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Abstract

We compute the stationary distribution of a continuous-time Markov chain which is
constructed by gluing together two finite, irreducible Markov chains by identifying a pair
of states of one chain with a pair of states of the other and keeping all transition rates
from either chain. The result expresses the stationary distribution of the glued chain in
terms of quantities of the two original chains. Special emphasis is given to the cases when
the stationary distribution of the glued chain is a multiple of the equilibria of the original
chains, and when not, for which bounds are derived.
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1 Introduction

Computing the stationary distribution of an irreducible continuous-time Markov chain on a
finite state space is easy in principle. If Q is the transition rate matrix, it only requires finding
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a probability vector π that solves πTQ = 0. (This is a standard result in the classical literature
on Markov chains, see e.g. Liggett [5]; Norris [7].) Elementary examples include birth–death
chains [3] or a circular state space [1]. However, if the transition graph of the Markov chain is
more complicated, hardly any general result is known about the shape of the equilibrium. (A
notable exception is the Markov chain tree theorem [4].) We are interested whether it is possible
to compute the stationary distribution from the stationary distributions of smaller parts of the
state space recursively. The motivation for this problem comes from Mélykúti, Hespanha, and
Khammash [6], where Markov chains arising from biochemical reaction networks were studied.
In this paper, we approach the challenge of computing the stationary distribution of a Markov
chain which is obtained by gluing together two Markov chains with simpler transition graphs
at two states. (Gluing at a single state is also discussed.)

The standard model of biochemical kinetics represents the reacting system with a dynamical
system where each coordinate of the state vector is the number of molecules present of a
reacting chemical species. There is great interest in understanding how biochemical modules
behave when they are connected (see Del Vecchio’s work on retroactivity [2]). Connecting two
biochemical modules is represented by merging Nk with N` into an Nm, where m < k + ` (the
shared chemical species are written only once). While we are far from addressing this question,
the thinking of this paper points broadly in a similar direction.

A question more classical than connecting biochemical modules is how currents or the total
resistance of electrical circuits change when two circuits are connected. Connecting state spaces
and studying probability flows, how it is done in this paper, have a similar flavour.

The basic idea of our approach is to use a regenerative structure of the glued Markov chain.
If 1 and 2 denote the states which were glued together from the single chains, consider excur-
sions from state 1 to 2 and back in the glued chain. Such excursions always happen within
the single chains, which have a simpler structure. By combining the probabilities of excursions
with their lengths, we are able to give the equilibrium of the glued chain in terms of the original
chains (Theorem 2.0.1). As a main tool, we use the law of large numbers for regenerative pro-
cesses (see e.g. Serfozo [9]; Smith [10] or Roginsky [8] and references therein). Then, in Section 4,
we discuss how to apply our main result in practice. A special case arises when the equilibrium
of the combined chain is a multiple of the equilibria of the single chains, examined in detail in
Section 5. Section 6 demonstrates some of the results on two related examples.

Let us assume that two irreducible, time-homogeneous, continuous-time Markov chains
with finite state spaces, XA = (XAt )t≥0 and XB = (XBt )t≥0, are given. Let XA have r ≥ 2

states,
VA = {−r + 3,−r + 4, . . . , 0, 1, 2},
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while XB has s ≥ 2 states,
VB = {1, 2, . . . , s}.

The transition rate matrices are denoted by QA and QB, respectively. For i, j ∈ VA, i 6= j, QAij
is the transition rate of XA from state i to state j, and QAii = −

∑
j 6=iQ

A
ij . For i, j ∈ VB, QBij

is defined analogously.
We create a new Markov chain X = (Xt)t≥0 by gluing together the two state spaces at

two states: we identify state 1 ∈ VA with 1 ∈ VB (and call it state 1 in the glued chain) and
2 ∈ VA with 2 ∈ VB (to be denoted by 2), and keep all transitions that were present in XA

or in XB. Between states 1 and 2, transitions of both XA and XB are retained: the transition
rates add up. If originally both chains had a transition, say, from 1 to 2, then we can think
of the dynamics as there being a choice between two parallel edges. The glued chain X has
transition rate matrix Q ∈ R(r+s−2)×(r+s−2): for i, j ∈ {−r + 3,−r + 4, . . . , s},

Qij = QAij 1(i, j ≤ 2) +QBij 1(i, j ≥ 1).

The set of states of X that belonged to XA with the exception of {1, 2} is denoted by

SA = VA \ {1, 2} = {−r + 3,−r + 4, . . . , 0}.

SB = VB \ {1, 2} = {3, 4, . . . , s}

is defined similarly for XB. Hence, the state space of X can be written as the disjoint union
SA∪̇{1, 2}∪̇SB.

