M12 M22
� ,

we can compute the two eigenvalues as the roots of the qua-
dratic characteristic polynomial. These are


1,2 =
M11 + M22 � 	�M11 − M22�2 + 4M12

2

2
.

The corresponding normalized eigenvectors are

v1 =
1

	�
1 − M22�2M12
−2 + 1

��
1 − M22�M12
−1

1
� ,

v2 =
1

	�
2 − M22�2M12
−2 + 1

��
2 − M22�M12
−1

1
� .

Thus

g3�x� = W1�	
1�x�v1�x� 	
2�x�v2�x� �

is the product of a 3�2 and a 2�2 matrix, and the CLE
requires two Wiener processes.

The construction that requires the least computation time
hinges on how the cost of these computations compares to
the cost of generating independent Wiener increments �that
is, normal random variables�.

B. A K+ channel

We model the transformations of HERG encoded K+

channels between three closed states �C1 ,C2 ,C3�, one open
state �O� and one inactivation state �I� as N=5 chemical
species �C1 ,C2 ,C3 ,O , I�T reacting through m=10 reactions

�For details, see Ref. 26 and references therein.� Thus the
stoichiometric matrix is

� = �
− 1 1 0 0 0 0 0 0 0 0

1 − 1 − 1 1 0 0 0 0 0 0

0 0 1 − 1 − 1 1 0 0 1 − 1

0 0 0 0 1 − 1 − 1 1 0 0

0 0 0 0 0 0 1 − 1 − 1 1
� ,

and the propensity vector function is

a�x� = �k1x1,k2x2,k3x2,k4x3,k5x3,k6x4,k7x4,k8x5,k9x5,k10x3�T.

Gillespie’s formulation �Construction 1� needs ten Wiener
processes with

g1�x� = �	diag�a�x�� .

The rank of the stoichiometric matrix � is 4, which al-
lows for a CLE specification with four Wiener processes.
Thus the minimal solutions g2 and g3 from Constructions 2
and 3, respectively, are of the form

g2�x� = U1�x�D1�x�1/2,

g3�x� = W1
	W1

T�A�x��TW1,

where U1�x� ,W1 are 5�4, D1�x� and 	W1
T�A�x��TW1 are 4

�4 matrices, respectively. With the exception of W1, we
could only compute either of these matrices analytically if
we solved a quartic equation. To avoid this laborious task,
we can use standard numerical computations that we do not
present here.

On the other hand, Construction 4 gives a simple closed
form diffusion term. Indeed, this is a straightforward
example where the number of Wiener processes can be
decreased by half, to five, with

g4�x�

=�
− 1 0 0 0 0

1 − 1 0 0 0

0 1 − 1 0 1

0 0 1 − 1 0

0 0 0 1 − 1
�diag�

	a1�x� + a2�x�
	a3�x� + a4�x�
	a5�x� + a6�x�
	a7�x� + a8�x�
	a9�x� + a10�x�

� .

C. The Goldbeter–Koshland switch

This example studied by Goldbeter and Koshland27 is a
system of covalent modifications facilitated by two converter
enzymes, E1 and E2. A typical example is a phosphorylation-
dephosphorylation system. It consists of the following m=6
reactions:
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S + E1�
k2

k1

C1→
k3

P + E1,

P + E2�
k5

k4

C2→
k6

S + E2,

with N=6 chemical species, �S ,E1 ,C1 , P ,E2 ,C2�T. The cor-
responding stoichiometric matrix is

� = �
− 1 1 0 0 0 1

− 1 1 1 0 0 0

1 − 1 − 1 0 0 0

0 0 1 − 1 1 0

0 0 0 − 1 1 1

0 0 0 1 − 1 − 1

� ,

while the propensity vector function is given by

a�x� = �k1x1x2,k2x3,k3x3,k4x4x5,k5x6,k6x6�T.

Gillespie’s formulation �Construction 1� with six Wiener pro-
cesses is

g1�x� = �	diag�a�x�� .

However, the rank of the stoichiometric matrix � is 3,
which implies that only three Wiener processes are needed in
the CLE. As with the K+ channel, this can only be practically
computed through numerical computation.

