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Bence Mélykúti∗†, João P. Hespanha‡, Mustafa Khammash§

6th June 2014

Connecting fast and slow time scales: A demonstration

To offer a small case study of integrating an analytic equilibrium distribution into

stochastic simulation, we detail the gene regulatory system of Connecting fast and slow

time scales of the main text. We let the increase in the abundance of transcription

factors T trigger mRNA transcription from a target gene G:

∅ κa−→T G + T
κb
−→
←−
κu

G∗

G∗ ab−→G∗ +M M κd−→∅.

If no TF is bound to the gene, zero transcription rate is assumed (au = 0). The variables

are the gene count XG , the gene–TF complex count XG∗ , the free TF count XT and the

mRNA count XM. Their initial states are given by

X(0) = (XG(0), XG∗(0), XT (0), XM(0))T = (1, 0, 0, 0)T.
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The rate constants

κa = 0.02 s−1,

κb = 0.2 s−1,

κu = 5 s−1,

ab = 0.01 s−1,

κd = 0.0005 s−1

are chosen for this example such that the dynamics has two well-separated time scales:

the association and dissociation of the TF and the gene are fast reactions, while the

arrival of TFs, and the creation and degradation of mRNA are slow reactions. We see

that the total number of TFs

T (t) = XG∗(t) +XT (t)

is increasing in time, but only on the slow time scale. On the fast time scale, under the

quasi-steady-state assumption, it is stipulated to be constant. The total number of genes

Ĝ(t) = XG(t) +XG∗(t) = 1

is constant in the absolute sense.

The model under the QSSA is described by variables X̃(t) = (Ĝ(t), T (t), X ′M(t))T

and consists of reactions

∅ κa−→T

Ĝ a(X̃)−→ Ĝ +M M κd−→∅.

In this approximative model, Ĝ(t) = 1 for all t ≥ 0, and

X̃(0) = (Ĝ(0), T (0), X ′M(0))T = (1, 0, 0)T.

Since this is an approximation, the mRNA counts will differ slightly between the two

models. The hope is that the distributions of XM(t) and X ′M(t) are very similar for

all t ≥ 0. (Even the distributions of the trajectories should be close.) The effective

transcription rate is

a(X̃(t)) = auPQSS(G | X̃(t)) + abPQSS(G∗ | X̃(t)) = ab
κbT (t)

κbT (t) + κu
,

due to au = 0 and the section Two-state path of the main text.

The numerical simulations by Gillespie’s stochastic simulation algorithm [1] were

implemented in GNU Octave with code that is compatible with Matlab (The Math-

Works, Inc.). For both the complete and the QSSA models, 3000 sample trajectories
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were generated over a time interval of length 7200 s = 2 h. These trajectories were

sampled every 10 s and this data was stored on disk.

Figure 1 shows the mean and mean ± standard deviation curves over time for the

total TF count in the complete and in the QSSA model, together with the mean and

mean ± standard deviation curves for the mRNA count in the two models. The total

TF counts in the two models should be nearly identical since the arrival process is

upstream from the QSS approximation. Any difference is due to sampling error (also

known as Monte Carlo error). It is the mRNA count where the models are expected

to differ slightly, and the size of this difference is the measure of the inaccuracy of the

approximation.

The arrival of TFs is a Poisson process, therefore we expect their total number

to increase about linearly, and at 2 h, to be Poisson distributed with parameter κa ×
7200 s = 144. The data corroborates this prediction: in the complete model, we observed

144.09± 11.85 TF molecules (free and bound), and in the QSSA model, 144.22± 11.91.

The mRNA count at the end of the simulated time interval was 15.30± 3.91 in the

complete model, and 15.46± 4.02 in the QSSA model. The QSS approximation is very

accurate for this model with these particular parameter values.

In the complete model, at the end of the 2 h time interval, the gene was in the

complex form in 84.7% of the 3000 cases. If the gene were always in the on state, then

the mRNA population would reach balance at ab/κd = 20. (This would be the mean

of its Poisson distribution, cf. section Infinite path.) Thus the mean mRNA count was

expected to be observed slightly below this value.

Generating the 3000 sample trajectories for the complete model took 8.1 h on a

personal computer (with a 2.8 GHz Intel Core i7-2640M dual-core processor and 4 GB

RAM), while the same task was finished in less than 2 min for the QSSA model. The sub-

sampling at 10 s intervals was introduced to avoid unnecessarily discriminating against

the complete model by keeping in memory and then saving the larger amount of data it

generated. In the complete model, on average, one trajectory consisted of 48139.2 reac-

tions (of which, on average, 23957.95, respectively, 23957.11 reactions were the formation

and dissociation of the gene-TF complex), and in the QSSA model, an average trajec-

tory consisted of 224.86 reactions. In the complete model, on average, 47.69 reactions

created an mRNA, 32.39 reactions degraded one. In the QSSA model, the correspond-

ing numbers were 48.05 and 32.59 reactions, respectively. Notice that the difference

23957.95 − 23957.11 = 0.847 between complex formation and dissociation is just the

proportion of trajectories in which the gene was found in complex form at the end.

In general, the running time saved and the accuracy of the QSSA are closely linked

to how well the fast and the slow time scales are separated, which in turn is related to

the magnitudes of the rate constants and molecular counts.
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Figure 1: (left panel) Simulation results of the total TF count (larger values) and the

mRNA count (smaller values) in the complete model (in blue) and in the QSSA model (in

pink). The displayed triplets of curves are the mean and the mean ± standard deviation.

(right panel) mRNA counts only, in the complete model (blue lines and circles for the

mean values at the displayed times) and in the QSSA model (pink lines and crosses for

the mean values at the displayed times).
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Detailed balance for isomerisation

We verify that the binomial distribution satisfies the detailed balance equations κ−(i+

1)πi+1 = κ+(N − i)πi (i ∈ {0, 1, . . . , N − 1}) for the isomerisation model:

κ−(i+ 1)πi+1 = κ−(i+ 1)
N !

(i+ 1)!(N − (i+ 1))!