Our goal is to compute the stationary distribution π of X , i.e. πTQ = 0, from the stationary
distributions πA and πB of XA and, respectively, XB. (Note that irreducibility implies that
πA, πB and π all exist uniquely and are all strictly positive.) However, it will turn out (see
Theorem 2.0.1 below) that more information than πA and πB is needed to compute π. In
theory, finding a left nullvector π to matrix Q is a basic task. Still, we hope to learn more
about π and X by expressing π through XA and XB. This approach would also give a method
to recursively compute the stationary distribution of a Markov chain on a large state space
from properties of two smaller parts, parts thereof and so on.

1.1 Gluing at one state only

In Mélykúti et al. [6], the stationary distribution was expressed when the gluing of two state
spaces happened at one state only. Here, with the obvious adjustment of notation, the rate
matrices QA ∈ Rr×r and QB ∈ Rs×s translate into the rate matrix of the glued chain Q ∈
R(r+s−1)×(r+s−1) by

Qij = QAij 1(i, j ≤ 1) +QBij 1(i, j ≥ 1)
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for i, j ∈ {−r + 2,−r + 3, . . . , s}. The resulting stationary distribution is a constant multiple
of πA on SA, and of πB on SB as follows:

πi =


CπAi π

B
1 , if i ∈ {−r + 2,−r + 3, . . . , 0},

CπA1 π
B
1 , if i = 1,

CπA1 π
B
i , if i ∈ {2, 3, . . . , s},

(1)

with C = (πA1 +π
B
1 −πA1 πB1 )−1. This claim follows easily from the structure of the transition rate

matrix Q, or even from the Markov chain tree theorem, but there is an appealing alternative
explanation. When the process X leaves SA for SB during its random walk, it can only do
so via the shared state. The process cannot return at any other location but at the shared
state. When it comes back, from the perspective of SA, it is as if nothing has happened.
What happens inside SB has no effect on the relative weighting of the states in the stationary
distribution on SA. If one disregards the time intervals spent in SB, the behaviour of X on SA

is identical to that of XA. From this vantage point, visits to the shared state can be seen as
renewal times.

Ref. [6] noted also that this result allows the recursive computation of the stationary distri-
bution in the case of transition graphs that arise by gluing together linear and circular graphs
one by one, but always at one state at a time.

Establishing the stationary distribution when gluing at two states is more difficult: when
the process leaves SA at one shared state, it might come back via the other. As we shall see,
one requires additional information about the two original Markov chains.

1.2 Examples for gluing at two states

The forthcoming result allows the computation of the stationary distribution on any irreducible
transition graph via the gluing of linear graphs onto a growing graph. A special case of interest
is the gluing of a linear path of two states onto a graph because it is equivalent to adding
new transitions between two states in a Markov chain or increasing their transition rates if
nonzero rates were already defined. Another case of relevance is the gluing of the two ends of a
three-state linear path onto a graph because it is equivalent to adding a new state to a Markov
chain and connecting it to two pre-existing states.

Both these cases introduce a local perturbation to the Markov process. One might expect
that the stationary distribution will change considerably only in a neighbourhood. On the
other hand, equilibrium is the long-term behaviour of the process, and the effects of the local
perturbation have an infinite amount of time to propagate. It would be interesting to know
how these two aspects balance.
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2 The stationary distribution of the glued Markov chain

We start by introducing the necessary notations and notions. Firstly,

q1A :=
∑
j 6=1

QA1j = −QA11, q1B :=
∑
j 6=1

QB1j = −QB11,

q2A :=
∑
j 6=2

QA2j = −QA22, q2B :=
∑
j 6=2

QB2j = −QB22

are the total rates of leaving the glued state 1 or 2 via edges of chain XA or XB.
We define an excursion to be a transition path of X (or of an original chain XA or XB)

from either state 1 or 2 that leaves the initial state, until the first time when 1 or 2 is entered.
A direct transition from 1 or 2 to the other is also an excursion.

The type of an excursion consists of the information, written in superscript, which chain it
is in (X , XA or XB), and, written in subscript, where it starts from (state 1 or 2), whether it
uses transitions from QA or QB, and where it ends (1 or 2). For instance, by t1A2-excursion we
mean an excursion in X (as there is no superscript) from state 1 to state 2 that either passes
through VA (and hence uses QA as transition rate matrix) or uses the potentially existing
direct transition of QA.

Accordingly, for XA, the probabilities of different types of excursions can be denoted by

pA1A1 := P(σA1 < σA2 | XA0 = 1),

pA1A2 := P(σA2 < σA1 | XA0 = 1),

where σδε is the first hitting time of ε ∈ {1, 2} in X δ (δ ∈ {A,B}) after leaving the initial state:

σδε :=

inf
{
t > 0

∣∣ ∃u ∈]0, t[ X δu 6= ε, X δt = ε
}
, if X δ0 = ε,

inf
{
t > 0

∣∣X δt = ε
}
, otherwise.

(2)

It follows that

pA1A1 + pA1A2 = 1. (3)

pA2A1 and pA2A2 are defined analogously, but conditioned on starting in 2. For XB, the corres-
ponding notations are also introduced, with superscript B in place of A.