The closed form diffusion term from Construction 4 re-
quires four Wiener processes. Removing the stoichiometric
vectors corresponding to reactions 2 and 5, and introducing

u1�x�=	a1�x�+a2�x�, u2�x�=	a3�x�, u3�x�=	a4�x�+a5�x�,
and u4�x�=	a6�x�, we have

g4�x� = �
− u1�x� 0 0 u4�x�
− u1�x� u2�x� 0 0

u1�x� − u2�x� 0 0

0 u2�x� − u3�x� 0

0 0 − u3�x� u4�x�
0 0 u3�x� − u4�x�

� .

These examples demonstrate cases in which the stoichi-
ometric matrix is rank deficient and a reduction in the num-
ber of Wiener processes is possible. In Example 1 there were
no parallel stoichiometric vectors, thus Construction 4 could
not be deployed. In Examples 2 and 3 some Wiener pro-
cesses could be spared for reversible reactions. These were
also cases in which Constructions 2 and 3 could reduce the
system size even further.

V. SIMULATIONS

In this section, we present computational benchmarking
of numerical simulations of the examples described in Sec.
IV. In addition to this, in order to demonstrate the theory we
developed, we compare the numerically computed empirical
means and variances from simulations that use different con-
structions for g in the CLE �12�. As we have already stated in
Proposition III.3, all these different CLEs have the same

finite-dimensional distributions and thus we expect all mo-
ments calculated with different g to agree �up to Monte Carlo
sampling error�.

A. A cyclical reaction system

For this example we chose rate constants to be k1=k2

=k3=0.1 and set the initial state to be �100,80,100�T. Our
numerical computations were carried out in MATLAB. We in-
tegrated using the Euler–Maruyama method25 up to time 5
with a time step size 0.005 and generated 104 realizations for
each simulated construction.

We simulated two different CLE formulations: the stan-
dard formulation �Construction 1� and Construction 3. The
first needs three Wiener processes, while the latter only needs
two Wiener processes. In our simulations of Construction 3,
we used the explicit formula from Sec. IV A for the square
root of the 2�2 matrix.

For this simple example, the running time required to
generate the sample with g given by Construction 1 was 255
s, while with Construction 3 it was 256 s. This lack of com-
putational improvement ought not to be surprising since the
time saved by using one less Wiener process could be ex-
pected to be comparable to the time spent evaluating the
complicated exact formula for the matrix square root.

The results of the comparison of the simulated means
and variances using the two different constructions are pre-
sented in Table I. As one can see they agree very accurately,
as expected.

B. A K+ channel

We chose all rate constants to be kj =0.1
�j� �1, . . . ,10�� and set the initial state to be �100,50,
100,50,100�T. We used the Euler–Maruyama integration
scheme with a time step size 0.005 to generate 104 realiza-
tions up to time 5.

We simulated two different CLE constructions: the stan-
dard formulation �Construction 1� and Construction 4. The
first needs ten Wiener processes, while the second needs five
Wiener processes.

For this example, the running time required to generate
the sample with g given by Construction 1 was 455 s, while
with Construction 4 it was 261 s. This is a saving of approxi-
mately 42%. This saving compares to a 50% decrease in the
number of Wiener processes and arose mainly from the de-
crease in the computational cost of matrix multiplications to
compute the diffusion term. This observation accentuates the
considerable benefit our reduction method can provide. As in

TABLE I. Comparison of the empirical means and variances in the cyclical
reaction system at time 5 for CLE Constructions 1 and 3.

Construction 1 Construction 3

E�x1�5�� 98.41 98.52
E�x2�5�� 87.76 87.62
E�x3�5�� 93.83 93.86
Var�x1�5�� 50.17 51.19
Var�x2�5�� 47.37 47.49
Var�x3�5�� 47.80 48.46
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Sec. V A the means and the variances calculated using the
two different constructions agreed �data not shown�.

C. The Goldbeter–Koshland switch

We chose rate constants k1=0.05, k2=0.1, k3=0.1, k4

=0.01, k5=0.1, and k6=0.1 and set the initial state to be
�110,100,30,30,100,30�T. We generated 104 realizations up
to time 5 with the Euler–Maruyama method, with a time step
size 0.005.