κi+1
+ κ

N−(i+1)
−

(κ− + κ+)N

=
N !

i!(N − i− 1)!

κi+1
+ κN−i−

(κ− + κ+)N

= κ+(N − i) N !

i!(N − i)!
κi+κ

N−i
−

(κ− + κ+)N

= κ+(N − i)πi.

The first and the last equalities hold by definition, the second and the third steps are

algebraic rearrangements.

Verification of the equilibrium conditions in the circular

state space model of cooperative binding

We verify both the general formula for four-state circular state spaces and the application

to the independent binding of two TFs to a gene without relying on Adan and Resing’s

result [2].

First, we prove for the general, circular Markov process that a general state i is in

equilibrium if all states are drawn from the proposed distribution π. This is equivalent

to pi−1πi−1 + qi+1πi+1 = piπi + qiπi for any i ∈ {1, 2, 3, 4}. We simply substitute the

proposed solution into each of these four terms to get

pi−1πi−1 = pi+3C(pipi+1pi+2 + qipi+1pi+2 + qiqi+1pi+2 + qiqi+1qi+2),

qi+1πi+1 = qi+1C(pi+2pi+3pi + qi+2pi+3pi + qi+2qi+3pi + qi+2qi+3qi),

piπi = piC(pi+1pi+2pi+3 + qi+1pi+2pi+3 + qi+1qi+2pi+3 + qi+1qi+2qi+3),

qiπi = qiC(pi+1pi+2pi+3 + qi+1pi+2pi+3 + qi+1qi+2pi+3 + qi+1qi+2qi+3).

Here, as before, indices are to be interpreted modulo 4. Accordingly, we have already

written out indices i − 1 as i + 3 (in the first equality) and i + 4 as i (in the second

equality). If one expands out the products, there is a one-to-one correspondence between

the eight terms in pi−1πi−1 + qi+1πi+1 and eight equal counterparts in piπi + qiπi.

Second, the equilibrium distribution for the gene regulation model will be validated
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if Qπ = 0 is proven for

Q =


−2κ0T κ−1 0 κ−1

κ0T −κ1(T − 1)− κ−1 κ−2 0

0 κ1(T − 1) −2κ−2 κ1(T − 1)

κ0T 0 κ−2 −κ−1 − κ1(T − 1)

 ,
π = (π∅, π

∗, π∗∗, π∗)
T.

In fact, it is enough to compute Q (C ′)−1π (Qπ up to a constant scalar factor), which

gives the following:

(Q (C ′)−1π)1 = −2κ0Tκ−1κ−2 + κ−1κ0κ−2T + 0 + κ−1κ0κ−2T = 0,

(Q (C ′)−1π)2 = κ0Tκ−1κ−2 − (κ1(T − 1) + κ−1)κ0κ−2T + κ−2κ0κ1T (T − 1) + 0 = 0,

(Q (C ′)−1π)3 = 0 + κ1(T − 1)κ0κ−2T − 2κ−2κ0κ1T (T − 1) + κ1(T − 1)κ0κ−2T = 0,

(Q (C ′)−1π)4 = κ0Tκ−1κ−2 + 0 + κ−2κ0κ1T (T − 1)− (κ−1 + κ1(T − 1))κ0κ−2T = 0.

This completes the verification of the two equilibrium distributions.

Verification of the equilibrium conditions for the Markov

process with the glued state space

The correctness of the proposed distribution is proved in three parts. First, that it is

nonnegative. All π1i and π2i are nonnegative and at most one, since these are distributions.

Therefore π1r ≥ π1rπ21, and π1r + π21 − π1rπ21 ≥ 0.

The following calculation proves that π sums to one:

1

C

r+s−1∑
i=1

πi =
r∑
i=1

π1i π
2
1 +

r+s−1∑
i=r+1

π1rπ
2
i−r+1

= 1π21 +

s∑
i=2

π1rπ
2
i

= π21 + π1r (1− π21)

= π21 + π1r − π1rπ21.

The first equality is nothing but the definition. The second equality is a consequence of

π1 being a distribution and of a return to the original indices in the second part of the

state space. The third equality reflects that π2 is a distribution. Multiplying the first

and the last lines by C proves
∑r+s−1

i=1 πi = 1.

The third part is to prove Qπ = 0. Here Q is almost a block-diagonal matrix formed

from Q1 and Q2. The difference is that there is an overlap at the glued state where the
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diagonal elements (negative exit rates) are added:

Qij =



Q1
ij , for i ∈ {1, 2, . . . , r − 1}, j ∈ {1, 2, . . . , r},

0, for i ∈ {1, 2, . . . , r − 1}, j ∈ {r + 1, r + 2, . . . , r + s− 1},

Q1
rj , for i = r, j ∈ {1, 2, . . . , r − 1},

Q1
rr +Q2

11, for i = r, j = r,

Q2
1,j−r+1, for i = r, j ∈ {r + 1, r + 2, . . . , r + s− 1},

0, for i ∈ {r + 1, r + 2, . . . , r + s− 1}, j ∈ {1, 2, . . . , r − 1},

Q2
i−r+1,j−r+1, for i ∈ {r + 1, r + 2, . . . , r + s− 1}, j ∈ {r, r + 1, . . . , r + s− 1}.

We check Qπ = 0 for three different cases with respect to row index. For i ∈ {1, 2, . . . , r−
1}, by substituting the definitions of Q and π,

(QC−1π)i = (Q1π1)i π
2
1 = 0π21 = 0,

since π1 is an equilibrium distribution for Q1. Similarly, for i ∈ {r+1, r+2, . . . , r+s−1},

(QC−1π)i = π1r (Q2π2)i−r+1 = π1r 0 = 0.

For i = r,

(QC−1π)r =
r−1∑
k=1

Q1
rkπ

1
k π

2
1 +

(
Q1
rr +Q2

11

)
π1rπ

2
1 +

r+s−1∑
k=r+1

π1r Q
2
1,k−r+1π

2
k−r+1

= π21

r∑
k=1

Q1
rkπ

1
k + π1r

r+s−1∑
k=r

Q2
1,k−r+1π

2
k−r+1

= π21 0 + π1r 0 = 0,

and the proof is complete.