For the analogous symbols for the glued chain X , first define σε for ε ∈ {1, 2}, through
adapting Definition (2) of σδε , by the return time to or the hitting time of state ε. Second, let
δ ∈ {A,B} denote the event that the first transition of the glued chain is a transition within
chain X δ. Then we let

p1A1 := P(σ1 < σ2, A | X0 = 1),

p1A2 := P(σ2 < σ1, A | X0 = 1),

5



that is, starting from state 1, p1A1 is the probability that X leaves 1 for SA and returns to 1

before it enters 2, while p1A2 is the probability that X leaves 1 with a transition from QA and
enters 2 before it returns to 1.

It is straightforward to define the respective quantities with B in place of A. All notations
so far introduced for X can be recast with 1 and 2 interchanged.

In addition to probabilities, we also need the intensities of leaving on different excursions,
so we let

qδεδε′ := qεδ p
δ
εδε′ (δ ∈ {A,B}, ε, ε′ ∈ {1, 2}). (4)

We define random variables χδε′(k) for a state k ∈ Sδ = Vδ \ {1, 2} by

χδε′(k) :=

∫ σδ
ε′

0
1(X δt = k) dt.

That is, χδε′(k) is the time spent by X δ in a state k ∈ Sδ on a transition path from the initial
state until X δ reaches state ε′ ∈ {1, 2}. We need a notion of conditional expectation of χδε′(k)
with initial state ε ∈ {1, 2}, which we define the following way:

Eε

[
χδε′(k)

∣∣∣σδε′ < σδ3−ε′
]
:=Eε[χ

δ
ε′(k)1(σ

δ
ε′ < σδ3−ε′)]

/
Pε(σ

δ
ε′ < σδ3−ε′), if Pε(σδε′ < σδ3−ε′) 6= 0,

0, otherwise.

(Pε(·), Eε[·] are the usual probability, respectively, expectation when the process is started
from ε. The expectations in this paper are all finite because the state spaces are finite and
irreducible.) For compactness, we use the shorthand

Eεε′ [χ
δ
ε′(k)] := Eε

[
χδε′(k)

∣∣∣σδε′ < σδ3−ε′
]
.

We introduce the vectors v, w ∈ [0,∞[r−2, x, y ∈ [0,∞[s−2 by

vi := qA1A1E11[χ
A
1 (i)] + qA1A2E12[χ

A
2 (i)],

wi := qA2A2E22[χ
A
2 (i)] + qA2A1E21[χ

A
1 (i)], for i ∈ SA,

xj := qB1B1E11[χ
B
1 (j)] + qB1B2E12[χ

B
2 (j)],

yj := qB2B2E22[χ
B
2 (j)] + qB2B1E21[χ

B
1 (j)], for j ∈ SB, (5)

and note that these quantities are given purely in terms of the original Markov chains XA

and XB.
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Theorem 2.0.1 The stationary distribution π ∈ Rr+s−2 of the glued Markov jump process X
is given by the unique solution of the following system of linear equations:

(π−r+3, π−r+4, . . . , π0)
T = π1v + π2w, (6)

(π3, π4, . . . , πs)
T = π1x+ π2y, (7)

(qA1A2 + qB1B2)π1 = (qA2A1 + qB2B1)π2, (8)
s∑

i=−r+3

πi = 1. (9)

Specifically,

π1 =
qA2A1 + qB2B1

(qA2A1 + qB2B1)(
∑
vi +

∑
xi + 1) + (qA1A2 + qB1B2)(

∑
wi +

∑
yi + 1)

, (10)

π2 =
qA1A2 + qB1B2

(qA2A1 + qB2B1)(
∑
vi +

∑
xi + 1) + (qA1A2 + qB1B2)(

∑
wi +

∑
yi + 1)

, (11)

while (π−r+3, π−r+4, . . . , π0) and (π3, π4, . . . , πs) follow from Eqs. (6) and (7).

In plain terms, the ratio of π1/π2 is dependent on the intensity of leaving state 2 towards
1 versus the intensity of transitioning in the opposite direction. The stationary probability
on k ∈ SA ∪ SB is dependent on the intensity of leaving on an excursion towards its half of
the state space times the expected time spent there on any such excursion, weighted by the
probability masses π1 and π2 of states 1 and 2.

We continue in Section 3 with the proof of this theorem. For applications of the the-
orem, Section 4 discusses how to compute v, w, x, y through qδεδε′ and Eεε′ [χ

δ
ε′(k)] (δ ∈ {A,B},

ε, ε′ ∈ {1, 2}, k ∈ Sδ). Section 4.4 summarises the required calculations in algorithmic form.
The special case which is most similar to gluing at one state (i.e. the case when πA, πB and
π are constant multiples of each other) is examined in Theorem 5.1.1 and Proposition 5.1.1
of Section 5. Afterwards, for the complementary case, we give bounds for the stationary dis-
tribution in terms of the stationary distributions of the original chains in Theorem 5.2.1. The
article ends with case studies in Section 6 and concluding remarks.