In our simulations, we compared the standard formula-
tion �Construction 1� with the reduced one, Construction 4.
Whereas the first requires six Wiener processes, the latter
only needs four.

The running time required to generate the sample for
Construction 1 was 349 s, while for Construction 4 it was
254 s. Therefore the saving in computational time was ap-
proximately 27%, which is the result of a 33% reduction in
the number of Wiener processes. Just as in the previous two
cases, the means and the variances calculated using the two
different constructions agreed �data not shown�.

VI. CONCLUSION

In this paper, we have given a thorough analysis of the
form of the CLE. We proved that the finite-dimensional dis-
tribution of the Itô diffusion process described by the CLE
does not change if the diffusion term g�x�=�	diag�a�x�� of
the standard form is replaced by another one as long as it
satisfies Eq. �10�, g�x�g�x�T=� diag�a�x���T. We explored
different ways how the factorization of the right-hand side
can be carried out.

Via the combination of the factorization with the mini-
mum number of columns in g �Sec. III C� with a state space
reduction by the removal of dependent variables �Sec. III E�,
we showed that the CLE can be given in a form where there
are as many independent Wiener processes as there are lin-
early independent variables. This is also the number of inde-
pendent stoichiometric vectors, that is, the dimension of the
linear space spanned by the update vectors, rank �. Neither
the number of variables nor the number of Wiener processes
can be further reduced without loss of accuracy of the system
description. The number of Wiener processes can be reduced
independently from the state space reduction: one can carry
out just one or the other or both. Indeed, the state space
reduction was achieved by multiplying the state x and the
functions f and g by a matrix T from the left and by com-
pensating for this by “fitting” both f and g with an “input
converter” T−1, which are “external” changes. The reduction
in the number of Wiener processes relies on what happens
with the entirety of g�x�g�x�T, that is, on the internal struc-
ture of g�x�.

Due to the stoichiometric constraints, after its release
from the initial state a chemical reaction model can only
move within a �rank ��-dimensional affine subspace of the
full N-dimensional state space. The state space reduction re-
flects this geometric constraint. One of the contributions of
this paper is that we found that this many, rank � indepen-
dent Wiener processes are sufficient �and also necessary� to
describe the distribution of the process given by the CLE at

any time instance t. The eigendecomposition used for Con-
struction 2 is apparently just an algorithm to disentangle the
directions �locally� in which the m Wiener processes of the
standard CLE fluctuate to rank � orthogonal directions.

Another contribution of this paper is that we showed in
the same mathematical framework that in the case where
there are m1 pairs of reversible chemical reactions and m2

irreversible reactions there is another, transparent formula-
tion of the CLE with only m1+m2 Wiener processes, whereas
the standard form uses 2m1+m2. This new form can be seen
to be more intuitive than the standard approach. At the heart
of this construction is a transformation in which the two
Gaussian noise processes that correspond to the two direc-
tions of a reversible reaction are replaced by a single one
with variance equal to the sum of the two variances.

It is important to distinguish our system-size reduction
methods from model reduction techniques, such as time scale
separation applied to multiscale systems.39 Ours are not ap-
proximations but transformations of the CLE which avoid
information loss about the statistical properties of the kinet-
ics of the chemical system. In computer jargon, ours are
lossless compression methods �of the information content of
the diffusion matrix B�x�� as opposed to model reduction
approaches that are lossy.

We illustrated these ideas by considering alternative
forms of the CLE for a HERG ion channel model and the
Goldbeter–Koshland switch. We showed that considerable
savings in running time can be achieved when using the
reduced form of the CLE for numerical simulation. We be-
lieve that all software implementations of the CLE should
include this reduced form. This would only require a small
change in code and would accelerate simulation without
changing the statistical properties of the generated stochastic
process. The CLE is an important tool for the analysis and
simulation of multiscale chemical reaction systems and it is
vital to choose its most appropriate or most efficient formu-
lation according to the requirements of the application.
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APPENDIX: PROOFS DEFERRED FROM THE MAIN
TEXT

1. Proof of Proposition III.1

Proof. For the ease of notation, we will drop the time
variable t from x�t�. We apply the multidimensional Itô’s
formula. This claims that when substituting time t and a dif-
fusion process x�t� into a function u�t ,y� :R�RN→R,