A second application of glued state spaces

The state space of this example is the mirror image of the first example of glued state

spaces in the main text. Here two of the three non-overlapping TFBSs can bind the first

two TFs independently before the third TFBS binds the last TF:

G + T
κ0
−→
←−
κ−1

G∗ G∗ + T
κ1
−→
←−
κ−2

G∗∗ G∗∗ + T
κb
−→
←−
κu
∗G∗∗ .

G + T
κ̃0
−→
←−
κ̃−1

G∗ G∗ + T
κ̃1
−→
←−
κ̃−2

G∗∗

The state space is constructed by gluing the last state of (G∗,G,G∗,G∗∗) to the first state

of (G∗∗ , ∗G∗∗). The assumptions κ0 = κ̃0, κ1 = κ̃1, κ−1 = κ̃−1, and κ−2 = κ̃−2 are still

stipulated.
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The equilibrium distribution on the first state space,
(
(π1)∅, (π

1)∗, (π1)∗∗, (π
1)∗
)T

, is

given by Equation (8) of the main text, whereas on the second state space by(
∅(π

2)∗∗

∗(π
2)∗∗

)
=

1

κb(T − 2) + κu

(
κu

κb(T − 2)

)
.

Therefore the equilibrium distribution on the glued state space is

π∗

π∅

π∗

π∗∗

∗π
∗
∗


= C



κ0κ−2κuT

κ−1κ−2κu

κ0κ−2κuT

κ0κ1κuT (T − 1)

κ0κ1κbT (T − 1)(T − 2)


,

where C can be given as the inverted sum of the five entries of the right-hand-side vector.

Ladder-shaped state space, dimer transcription factors

We will need a number of well-known identities and estimates.

Proposition 1 1. For any ε ∈]− 1, 1[,

√
1 + ε = 1 +

ε

2
+O(ε2). (1)

2. (Cauchy’s coefficient formula) Let U ⊆ C be an open set containing 0, f : U → C
an analytic (with different terminology, holomorphic) function and let γ be a simple

loop around 0 (that is, a null-homotopic, one-to-one, closed curve) that is positively

oriented. Then the coefficient [zn]f(z) := fn in the power series expansion f(z) =∑∞
n=0 fnz

n admits the representation

[zn]f(z) =
1

2πi

∫
γ

f(z)

zn+1
dz. (2)

3. For any ϑ ∈ R,

cosϑ = 1− ϑ2

2!
+O(ϑ4). (3)

4. ∫ ∞
−∞

e−t
2/2 dt =

√
2π. (4)

5. For any c ≥ 0, ∫ ∞
c

e−t
2/2 dt = O(e−c

2/2). (5)
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Proof The series expansions of the square root (1) and the cosine function (3) are

standard [3, p. 15 and p. 74].

Cauchy’s coefficient formula (2) is a central result of complex analysis and can be

found, for instance, in [4, Theorem IV.4, p. 237].

Eq. (4) can be verified via the well-known form of the probability density function

of the normal distribution.

The estimate (5) will be proven for c ∈ [0, 1] and c ≥ 1 separately.∫ ∞
c

e−t
2/2 dt ≤

∫ ∞
0

e−t
2/2 dt =

√
π

2

from Eq. (4). Further, for any c ∈ [0, 1],√
π

2
=

(√
π

2
e1/2

)
e−1/2 ≤

(√
π

2
e1/2

)
e−c

2/2.

The case c ≥ 1 is left. From (
e−t

2/2
)′

= −te−t2/2,

it follows∫ ∞
c

e−t
2/2 dt =

1

c
c

∫ ∞
c

e−t
2/2 dt ≤ 1

c

∫ ∞
c

te−t
2/2 dt =

1

c
e−c

2/2 ≤ e−c2/2. �

Let us fix the total number of monomers to be T ∈ N. G+G∗ = 1 is also fixed. For this

particular stoichiometric compatibility class, the product-form equilibrium distribution

in terms of a complex-balanced steady state (M̂, D̂, Ĝ, Ĝ∗)T is the following:

πT

(
(M, D, G, G∗)T

)
= χ{M=T−2D−2G∗, G=1−G∗}CT

M̂M

M !

D̂D

D!

ĜG

G!

(Ĝ∗)G
∗

G∗!
,

with T -dependent normalizing constant CT [5].

Of interest to us are the probabilities that the gene is in the bound or in the unbound

state. For motivation and brevity, we already include the result of a later calculation,

Eq. (7), in the fourth equality:

PT (G∗ = 0) =
∑

{(M,D,G,G∗) |G∗=0}

πT

(
(M, D, G, G∗)T

)

=
∑

{(M,D,G,G∗) |G∗=0}

χ{M=T−2D−2G∗, G=1−G∗}CT
M̂M

M !

D̂D

D!

ĜG

G!

(Ĝ∗)G
∗

G∗!

=

bT/2c∑
D=0

CT
(T̂ − 2D̂ − 2Ĝ∗)T−2D

(T − 2D)!

D̂D

D!

Ĝ1

1!

(Ĝ∗)0

0!

= CT
κu

κbD̂ + κu
Ĝt

bT/2c∑
D=0

(T̂ − 2D̂ − 2Ĝ∗)T−2D

(T − 2D)!

D̂D

D!
.
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Similarly,

PT (G∗ = 1) =
∑

{(M,D,G,G∗) |G∗=1}

πT

(
(M, D, G, G∗)T

)

=
∑

{(M,D,G,G∗) |G∗=1}

χ{M=T−2D−2G∗, G=1−G∗}CT
M̂M

M !

D̂D

D!

ĜG

G!

(Ĝ∗)G
∗

G∗!

=

bT/2c−1∑
D=0

CT
(T̂ − 2D̂ − 2Ĝ∗)T−2D−2

(T − 2D − 2)!

D̂D

D!

Ĝ0

0!

(Ĝ∗)1

1!