3 Proof of Theorem 2.0.1

The argument we give considers the Markov chains X , XA and XB as regenerative processes,
where the renewal times are defined to be the times when X (or XA or XB, respectively) enters
state 1 such that it visited 2 more recently than 1.

The calculation is based on the ergodic theorem for regenerative processes (Smith [10] or
Serfozo [9], p123): the weight in the stationary distribution assigned to any one state is propor-
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tional to the time the process spends in that state in an average segment of the regenerative
process. Between any two renewal events,

1. X makes nonnegative numbers of t1A1- and t1B1-excursions (denoted by ξ1A1 and ξ1B1,
respectively),

2. X transitions from state 1 to state 2 via a t1A2- or a t1B2-excursion,

3. X makes nonnegative numbers of t2A2- and t2B2-excursions (denoted by ξ2A2 and ξ2B2,
respectively),

4. X transitions from state 2 to state 1 via a t2A1- or a t2B1-excursion.

Due to the finiteness of state spaces and irreducibility, the nonnegative numbers ξεδε are finite
almost surely. They are drawn from, first, a geometric distribution (we mean the variant of
the geometric distribution which can take the value 0: with parameter p ∈]0, 1], P(Y = k) =

(1 − p)kp for any nonnegative integer k), which is then partitioned into two (whether the
excursions are in SA or in SB) with a binomial variable.

This regenerative structure is used to describe the behaviour of X in terms of the behaviour
of XA and XB. Since if for XA (the case of XB is similar) renewals are defined analogously by
returns to 1, then the behaviour between any two renewal events is the following:

1. XA makes a geometrically distributed number ξA1A1 of tA1A1-excursions,

2. XA transitions from state 1 to state 2 via a tA1A2-excursion,

3. XA makes a geometrically distributed number ξA2A2 of tA2A2-excursions,

4. XA transitions from state 2 to state 1 via a tA2A1-excursion.

3.1 Calculation for the chains XA and XB

Let the random variable τ be the length of one segment of X as a regenerative process (the
inter-renewal time), and define τ δ analogously for X δ (δ ∈ {A,B}). Further, let Xδ(i) denote
the total time spent by X δ in a state i ∈ Vδ in a complete segment. Using the ergodic theorem
for regenerative processes for the first equality in each line, and using the second numbered
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list for the second equality in each line, for i ∈ SA,

πAi = E[τA]−1E[XA(i)] = E[τA]−1
(
E[ξA1A1]E11[χ

A
1 (i)] + E12[χ

A
2 (i)]

+ E[ξA2A2]E22[χ
A
2 (i)] + E21[χ

A
1 (i)]

)
,

πA1 = E[τA]−1E[XA(1)] = E[τA]−1
(
E[ξA1A1]

1

q1A
+

1

q1A
+ 0 + 0

)
,

πA2 = E[τA]−1E[XA(2)] = E[τA]−1
(
0 + 0 + E[ξA2A2]

1

q2A
+

1

q2A

)
. (12)

The parameter of the nonnegative geometric random variable ξA1A1 is

pA1A2 = qA1A2/q1A ∈]0, 1]

(cf. Eq. (4)). By Eqs. (3) and (4), its mean is

E[ξA1A1] =
1− pA1A2
pA1A2

=
pA1A1
pA1A2

=
qA1A1
qA1A2

,

and similarly,

E[ξA2A2] =
pA2A2
pA2A1

=
qA2A2
qA2A1

.

Note that E[ξA1A1] = pA1A1 = 0 is possible, e.g. if the state 1 is not connected to any other
state than 2. All the other analogous mean numbers of returning excursions might be zero for
certain state space diagrams. It is also true that qδεδε might be zero, but qδε,δ,3−ε will always be
positive because of irreducibility.

Let us substitute the expressions for E[ξA1A1] and E[ξA2A2] into the formulae for πAi , Eqs. (12),
and for πA1 and πA2 use

qA1A1 + qA1A2 = q1A,

qA2A1 + qA2A2 = q2A.

Then, for i ∈ SA,

πAi = E[τA]−1
(
qA1A1
qA1A2

E11[χ
A
1 (i)] + E12[χ

A
2 (i)]

+
qA2A2
qA2A1

E22[χ
A
2 (i)] + E21[χ

A
1 (i)]

)
,

πA1 = E[τA]−1
(
qA1A1
qA1A2

1

q1A
+

1

q1A

)
= E[τA]−1

1

qA1A2
,

πA2 = E[τA]−1
(
qA2A2
qA2A1

1

q2A
+

1

q2A

)
= E[τA]−1

1

qA2A1
.
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It follows that

πAi = πA1 q
A
1A1E11[χ

A
1 (i)] + πA1 q

A
1A2E12[χ

A
2 (i)]

+ πA2 q
A
2A2E22[χ

A
2 (i)] + πA2 q

A
2A1E21[χ

A
1 (i)] (13)

(i ∈ SA). It is also true that
πA1
πA2

=
qA2A1
qA1A2

. (14)

We assume that all elementary transition rates are known, and so are πAi for every i.
However, qA1A1 and qA1A2 are known only to the extent that qA1A1 + qA1A2 = q1A. Similarly,
qA2A1 + qA2A2 = q2A is all that is known about qA2A1 and qA2A2. For i ∈ SA, we would like to know

E11[χ
A
1 (i)], E12[χ

A
2 (i)], E21[χ

A
1 (i)], E22[χ

A
2 (i)],

but these are not trivially accessible either. In Section 4, we revisit these questions. We write
down implicit relations for both sets of unknowns, which result in systems of linear equations
whose solutions give both sets of unknowns.