164109-10 Mélykúti, Burrage, and Zygalakis J. Chem. Phys. 132, 164109 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



du�t,x� =
�u�t,x�

�t
dt + �

i=1

N
�u�t,x�

�yi
dxi +

1

2 �
i,j=1

N
�2u�t,x�
�yi � yj

dxidxj

holds, where the rules for computing dxidxj are dtdt
=dtdWj,t=dWj,tdt=0, dWj,tdWj�,t=	 j j�dt �Kronecker delta�,19

where these are approximations that hold in an o�dt� sense.
Applying the formula with u�t ,y�=yiyk gives

d�xixk� = 0 + �xkdxi + xidxk� +
1

2
�dxidxk + dxkdxi�

= �xkdxi + xidxk�

+
1

2
2� f i�x�dt + �

j=1

d

gij�x�dWj�t��
�� fk�x�dt + �

j�=1

d

gkj��x�dWj��t��
= �xkdxi + xidxk�

+ �
j=1

d

�
j�=1

d

gij�x�gkj��x�dWj�t�dWj��t�

= �xkf i�x�dt + xk�
j=1

d

gij�x�dWj�t�

+ xifk�x�dt + xi�
j=1

d

gkj�x�dWj�t��
+ �

j=1

d

gij�x�gkj�x�dt .

Taking the expectation on both sides yields

dE�xixk� = E�xkf i�x��dt + E�xifk�x��dt + �
j=1

d

E�gij�x�gkj�x��dt ,

which is just another form of Eq. �8�. �

2. Proof of Proposition III.4

Proof. If y�RN \ �0� is a left nullvector of �, yT�=0, then
it is trivially a nullvector of B�x�,

B�x�y = � diag�a�x���Ty = 0.

In the other direction, if B�x�y=0, we first prove that y is
a left nullvector of the factor in Gillespie’s factorization,

��x� = � diag�	a1�x�, . . . ,	am�x�� .

Indeed, 0=B�x�y=��x���x�Ty, hence 0=yT��x���x�Ty
= ���x�Ty�2= �yT��x��2, so yT��x�=0 and y is a left nullvector
to ��x�.

The left nullvectors of ��x� and � are the same, since
	a1�x� , . . . ,	am�x� are all positive by assumption. Therefore
y is a left nullvector of � as claimed. �

3. Proof of Proposition III.5

Proof. The column rank of ��RN�m is just dim�Im ��.
It is well known that

dim�Im �� + dim�Ker �� = m .

The row rank of � is the column rank of �T, or dim�Im �T�.
Similarly,

dim�Im �T� + dim�Ker �T� = N .

It is also well known that the column and row ranks are
always equal. Therefore

m − dim�Ker �� = rank � = N − dim�Ker �T� .

�

4. State space reduction for Construction 4

For Construction 4, a finer partitioning of matrices
� ,J ,V is proposed. Let us order the columns of ��RN�m

such that �= ��1 �2 �3 �4�, where the columns of �1

�RN��m−dim�Ker ��� form a basis for Im �; �3 is the collection
of the column vectors that are constant multiples of any
single column of �1; the columns of �2 represent all the di-
rections specified by columns of � that are distinct to direc-
tions of the columns of �1 �columns of �2 are linearly depen-
dent on columns of �1, they are a linear combination of more
than one�; and finally �4 is the collection of the column vec-
tors that are constant multiples of any single column of �2.
Let the sizes of these matrices define r2, r3 and r4 such
that �2�RN�r2, �3�RN�r3, �4�RN�r4. Obviously,
m−dim�Ker ��+r2=s, and r2+r3+r4=dim�Ker ��. The
entries of A�x� are permuted accordingly, and then A�x� is
partitioned into blocks.