= CT
κbD̂

κbD̂ + κu
Ĝt

bT/2c−1∑
D=0

(T̂ − 2D̂ − 2Ĝ∗)T−2D−2

(T − 2D − 2)!

D̂D

D!
.

The summands consist of one factor having terms increasing in the summation in-

dex D and the other factor with terms decreasing in D. The sums will be represented

as coefficients in the product of two power series. Consider the following calculation.

exp
(
D̂z2 + (T̂ − 2D̂ − 2Ĝ∗)z

)
=

∞∑
k=0

D̂kz2k

k!

∞∑
`=0

(T̂ − 2D̂ − 2Ĝ∗)`z`

`!

=

∞∑
n=0

∑
{(k,`)∈N2 | 2k+`=n}

D̂k

k!

(T̂ − 2D̂ − 2Ĝ∗)`

`!
zn

=

∞∑
n=0

bn/2c∑
k=0

D̂k

k!

(T̂ − 2D̂ − 2Ĝ∗)n−2k

(n− 2k)!
zn,

where the first equality follows from the series expansion of both factors of the factorised

exponential function, in the second line this is written in terms of a Cauchy product of

the two power series (the rearrangement is justified by the absolute convergence of both

series), and the third equality uses ` = n− 2k. This argument immediately yields

PT (G∗ = 0) = CT
κu

κbD̂ + κu
Ĝt × [zT ] exp

(
D̂z2 + (T̂ − 2D̂ − 2Ĝ∗)z

)
,

PT (G∗ = 1) = CT
κbD̂

κbD̂ + κu
Ĝt × [zT−2] exp

(
D̂z2 + (T̂ − 2D̂ − 2Ĝ∗)z

)
.

The unknown normalizing constant CT can be removed by algebraic rearrangements,

PT (G∗ = 0) =
PT (G∗ = 0)

PT (G∗ = 0) + PT (G∗ = 1)
=

1

1 + PT (G∗=1)
PT (G∗=0)

=
1

1 +
κbD̂ [zT−2] exp(D̂z2+(T̂−2D̂−2Ĝ∗)z)
κu [zT ] exp(D̂z2+(T̂−2D̂−2Ĝ∗)z)

=
κu

κu + κbD̂
[zT−2] exp(D̂z2+(T̂−2D̂−2Ĝ∗)z)
[zT ] exp(D̂z2+(T̂−2D̂−2Ĝ∗)z)

. (6)
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For the sake of clearer notation, we introduce some new symbols. With

σ := M̂ = T̂ − 2D̂ − 2Ĝ∗,

τ := D̂,

the exponential function of interest becomes

F (z) = exp
(
τz2 + σz

)
,

and its power series expansion

F (z) =

∞∑
n=0

fnz
n.

Recall that the complex-balanced steady state in the product-form equilibrium dis-

tribution theorem (essentially, its stoichiometric compatibility class) can be chosen inde-

pendently from the stoichiometric compatibility class in which we compute the equilib-

rium distribution of the stochastic model. When we want to emphasise the dependence

of F on this choice, which is the choice of T̂ and Ĝt := Ĝ+ Ĝ∗, we may write

F(T̂ ,Ĝt)
(z) = exp

(
τ(T̂ ,Ĝt)z

2 + σ(T̂ ,Ĝt)z
)

=
∞∑
n=0

f(T̂ ,Ĝt),nz
n.

Our aim becomes to compute f(T̂ ,Ĝt),T and f(T̂ ,Ĝt),T−2 as accurately as possible so

that their ratio in PT (G∗ = 0), and similarly in PT (G∗ = 1), is available. We will also

need τ(T̂ ,Ĝt) = D̂ for the formula for PT (G∗ = 0).

Computing τ and σ

The equations describing the complex balance for the ODE reduce to the following

system of two equations:

κ1M̂
2 = κ−1D̂

κbD̂Ĝ = κuĜ
∗.

The second equation, together with Ĝt = Ĝ+ Ĝ∗, yields

(
Ĝ, Ĝ∗

)
=

(
κu

κbD̂ + κu
Ĝt,

κbD̂

κbD̂ + κu
Ĝt

)
. (7)

The first equation becomes

κ1(T̂ − 2D̂ − 2Ĝ∗)2 = κ−1D̂,
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and once we substitute the solution for Ĝ∗ into the above and multiply both sides with

(κbD̂ + κu)2, we get a polynomial equation quartic in D̂:

4κ1κ
2
bD̂

4

+(8κ1κ
2
bĜt − κ−1κ2b + 8κ1κbκu − 4κ1κ

2
b T̂ )D̂3

+(4κ1κ
2
bĜ

2
t + 8κ1κbκuĜt − 2κ−1κbκu + 4κ1κ

2
u − 4κ1κ

2
bĜtT̂ − 8κ1κbκuT̂ + κ1κ

2
b T̂

2)D̂2

+(−κ−1κ2u − 4κ1κbκuĜtT̂ − 4κ1κ
2
uT̂ + 2κ1κbκuT̂

2)D̂

+κ1κ
2
uT̂

2 =0.

The calculations were partially carried out with the computer algebra system Mathe-

matica 8 (Wolfram Research, Inc.) and we justify some omissions in the text by these

computational results. The Mathematica notebooks are available in the electronic

supplementary material.

We settled for the most straightforward choice for steady state, namely, the values

of the stochastic model: T̂ = T and Ĝt = 1. We suspect that with these two degrees of

freedom there should be choices which result in a simpler calculation but we have not

found one.

To avoid having to deal with a quartic equation, we leave Ĝ∗ as an unknown pa-

rameter; since it is constrained to [0, 1], the uncertainty introduced is expected to be

rather small. Note that this is true only if Ĝt is of order 1 in T̂ . Then the equation for

D̂ becomes

4κ1D̂
2 + (8κ1Ĝ

∗ − κ−1 − 4κ1T )D̂ + 4κ1(Ĝ
∗)2 − 4κ1Ĝ

∗T + κ1T
2 = 0.