3.2 Calculation for the glued chain

We start by establishing some simple connections between transition probabilities in the glued
chain and those in the original chains. With the notations of Section 2,

p1A1 = P(σ1 < σ2, A | X0 = 1) = P(σ1 < σ2 |A,X0 = 1)P(A | X0 = 1)

= pA1A1
q1A

q1A + q1B
=
qA1A1
q1A

q1A
q1A + q1B

=
qA1A1

q1A + q1B
, (15)

where the penultimate equality results from Eq. (4). Similarly,

p1A2 = pA1A2
q1A

q1A + q1B
=
qA1A2
q1A

q1A
q1A + q1B

=
qA1A2

q1A + q1B
. (16)

The equations for the glued chain X that correspond to Eqs. (12) are, for i ∈ SA,

πi = E[τ ]−1
(
E[ξ1A1]E11[χ

A
1 (i)] +

p1A2
p1A2 + p1B2

E12[χ
A
2 (i)]

+ E[ξ2A2]E22[χ
A
2 (i)] +

p2A1
p2A1 + p2B1

E21[χ
A
1 (i)]

)
,

π1 = E[τ ]−1
(
E[ξ1A1 + ξ1B1]

1

q1A + q1B
+

1

q1A + q1B
+ 0 + 0

)
,

π2 = E[τ ]−1
(
0 + 0 + E[ξ2A2 + ξ2B2]

1

q2A + q2B
+

1

q2A + q2B

)
,
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and for i ∈ SB,

πi = E[τ ]−1
(
E[ξ1B1]E11[χ

B
1 (i)] +

p1B2

p1A2 + p1B2
E12[χ

B
2 (i)]

+ E[ξ2B2]E22[χ
B
2 (i)] +

p2B1

p2A1 + p2B1
E21[χ

B
1 (i)]

)
. (17)

The parameter of the nonnegative geometric random variable ξ1A1 + ξ1B1 is

p1A2 + p1B2 = (qA1A2 + qB1B2)(q1A + q1B)
−1, (18)

the second form is ensured by Eq. (16). The geometric random variable is subdivided into two
by an independent binomial variable. Hence, also employing

p1A1 + p1B1 + p1A2 + p1B2 = 1

and Eqs. (15) and (18), the sought means are

E[ξ1A1] =
1− (p1A2 + p1B2)

p1A2 + p1B2

p1A1
p1A1 + p1B1

=
p1A1 + p1B1

p1A2 + p1B2

p1A1
p1A1 + p1B1

=
p1A1

p1A2 + p1B2

=
qA1A1(q1A + q1B)

−1

(qA1A2 + qB1B2)(q1A + q1B)−1
=

qA1A1
qA1A2 + qB1B2

,

and similarly,

E[ξ2A2] =
p2A2

p2A1 + p2B1
=

qA2A2
qA2A1 + qB2B1

,

E[ξ1B1] =
p1B1

p1A2 + p1B2
=

qB1B1

qA1A2 + qB1B2

,

E[ξ2B2] =
p2B2

p2A1 + p2B1
=

qB2B2

qA2A1 + qB2B1

.

Now we substitute the expressions for E[ξεδε] (ε ∈ {1, 2}, δ ∈ {A,B}) into the formulae
for πi, Eq. (17). We also use the following consequences of Eqs. (16) and (18):

p1A2
p1A2 + p1B2

=
qA1A2

qA1A2 + qB1B2

,

p2A1
p2A1 + p2B1

=
qA2A1

qA2A1 + qB2B1

,

p1B2

p1A2 + p1B2
=

qB1B2

qA1A2 + qB1B2

,

p2B1

p2A1 + p2B1
=

qB2B1

qA2A1 + qB2B1

.
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For i ∈ SA,

πi = E[τ ]−1
(

qA1A1
qA1A2 + qB1B2

E11[χ
A
1 (i)] +

qA1A2
qA1A2 + qB1B2

E12[χ
A
2 (i)]

+
qA2A2

qA2A1 + qB2B1

E22[χ
A
2 (i)] +

qA2A1
qA2A1 + qB2B1

E21[χ
A
1 (i)]

)
,

π1 = E[τ ]−1
(
qA1A1 + qB1B1

qA1A2 + qB1B2

1

q1A + q1B
+

1

q1A + q1B

)
= E[τ ]−1

1

qA1A2 + qB1B2

,

π2 = E[τ ]−1
(
qA2A2 + qB2B2

qA2A1 + qB2B1

1

q2A + q2B
+

1

q2A + q2B

)
= E[τ ]−1

1

qA2A1 + qB2B1

,

and for i ∈ SB,

πi = E[τ ]−1
(

qB1B1

qA1A2 + qB1B2

E11[χ
B
1 (i)] +

qB1B2

qA1A2 + qB1B2

E12[χ
B
2 (i)]

+
qB2B2

qA2A1 + qB2B1

E22[χ
B
2 (i)] +

qB2B1

qA2A1 + qB2B1

E21[χ
B
1 (i)]

)
.