This uniquely specifies the matrices

R � R�m−dim�Ker ����r2,

M3 = �v�1� . . . v�r3�� � R�m−dim�Ker ����r3,

M4 = �w�1� . . . w�r4�� � Rr2�r4,

such that �2=�1R, �3=�1M3, and �4=�2M4, and all v�i� and
w�k� have only one nonzero entry each. Then let

J = �
Im−dim�Ker �� 0

0 Ir2

0 0

0 0
� � Rm�s,

V = 
Im−dim�Ker �� 0 M3 0

0 Ir2
0 M4

� � Rs�m,

J having first r3 then r4 rows of zeros.
The construction is again as in Eq. �13�. For the sake of

notational clarity, let

C1�x� = A1�x� + �
j=1

r3

�A3�x�� j jv
�j�v�j�T

� R�m−dim�Ker �����m−dim�Ker ���,
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C2�x� = A2�x� + �
j=1

r4

�A4�x�� j jw
�j�w�j�T

� Rr2�r2.

Then

VA�x�VT = 
C1�x� 0

0 C2�x� �
is diagonal, �JV=� and �10� hold. Defining T with �1 in the
role of �b,

g�x� = �1�	C1�x� R	C2�x� � ,

Tg�x� = 
	C1�x� R	C2�x�
0 0

� ,

whose nonzero blocks together are in R�m−dim�Ker ����s, as re-
quired.

1 T. A. Turner, S. Schnell, and K. Burrage, Comput. Biol. Chem. 28, 165
�2004�.

2 E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach, Systems
Biology in Practice: Concepts, Implementation and Application �Wiley-
VCH, Weinheim, 2005�.

3 H. H. McAdams and A. Arkin, Proc. Natl. Acad. Sci. U.S.A. 94, 814
�1997�.

4 J. Hasty, J. Pradines, M. Dolnik, and J. J. Collins, Proc. Natl. Acad. Sci.
U.S.A. 97, 2075 �2000�.

5 M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Science 297,
1183 �2002�.

6 F. J. Isaacs, J. Hasty, C. R. Cantor, and J. J. Collins, Proc. Natl. Acad. Sci.
U.S.A. 100, 7714 �2003�.

7 T. Tian and K. Burrage, J. Theor. Biol. 227, 229 �2004�.
8 J. G. Restrepo, J. N. Weiss, and A. Karma, Biophys. J. 95, 3767 �2008�.
9 D. T. Gillespie, J. Phys. Chem. 81, 2340 �1977�.

10 D. T. Gillespie, Physica A 188, 404 �1992�.
11 N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd

ed., �Elsevier, Amsterdam, 2007�.
12 T. G. Kurtz, J. Chem. Phys. 57, 2976 �1972�.
13 K. Ball, T. G. Kurtz, L. Popovic, and G. Rempala, Ann. Appl. Probab.

16, 1925 �2006�.
14 D. F. Anderson, J. Chem. Phys. 127, 214107 �2007�.

15 D. T. Gillespie, J. Chem. Phys. 115, 1716 �2001�.
16 T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 �2004�.
17 A. Auger, P. Chatelain, and P. Koumoutsakos, J. Chem. Phys. 125,

084103 �2006�.
18 D. T. Gillespie, J. Chem. Phys. 113, 297 �2000�.
19 B. Øksendal, Stochastic Differential Equations: An Introduction with Ap-

plications, 6th ed. �Springer, New York, 2007�.
20 D. J. Wilkinson, Stochastic Modelling for Systems Biology, Mathematical

and Computational Biology Series �CRC Press, Boca Raton, 2006�.
21 E. J. Allen, L. J. S. Allen, A. Arciniega, and P. E. Greenwood, Stochastic

Anal. Appl. 26, 274 �2008�.
22 M. Ullah and O. Wolkenhauer, J. Theor. Biol. 260, 340 �2009�.
23 D. Adalsteinsson, D. McMillen, and T. Elston, BMC Bioinf. 5, 24

�2004�, http://www.biomedcentral.com/1471-2105/5/24.
24 A. Singer, R. Erban, I. G. Kevrekidis, and R. R. Coifman, Proc. Natl.

Acad. Sci. U.S.A. 106, 16090 �2009�, http://www.pnas.org/content/106/
38/16090 �abstract�.