The solution can be got by the quadratic formula. The unique solution is the smaller

one, since the greater one is at least

−8κ1Ĝ
∗ − κ−1 − 4κ1T

2× 4κ1
= −Ĝ∗ +

κ−1
8κ1

+
T

2
,

greater than T/2 − Ĝ∗, a natural upper bound of D̂. The square root in the quadratic

formula is approximated by Eq. (1), to yield

τ(T,1) = D̂ =
T

2
− cτ
√
T + c2τ − Ĝ∗ +

(
cτ Ĝ

∗ − c3τ
2

)√
1

T
+O

(
T−3/2

)
,

σ(T,1) = T − 2D̂ − 2Ĝ∗ = 2cτ
√
T − 2c2τ +

(
c3τ − 2cτ Ĝ

∗
)√ 1

T
+O

(
T−3/2

)
,

with cτ =
√

κ−1

8κ1
. There is no limitation to how many terms these expansions can include

but Ĝ∗ is not specified beyond being confined to [0, 1].

It is interesting to note that D̂, the steady state dimer count in the reaction rate

equation, as T →∞, is essentially the maximum possible number of dimers, T/2, minus

a correction whose order of magnitude is
√
T . This bias towards dimerisation versus

dissociation reflects that dimerisation is described by a degree two intensity function,

whereas dissociation by a linear intensity.
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Computation of the coefficients by Cauchy’s coefficient formula and the

saddle point

To compute the coefficients f(T,1),T and f(T,1),T−2 of F(T,1)(z) for evaluating PT (G∗ = 0),

our guide will be the fine book [4]. The primary mission of analytical combinatorics is

to assess the cardinality of sets of combinatorial structures of a certain size. This is

achieved by taking the generating function whose nth coefficient is the cardinality of

the class of the combinatorial structures of size n in question. This generating function

is examined with complex analytical methods. Function

F(T,1)(z) = exp
(
τ(T,1)z

2 + σ(T,1)z
)

is an entire function, therefore its analysis will follow Chapter VIII, Saddle-point asymp-

totics. One of the case studies of this chapter is the analysis of function z 7→ exp(12z
2+z)

(pp. 558–60), which our calculation will closely follow. It is perhaps interesting to note

that exp(τz2 +σz) is the generating function of permutations with longest cycle at most

two long (in other words, involutions) where 2τ marks inversions and σ marks fixed

points [cf. 4, Ex. VIII.5, p. 558 and Ex. VIII.12, p. 569]. The topic of involutions was

exploited in a study of dimerisation [6, Section 4].

The starting point is Cauchy’s coefficient formula (2), with the integration curve γ a

circle centred in the origin, which we transform into polar coordinates by substitution.

For any n ∈ N,

f(T,1),n =
1

2πi

∫
γ

exp
(
τ(T,1)z

2 + σ(T,1)z
)

zn+1
dz

=
1

2πi

∫ 2π

0

exp
(
τ(T,1)r

2eiϑ 2 + σ(T,1)re
iϑ
)

(reiϑ)
n+1 reiϑ i dϑ

=
1

2π

∫ 2π

0

exp
(
τ(T,1)r

2ei 2ϑ + σ(T,1)re
iϑ
)

rneniϑ
dϑ. (8)

In the integrand the division by z introduces a pole singularity at 0 to an otherwise

entire function. The magnitude of the integrand tends to infinity as z → ±∞ on the

real axis because of the z2 term. Therefore the magnitude of the integrand has two

local minima on the real axis, which are additionally saddle points of the integrand. For

illustration, see Figures 2 and 3. (Plots with the parameter values used in the Numerical

verification are extremely similar to these and are not shown.)

The saddle point on the negative real halfline is exponentially small in T in com-

parison to the saddle point on the positive real half line. This is a corollary of the

forthcoming Proposition 2: the positive saddle point dominates the origin-centred circle

that passes through it; and the magnitude of the negative saddle point cannot be greater

than the magnitude of the integrand at the intersection of the negative real halfline and

the circle.
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Figure 2: Base-10 log plot of z 7→ | exp(τ(100,1)z
2 + σ(100,1)z)/z

101| with parameters

κ1 = 1, κ−1 = 6, κb = 0.1, κu = 2, and an estimated Ĝ∗ = 0.5. On the vertical axis,

0 and 50 mark 100 and 1050, respectively. The scales on the real and imaginary axes are

linear.

The strategy suggested in [4] is to choose the integration curve such that it passes

through (or near) the saddle point, in our case through the higher of the two saddle

points. This technique is called the saddle-point method.

In order to find this higher saddle point, which is the saddle point on the positive

real halfline, set ϑ = 0, and define

ϕ(T̂ ,Ĝt),n
(z) := τ(T̂ ,Ĝt)z

2 + σ(T̂ ,Ĝt)z − n log z.

The integral (8) becomes

f(T,1),n =
1

2π

∫ π

−π
exp

(
ϕ(T,1),n(reiϑ)

)
dϑ.

The higher saddle point is the unique r(T̂ ,Ĝt),n > 0 that satisfies

ϕ′
(T̂ ,Ĝt),n

(r(T̂ ,Ĝt),n) = 0,

or

2τ(T̂ ,Ĝt)r(T̂ ,Ĝt),n + σ(T̂ ,Ĝt) −
n

r(T̂ ,Ĝt),n
= 0. (9)

For (T̂ , Ĝt) = (T, 1), the resulting quadratic equations have the positive roots

r(T,1),T−2 = 1 + (Ĝ∗ − 1)T−1 + cτ (Ĝ∗ − 1)T−3/2 +O
(
T−2

)
,

r(T,1),T = 1 + Ĝ∗T−1 + cτ Ĝ
∗T−3/2 +O

(
T−2

)
.

These are the radii to be used in Cauchy’s coefficient formula.
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Figure 3: Base-10 log plot of (r, ϑ) 7→ | exp(τ(100,1)r
2ei 2ϑ + σ(100,1)re

iϑ)/(r100e100iϑ)|
with parameters κ1 = 1, κ−1 = 6, κb = 0.1, κu = 2, and an estimated Ĝ∗ = 0.5. On the

vertical axis, 0 and 50 mark 100 and 1050, respectively. The scales on the r and ϑ axes

are linear.