Consequently, for i ∈ SA,

πi = π1q
A
1A1E11[χ

A
1 (i)] + π1q

A
1A2E12[χ

A
2 (i)]

+ π2q
A
2A2E22[χ

A
2 (i)] + π2q

A
2A1E21[χ

A
1 (i)], (19)

and for i ∈ SB,

πi = π1q
B
1B1E11[χ

B
1 (i)] + π1q

B
1B2E12[χ

B
2 (i)]

+ π2q
B
2B2E22[χ

B
2 (i)] + π2q

B
2B1E21[χ

B
1 (i)]. (20)

It also follows that
π1
π2

=
qA2A1 + qB2B1

qA1A2 + qB1B2

. (21)

3.3 Combining the preceding

With the vectors v, w ∈ [0,∞[r−2, x, y ∈ [0,∞[s−2 introduced in Section 2, using Eq. (13) for
the first two equalities and Eqs. (19) and (20) for the third and fourth,

(πA−r+3, π
A
−r+4, . . . , π

A
0 )

T = πA1 v + πA2 w for XA, (22)

(πB3 , π
B
4 , . . . , π

B
s )

T = πB1 x+ πB2 y for XB,

(π−r+3, π−r+4, . . . , π0)
T = π1v + π2w and (23)

(π3, π4, . . . , πs)
T = π1x+ π2y for X . (24)
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This already shows Eqs. (6) and (7) of the theorem. Eq. (8) is a consequence of Eq. (21), while
Eq. (9) must anyway be true.

Let us now show the last two statements of the theorem. The following derivation arrives at
an explicit solution, thereby showing the uniqueness of π. By summing all entries of Eqs. (23)
and (24), we get

π1

(∑
i

vi +
∑
i

xi

)
+ π2

(∑
i

wi +
∑
i

yi

)
=
∑
i 6=1,2

πi = 1− π1 − π2,

which is equivalent to

π1

(∑
i

vi +
∑
i

xi + 1

)
+ π2

(∑
i

wi +
∑
i

yi + 1

)
= 1.

The substitution of π2 from Eq. (21) yields

π1

(∑
i

vi +
∑
i

xi + 1 +
qA1A2 + qB1B2

qA2A1 + qB2B1

(∑
i

wi +
∑
i

yi + 1

))
= 1,

which gives π1 of Theorem 2.0.1. Eq. (21) gives π2. This concludes the proof.

4 Computing qδεδε′ and Eεε′[χ
δ
ε′(k)]

The formulae in Theorem 2.0.1 use unknown parameters qδεδε′ and Eεε′ [χ
δ
ε′(k)] (δ ∈ {A,B},

ε, ε′ ∈ {1, 2}, k ∈ Sδ) about the chains XA and XB to express π. However, these unknowns can
be computed by linear recursions. We demonstrate the calculation for δ = B and not for A, as
in XA, the indexing is unconventional.

As it turns out, the matrix

QB0 :=



QB11 0 QB13 . . . QB1s
0 QB22 QB23 . . . QB2s
0 0 QB33 . . . QB3s
...

...
...

. . .
...

0 0 QBs3 . . . QBss


plays a central role. We will show in Section 4.3:

Proposition 4.0.1 QB0 has full rank.
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4.1 The probabilities of leaving on different excursions and qδεδε′

In order to establish the values qδεδε′ , we calculate the corresponding pδεδε′ , and the conversion
follows from Eq. (4). We extend the usage of pBεBε′ to any starting point i ∈ {3, 4, . . . , s}: for
the hitting time σBε′ of the state ε′ ∈ {1, 2},

pBiBε′ := P(σBε′ < σB3−ε′ | XB0 = i).

Proposition 4.1.1 pBεBε′ (ε, ε
′ ∈ {1, 2}) can be computed as the unique solutions of the

following linear equations:

QB0



pB1B1

pB2B1

pB3B1
...

pBsB1


=



0

−QB21
−QB31

...
−QBs1


, QB0



pB1B2

pB2B2

pB3B2
...

pBsB2


=



−QB12
0

−QB32
...

−QBs2


. (25)

In practice, it suffices to solve only one of the two linear equations and use an analogue of
Eq. (3).