25 P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential
Equations �Springer, Berlin, 1992�.

26 T. Brennan, M. Fink, and B. Rodriguez, Eur. J. Pharm. Sci. 36, 62
�2009�.

27 A. Goldbeter and D. E. Koshland, Proc. Natl. Acad. Sci. U.S.A. 78, 6840
�1981�.

28 B. Munsky and M. Khammash, J. Chem. Phys. 124, 044104 �2006�.
29 S. MacNamara, K. Burrage, and R. B. Sidje, Multiscale Model. Simul. 6,

1146 �2008�, http://dx.doi.org/10.1137/060678154.
30 S. MacNamara, A. M. Bersani, K. Burrage, and R. B. Sidje, J. Chem.

Phys. 129, 095105 �2008�.
31 W. E, D. Liu, and E. Vanden-Eijnden, J. Chem. Phys. 123, 194107

�2005�.
32 E. L. Haseltine and J. B. Rawlings, J. Chem. Phys. 117, 6959 �2002�.
33 R. Tomioka, H. Kimura, T. J. Kobayashi, and K. Aihara, J. Theor. Biol.

229, 501 �2004�.
34 C. A. Gómez-Uribe and G. C. Verghese, J. Chem. Phys. 126, 024109

�2007�.
35 A. Singh and J. P. Hespanha, in Decision and Control, 2006 45th IEEE

Conference, pp. 2063–2068, available online at http://dx.doi.org/10.1109/
CDC.2006.376994.

36 D. J. Higham and R. Khanin, The Open Applied Mathematics Journal 2,
59 �2008�.

37 D. T. Gillespie, Am. J. Phys. 64, 1246 �1996�.
38 C.-Y. F. Huang and J. E. Ferrell, Proc. Natl. Acad. Sci. U.S.A. 93, 10078

�1996�, http://www.pnas.org/content/93/19/10078 �abstract�.
39 V. Sotiropoulos, M.-N. Contou-Carrere, P. Daoutidis, and Y. N. Kaznes-

sis, IEEE/ACM Trans. Comput. Biol. Bioinf. 6, 470 �2009�.

164109-12 Mélykúti, Burrage, and Zygalakis J. Chem. Phys. 132, 164109 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1016/j.compbiolchem.2004.05.001
http://dx.doi.org/10.1073/pnas.94.3.814
http://dx.doi.org/10.1073/pnas.040411297
http://dx.doi.org/10.1073/pnas.040411297
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1073/pnas.1332628100
http://dx.doi.org/10.1073/pnas.1332628100
http://dx.doi.org/10.1016/j.jtbi.2003.11.003
http://dx.doi.org/10.1529/biophysj.108.130419
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1063/1.1678692
http://dx.doi.org/10.1214/105051606000000420
http://dx.doi.org/10.1063/1.2799998
http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.1063/1.1810475
http://dx.doi.org/10.1063/1.2218339
http://dx.doi.org/10.1063/1.481811
http://dx.doi.org/10.1080/07362990701857129
http://dx.doi.org/10.1080/07362990701857129
http://dx.doi.org/10.1016/j.jtbi.2009.05.022
http://dx.doi.org/10.1186/1471-2105-5-24
http://www.biomedcentral.com/1471-2105/5/24
http://dx.doi.org/10.1073/pnas.0905547106
http://dx.doi.org/10.1073/pnas.0905547106
http://www.pnas.org/content/106/38/16090
http://www.pnas.org/content/106/38/16090
http://dx.doi.org/10.1016/j.ejps.2008.09.013
http://dx.doi.org/10.1073/pnas.78.11.6840
http://dx.doi.org/10.1063/1.2145882
http://dx.doi.org/10.1137/060678154
http://dx.doi.org/10.1137/060678154
http://dx.doi.org/10.1063/1.2971036
http://dx.doi.org/10.1063/1.2971036
http://dx.doi.org/10.1063/1.2109987
http://dx.doi.org/10.1063/1.1505860
http://dx.doi.org/10.1016/j.jtbi.2004.04.034
http://dx.doi.org/10.1063/1.2408422
http://dx.doi.org/10.1109/CDC.2006.376994
http://dx.doi.org/10.1109/CDC.2006.376994
http://dx.doi.org/10.2174/1874114200802010059
http://dx.doi.org/10.1119/1.18387
http://dx.doi.org/10.1073/pnas.93.19.10078
http://www.pnas.org/content/93/19/10078
http://dx.doi.org/10.1109/TCBB.2009.23