Decomposition of the integral

Consider the following formulation of the integral,

f(T,1),n =
exp

(
ϕ(T,1),n(r)

)
2π

∫ π

−π
exp

(
ϕ(T,1),n(reiϑ)− ϕ(T,1),n(r)

)
dϑ,

and the resulting definition

I(T,1),n(r) : =

∫ π

−π
exp

(
ϕ(T,1),n(reiϑ)− ϕ(T,1),n(r)

)
dϑ.

For PT (G∗ = 0), we factorise f(T,1),T−2/f(T,1),T according to this decomposition as

f(T,1),T−2

f(T,1),T
=

exp
(
ϕ(T,1),T−2(r(T,1),T−2)

)
exp

(
ϕ(T,1),T (r(T,1),T )

) I(T,1),T−2(r(T,1),T−2)

I(T,1),T (r(T,1),T )
. (10)

In the first factor, by the definition of ϕ(T,1),n(z) and the results for σ(T,1), τ(T,1),

r(T,1),T−2, and r(T,1),T , we have

ϕ(T,1),T−2(r(T,1),T−2)− ϕ(T,1),T (r(T,1),T ) =

= τ(T,1)r
2
(T,1),T−2 + σ(T,1)r(T,1),T−2 − (T − 2) log r(T,1),T−2

−
(
τ(T,1)r

2
(T,1),T + σ(T,1)r(T,1),T − T log r(T,1),T

)
= (2Ĝ∗ − 1)T−1 + cτ (2Ĝ∗ − 1)T−3/2 +O(T−2),
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and after exponentiation

exp
(
ϕ(T,1),T−2(r(T,1),T−2)

)
exp

(
ϕ(T,1),T (r(T,1),T )

) = 1 + (2Ĝ∗ − 1)T−1 + cτ (2Ĝ∗ − 1)T−3/2 +O(T−2). (11)

Computation of the integral

The integral I(T,1),n(r(T,1),n) will be evaluated separately on a central part and on an

outside part:

I(T,1),n(r) =

∫ π

−π
exp

(
ϕ(T,1),n(reiϑ)− ϕ(T,1),n(r)

)
dϑ

=

∫ θ0

−θ0
exp

(
ϕ(T,1),n(reiϑ)− ϕ(T,1),n(r)

)
dϑ

+

∫ 2π−θ0

θ0

exp
(
ϕ(T,1),n(reiϑ)− ϕ(T,1),n(r)

)
dϑ.

The integral outside the central part will be shown to be negligibly small (Proposition 2).

This quantity will be the first error term, ε1. This is a consequence of the integrand being

very small on the integration path far from the saddle point.

The central integral will be approximated with a Gaussian integral. This approxima-

tion will give two error terms. On the one hand, ε2 will reflect the difference between the

genuine central integral and its Gaussian approximation (Proposition 3). On the other

hand, ε3 is the error from falsely computing the tails in a complete Gaussian integral

when only the incomplete integral on the central part is needed (Proposition 4).

The boundary θ0 between the central and the non-central parts is chosen according

to the principles in [4, Eq. (21), p. 554], and fixed to be θ0 = n−2/5.

Proposition 2 There exists a constant c ∈]0, 1[ such that∫ 2π−θ0

θ0

exp
(
ϕ(T,1),T−2(r(T,1),T−2e

iϑ)− ϕ(T,1),T−2(r(T,1),T−2)
)

dϑ = O(e−cT
1/5

),∫ 2π−θ0

θ0

exp
(
ϕ(T,1),T (r(T,1),T e

iϑ)− ϕ(T,1),T (r(T,1),T )
)

dϑ = O(e−cT
1/5

).

Proof The claim will be proved if the integrands are bounded from above by O(e−cT
1/5

)

since the interval of integration is no longer than 2π. The exponent will be rewritten in

a different form. For brevity, let σ := σ(T,1), τ := τ(T,1) and rn := r(T,1),n.

ϕ(T,1),n(r(T,1),ne
iϑ)− ϕ(T,1),n(r(T,1),n) =

= τr2ne
i 2ϑ + σrne

iϑ − n log(rne
iϑ)− (τr2n + σrn − n log rn)

= τr2n(ei 2ϑ − 1) + σrn(eiϑ − 1)− n(iϑ).

rn was chosen in such a way that ϕ′(T,1),n(rn) = 0, that is,

2τrn + σ − n

rn
= 0.
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From this, −n = −2τr2n − σrn, and

ϕ(T,1),n(r(T,1),ne
iϑ)− ϕ(T,1),n(r(T,1),n) =

= τr2n(ei 2ϑ − 1− 2(iϑ)) + σrn(eiϑ − 1− iϑ).

The magnitude of an exponentiated term is the exponential of its real part, thus∣∣∣ exp
(
ϕ(T,1),n(r(T,1),ne

iϑ)− ϕ(T,1),n(r(T,1),n)
)∣∣∣ =

= exp
(
τr2n(cos(2ϑ)− 1) + σrn(cosϑ− 1)

)
.

Consider the function g : ϑ 7→ τr2n(cos(2ϑ) − 1) + σrn(cosϑ − 1). First, g(0) = 0.

On [0, π2 ], both cos(2ϑ) and cosϑ are decreasing, and so is g. On [π2 ,
3π
4 ], both cos(2ϑ)

and cosϑ are nonpositive, and g(ϑ) ≤ −τr2n − σrn. Finally, on [3π4 , π], cosϑ ≤ −
√
2
2 and

g(ϑ) ≤ −
√
2+2
2 σrn. The same argument can be used for [−π, 0].

Using Eq. (3), the above becomes∣∣∣ exp
(
ϕ(T,1),n(r(T,1),ne

iϑ)− ϕ(T,1),n(r(T,1),n)
)∣∣∣ =

= exp

(
τr2n

(
2ϑ2 +O(ϑ4)

)
+ σrn

(
ϑ2

2
+O(ϑ4)

))
.