Proof We introduce notation for probabilities of direct transitions:

pBij :=
QBij

−QBii
(i, j ∈ {1, 2, . . . , s}, i 6= j)

(cf. Eq. (4)). Then the following relations hold:

pBε′Bε′ =
∑

j /∈{ε′,3−ε′}

pBε′jp
B
jBε′ , (26)

pB3−ε′,B,ε′ =
∑

j /∈{ε′,3−ε′}

pB3−ε′,jp
B
jBε′ + pB3−ε′,ε′ , (27)

pBiBε′ =
∑

j /∈{ε′,3−ε′,i}

pBijp
B
jBε′ + pBiε′ (i ∈ {3, 4, . . . , s}). (28)

For instance, Eq. (27) is equivalent to

pB3−ε′,B,ε′ =
∑

j /∈{ε′,3−ε′}

QB3−ε′,j

−QB3−ε′,3−ε′
pBjBε′ +

QB3−ε′,ε′

−QB3−ε′,3−ε′
.

After multiplying both sides by −QB3−ε′,3−ε′ and moving both individual terms to the other
side,

−QB3−ε′,ε′ =
∑
j 6=ε′

QB3−ε′,jp
B
jBε′ .

14



This gives, for ε′ ∈ {1, 2},

−QB21 = [0 QB22 Q
B
23 . . . QB2s] (p

B
1B1, p

B
2B1, p

B
3B1, . . . , p

B
sB1)

T,

−QB12 = [QB11 0 QB13 . . . QB1s] (p
B
1B2, p

B
2B2, p

B
3B2, . . . , p

B
sB2)

T.

The same steps of manipulation on Eq. (26) yield

0 = [QB11 0 QB13 . . . QB1s] (p
B
1B1, p

B
2B1, p

B
3B1, . . . , p

B
sB1)

T,

0 = [0 QB22 Q
B
23 . . . QB2s] (p

B
1B2, p

B
2B2, p

B
3B2, . . . , p

B
sB2)

T,

and when carried out on Eq. (28), then

−QBi1 = [0 0 QBi3 . . . QBis] (p
B
1B1, p

B
2B1, p

B
3B1, . . . , p

B
sB1)

T,

−QBi2 = [0 0 QBi3 . . . QBis] (p
B
1B2, p

B
2B2, p

B
3B2, . . . , p

B
sB2)

T,

for i ∈ {3, 4, . . . , s}. The last three displays are exactly as the two claimed linear equations in
the assertion. The existence of a solution follows from the underlying probabilistic interpreta-
tion (i.e. the probabilities (pBiBε′)i∈{1,2,...,s} for ε

′ ∈ {1, 2} are particular solutions). Uniqueness
also holds since QB0 does not have a nontrivial nullvector, as proven in Proposition 4.0.1. �

4.2 The expected total time spent in individual states on excursions, Eεε′ [χδε′(k)]

Again, the computation of Eεε′ [χδε′(k)] requires the usage of the matrix QB0 . First, we need to
extend its meaning to a general starting point i ∈ {3, 4, . . . , s}:

Eiε′ [χ
B
ε′(k)] = Ei

[
χBε′(k)

∣∣∣σBε′ < σB3−ε′
]
,

which is again defined to be zero when the condition has zero probability.

Proposition 4.2.1 Eεε′ [χ
B
ε′(j)] (ε, ε

′ ∈ {1, 2}, j ∈ {3, 4, . . . , s}) can be computed from the
unique solutions u(j) ∈ [0,∞[s of the following linear equations:

QB0 u(j) = −pBjBε′ eBj (ε′ ∈ {1, 2}), (29)

where eBj ∈ Rs is the canonical jth unit vector. If ui(j) = 0, then Eiε′ [χ
B
ε′(j)] = 0. If ui(j) > 0,

then
Eiε′ [χ

B
ε′(j)] =

ui(j)

pBiBε′
.
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Proof Fix j ∈ {3, 4, . . . , s}. We will see that we can write down linear relationships among

ui(j) = Ei[χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)] = pBiBε′Eiε′ [χ

B
ε′(j)]

(i ∈ {1, 2, . . . , s}) most naturally. We note that if pBiBε′ = 0, then Eiε′ [χ
B
ε′(j)] = 0 by the

definition of the latter as a conditional expectation that is zero when the condition has zero
probability.

We can observe the following relationships:

Eε′ [χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)] =

∑
k/∈{ε′,3−ε′}

pBε′k Ek[χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)], (30)

E3−ε′ [χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)] =

∑
k/∈{ε′,3−ε′}

pB3−ε′,k Ek[χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)], (31)

Ei[χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)] =

∑
k/∈{ε′,3−ε′,i}

pBik Ek[χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)] (i /∈ {1, 2, j}), (32)

Ej [χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)] = pBjBε′

1

−QBjj
+

∑
k/∈{ε′,3−ε′,j}

pBjk Ek[χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)]. (33)

A slight complication compared to Eqs. (26–28) is the possibility of there being no transition
path from the initial state j to ε′ that avoids 3 − ε′. Time spent in j is only accrued on
such transition paths. This is the reason why in Eq. (33), the mean waiting time −1/QBjj is
multiplied by pBjBε′ . In case of nonexistence of the required path or excursion, both sides of
this equation are zero.