These considerations give for n ∈ {T − 2, T} and θ0 = n−2/5 that eg(ϑ) is exponen-

tially small outside of [−θ0, θ0]: on [θ0,
π
2 ] ∪ [−π

2 ,−θ0],∣∣∣ exp
(
ϕ(T,1),n(r(T,1),ne

iϑ)− ϕ(T,1),n(r(T,1),n)
)∣∣∣ ≤∣∣∣ exp

(
ϕ(T,1),n(r(T,1),ne

iθ0)− ϕ(T,1),n(r(T,1),n)
)∣∣∣ =

= exp
(
−T 1/5 + cτT

−3/10 +O(T−3/5)
)

is certainly an upper bound (for the last equality, see the Mathematica notebook),

while on [π2 ,
3π
2 ], g(ϑ) ≤ −σrn gives an upper bound e−2cτT

1/2+O(1). Therefore, the first

error term for both n = T − 2 and n = T is ε1 = O(e−cT
1/5

). �

Proposition 3 For n ∈ {T − 2, T},∫ θ0

−θ0
exp

(
ϕ(T,1),n(r(T,1),ne

iϑ)− ϕ(T,1),n(r(T,1),n)
)

dϑ =

=

∫ θ0

−θ0
exp

(
−
(
n−

σ(T,1)

2
r(T,1),n

)
ϑ2
)

dϑ
(

1 +O(T−1/5)
)
.

Proof To evaluate the central integral∫ θ0

−θ0
exp

(
ϕ(T,1),n(r(T,1),ne

iϑ)− ϕ(T,1),n(r(T,1),n)
)

dϑ,
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a Taylor expansion of ϕ(T,1),n will be used. For ϑ ∈ [−θ0, θ0],

ϕ(T,1),n(r(T,1),ne
iϑ)− ϕ(T,1),n(r(T,1),n) =

=
ϕ′(T,1),n(r(T,1),n)

1
r(T,1),n(eiϑ − 1) +

ϕ′′(T,1),n(r(T,1),n)

2
r2(T,1),n(eiϑ − 1)2

+
ϕ′′′(T,1),n(r(T,1),n)

6
r3(T,1),n(eiϑ − 1)3 +O(ϑ4).

Recall that r(T,1),n is chosen in such a way that ϕ′(T,1),n(r(T,1),n) = 0. Further, from

Eq. (9),

ϕ′′(T,1),n(r(T,1),n)r2(T,1),n = 2τ(T,1)r
2
(T,1),n + n = 2n− σ(T,1)r(T,1),n,

ϕ′′′(T,1),n(r(T,1),n)r3(T,1),n = −2n.

From

eiϑ = 1 + iϑ− 1

2
ϑ2 − i

6
ϑ3 +O(ϑ4),

it follows

(eiϑ − 1)2 = −ϑ2 − iϑ3 +O(ϑ4),

(eiϑ − 1)3 = −iϑ3 +O(ϑ4).

The exponent of the integrand reduces to

ϕ(T,1),n(r(T,1),ne
iϑ)− ϕ(T,1),n(r(T,1),n) =

=
(
n−

σ(T,1)

2
r(T,1),n

)
(eiϑ − 1)2 − n

3
(eiϑ − 1)3 +O(ϑ4),

where the constraints ϑ ∈ [−θ0, θ0] = [−n−2/5, n−2/5] and n ∈ {T − 2, T} allow further

simplification:

ϕ(T,1),n(r(T,1),ne
iϑ)− ϕ(T,1),n(r(T,1),n) =

= −
(
n−

σ(T,1)

2
r(T,1),n

)
ϑ2 +O(T−1/5).

After exponentiation, exp(O(T−1/5)) = 1 + O(T−1/5). Let this error term minus one

be denoted by ε2, so that ε2 = O(T−1/5). Ultimately, for n ∈ {T − 2, T}, the central

integral is approximated by a Gaussian integral,∫ θ0

−θ0
exp

(
ϕ(T,1),n(r(T,1),ne

iϑ)− ϕ(T,1),n(r(T,1),n)
)

dϑ =

=

∫ θ0

−θ0
exp

(
−
(
n−

σ(T,1)

2
r(T,1),n

)
ϑ2
)

dϑ
(

1 +O(T−1/5)
)
. �

In the next calculation, the central, approximating Gaussian integral will be evalu-

ated.
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Proposition 4 There exists a constant c ∈]0, 1[ such that for n ∈ {T − 2, T},∫ n−2/5

−n−2/5

exp

(
−
(
n−

σ(T,1)

2
r(T,1),n

)
ϑ2
)

dϑ =

=

√
π

n− σ(T,1)
2 r(T,1),n

+O
(
e−cT

1/5
)
.

Proof In the following calculation, we first integrate by substitution. In the second step,

we complete the Gaussian integral and simultaneously subtract the two tail integrals.

The third step follows from Eq. (4) and we use that the tails of the normal distribution

are exponentially small, Eq. (5).∫ n−2/5

−n−2/5

exp

(
−
(
n−

σ(T,1)

2
r(T,1),n

)
ϑ2
)

dϑ =

=
1√

2
(
n− σ(T,1)

2 r(T,1),n

) ∫
√

2
(
n−

σ(T,1)
2

r(T,1),n

)
n−2/5

−
√

2
(
n−

σ(T,1)
2

r(T,1),n

)
n−2/5

exp

(
−%

2

2

)
d%

=
1√

2
(
n− σ(T,1)

2 r(T,1),n

) ∫ ∞
−∞

exp

(
−%

2

2

)
d%

− 2√
2
(
n− σ(T,1)

2 r(T,1),n

) ∫ ∞√
2
(
n−

σ(T,1)
2

r(T,1),n

)
n−2/5

exp

(
−%

2

2

)
d%

=
1√

2
(
n− σ(T,1)

2 r(T,1),n

)√2π

+
2√

2
(
n− σ(T,1)

2 r(T,1),n

)O(exp

(
−1

2
2
(
n−

σ(T,1)

2
r(T,1),n

)
n−4/5

))

=

√
π

n− σ(T,1)
2 r(T,1),n

+
2√

2
(
n− σ(T,1)

2 r(T,1),n

)O (e−cT 1/5
)

=

√
π

n− σ(T,1)
2 r(T,1),n

+O
(
e−cT

1/5
)
.

Let ε3 denote this last error term. �

As a corollary of Propositions 2–4, we get for n ∈ {T − 2, T},

I(T,1),n(r(T,1),n) =

√ π

n− σ(T,1)
2 r(T,1),n

+ ε3

 (1 + ε2) + ε1.
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Consequently,

I(T,1),T−2(r(T,1),T−2)

I(T,1),T (r(T,1),T )
= 1 +O(T−1/5).

Together with Eq. (11), from Eq. (10), this gives

f(T,1),T−2

f(T,1),T
= 1 +O(T−1/5). (12)

By substituting this into Eq. (6), we get the claim of the main text.

It is noteworthy that ultimately Eq. (6) is revealed to be almost identical to its

deterministic counterpart, Eq. (7), the difference being the error term. This can be seen

as the exchanging of limits: whether to first take the large volume limit with one gene

and then take time to infinity (deterministic steady state) or to take time to infinity first

and then increase the number of transcription factors (equilibrium distribution) has been

shown to be equivalent modulo the error term. It is somewhat puzzling that such effort

was needed to compute by Cauchy’s coefficient formula two coefficients independently,

which eventually turned out to be almost equal, Eq. (12). We wonder if there is a trick

or a formula to directly compute the ratio of two coefficients of a power series.

Analogously to Eq. (6), PT (G∗ = 1) can be expressed as

PT (G∗ = 1) =
κbD̂

κbD̂ + κu
[zT ] exp(D̂z2+(T̂−2D̂−2Ĝ∗)z)

[zT−2] exp(D̂z2+(T̂−2D̂−2Ĝ∗)z)

.

After substituting D̂ = τ(T,1) and f(T,1),T /f(T,1),T−2 = 1 +O(T−1/5), one arrives at

PT (G∗ = 1) = κb

(
T

2
−
√
κ−1
8κ1

T 1/2 +
κ−1
8κ1
− Ĝ∗ +O(T−1/2)

)
×

×
(
κb

(
T

2
−
√
κ−1
8κ1

T 1/2 +
κ−1
8κ1

+
κu
κb
− Ĝ∗ +O(T−1/5)

))−1
(13)

= 1− 2κu
κb

T−1 − 4κu
κb

√
κ−1
8κ1

T−3/2 + 4
κu
κb

(
κu
κb
− κ−1

8κ1

)
T−2 +O(T−6/5).

In the last expression, terms that are smaller than the error term are also given, allowing

for the possibility that the approximation via the saddle-point method is more accurate

than what error term we could prove. That this might really be the case is suggested

by the higher accuracy of Eq. (13) in comparison to the formula of the main text for

PT (G∗ = 0) in the forthcoming numerical verification (Table 1 and Figure 4). Note,

however, that the numerical verification is limited to only one set of parameter values.

Numerical verification

In order to verify the calculation, the result was checked against numerical simulation

by Gillespie’s stochastic simulation algorithm [1]. The simulations were conducted in
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GNU Octave with code that is compatible with Matlab (The MathWorks, Inc.)

also. Parameter values were chosen in the ranges considered biologically realistic by [7,

Supporting Material]. These are TF dimerisation rate κ′1 = 5× 107 M−1s−1, TF dimer

dissociation rate κ′−1 = 1 s−1, gene–TF binding rate κ′b = 108 M−1s−1, and gene–TF

complex dissociation rate κ′u = 5 s−1. We take the cell volume to be V = 10−15 ` and

the Avogadro constant NA = 6×1023 mol−1. The rate constants are converted from the

continuous (concentration) formalism into the discrete (count) formalism:

κ1 = κ′1/(NAV ) = 8.33 . . .× 10−2 s−1,

κ−1 = κ′−1 = 1 s−1,

κb = κ′b/(NAV ) = 0.166 . . . s−1,

κu = κ′u = 5 s−1.

Each empirical probability value resulted from 3000 samples. Sampling took place

at the end of independent trajectories of 60 s length from initial state (M,D,G,G∗) =

(T, 0, 1, 0). Based on the observation of individual runs with the naked eye, we are

confident that for practical purposes, equilibrium distribution was comfortably reached

by this time.

Estimates by the two formulae are computed by evaluating them without the error

terms. For 1 − PT (G∗ = 0), the formula of the main text is used. For PT (G∗ = 1),

Eq. (13) is used. Its result is an interval since the value Ĝ∗ is only known to lie in [0, 1].

For instance, for the lower bound, Ĝ∗ is set to 1 in the enumerator and to 0 in the

denominator.

For increasing values of T , the estimates for PT (G∗ = 1) are indeed approaching the

simulated value (Table 1 and Figure 4). One can observe that the formulae can predict

probabilities outside of [0, 1] but the problem is naturally solved as T increases. Due to

differences in the truncation of error terms, 1 − PT (G∗ = 0) is not necessarily in the

interval given by Eq. (13).

Even as T tends to infinity, owing to sampling error, one cannot expect a perfect

match between simulation results and the analytic estimates. If we knew that PT (G∗ =

1) is exactly p = (0.82, 0.94, 0.98), then the standard deviation of the numerical estimates

would be
√
p(1− p)/3000 ≈ (0.0070, 0.0043, 0.0026), respectively. Our simulation results

are consistent with these expected sampling errors. Generating the 3000 samples took

about 6.5 h with T = 1000 and about 108 h with T = 3162 on the computer described

in Connecting fast and slow time scales: A demonstration.
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Figure 4: Plot of data in Table 1. Simulation results are marked by black X symbols, the

estimates by the formula for 1− PT (G∗ = 0) by blue + symbols and a connecting line,

and the interval estimates by the formula (13) for PT (G∗ = 1) by pink vertical bars and

connecting lines. The right panel uses a logarithmic scale on the y-axis to magnify the

approach to 1.
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