Manipulations analogous to those applied to Eqs. (26–28) give

0 =
∑

k 6=3−ε′
QBε′k Ek[χ

B
ε′(j)1(σ

B
ε′ < σB3−ε′)],

0 =
∑
k 6=ε′

QB3−ε′,k Ek[χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)],

0 =
∑

k/∈{ε′,3−ε′}

QBik Ek[χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)] (i /∈ {1, 2, j}),

−pBjBε′ =
∑

k/∈{ε′,3−ε′}

QBjk Ek[χ
B
ε′(j)1(σ

B
ε′ < σB3−ε′)],

which is the same as the asserted linear system. Once again, the existence of a solution fol-
lows from the underlying probabilistic interpretation and uniqueness from Proposition 4.0.1.
The case ui(j) = 0, when pBiBε′ = 0 or Eiε′ [χ

B
ε′(j)] = 0, has been discussed. If ui(j) =

pBiBε′Eiε′ [χ
B
ε′(j)] > 0, then one can divide it by the nonzero pBiBε′ to get Eiε′ [χBε′(j)]. �
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4.3 Proof of Proposition 4.0.1

So far we have been careful not to argue the existence of solutions of the equations in Pro-
positions 4.1.1 and 4.2.1 from QB0 having full rank, instead we referred to the probabilistic
interpretations. It is because the latter existence result is used to prove full rank itself. Indeed,
since pBjBε′ and p

B
j,B,3−ε′ (j ∈ {3, 4, . . . , s}) cannot be both zero due to the irreducibility of XB,

Proposition 4.2.1 shows that for every j ∈ {3, 4, . . . , s}, eBj is in the image of QB0 . Moreover,
from the definition of QB0 , eB1 and eB2 are its eigenvectors with nonzero eigenvalues. Hence all
canonical unit vectors are contained in the image of QB0 .

4.4 Applying Theorem 2.0.1

Given the specification of XA and XB, the stationary distribution π of X can be computed by
the following procedure.

1. Solve one of the two equations in (25). From the solution (pB1Bε′ , p
B
2Bε′ , . . . , p

B
sBε′)

T (either
ε′ = 1 or ε′ = 2), compute for every j ∈ {1, 2, . . . , s}, pBj,B,3−ε′ = 1− pBjBε′ .

2. Repeat the previous step with the corresponding equation for XA, and for ε′ ∈ {1, 2},
get (pA−r+3,A,ε′ , p

A
−r+4,A,ε′ , . . . , p

A
2Aε′)

T. Here

QA0 :=



QA−r+3,−r+3 . . . QA−r+3,0 0 0
...

. . .
...

...
...

QA0,−r+3 . . . QA00 0 0

QA1,−r+3 . . . QA10 QA11 0

QA2,−r+3 . . . QA20 0 QA22


must be used and the right-hand sides also change accordingly.

3. Solve Eq. (29) for both ε′ ∈ {1, 2} and for every j ∈ {3, 4, . . . , s}. Compute Eεε′ [χ
B
ε′(j)]

(ε, ε′ ∈ {1, 2}, j ∈ {3, 4, . . . , s}).

4. Repeat the previous step with the corresponding equations for XA for every ε′ ∈ {1, 2}
and every i ∈ {−r + 3,−r + 4, . . . , 0}.

5. For every δ ∈ {A,B} and ε, ε′ ∈ {1, 2}, compute qδεδε′ using Eq. (4).

6. Compute v, w ∈ [0,∞[r−2, x, y ∈ [0,∞[s−2 by their definitions (5).

7. Compute π1 by Eq. (10) and π2 by Eq. (11).

8. Compute the remaining coordinates of π by Eqs. (6) and (7).
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Ultimately, finding the stationary distribution π can be done by solving 2r − 3 linear
equations of size r×r and 2s−3 of size s×s (one system in Eq. (25) once for XA and XB each
and Eq. (29) 2(r−2) times for XA and 2(s−2) times for XB). Importantly, as the left-hand-side
matrices are shared, the 2r−3 linear systems with QA0 can be computed in parallel (putting the
right-hand-side vectors into one matrix), and similarly with the 2s−3 linear systems with QB0 .
This contrasts with directly solving the (r+s−2)×(r+s−2)-sized πTQ = 0 equation. The new
method does not offer an improvement in theoretical computational complexity (calculations
omitted).

5 Parallelism

This section is concerned with the questions when can the stationary distribution π be expected
to be a constant multiple of πA on VA or of πB on VB (i.e. when are the corresponding vectors
parallel; Theorem 5.1.1 and Proposition 5.1.1), whether one can occur without the other (no,
as proven by Proposition 5.1.1), and what can be said when neither of the two holds (at least
bounds for π can be given, Theorem 5.2.1).

5.1 The parallel case

Consider the following three conditions:

(A) πA1
πA2

=
πB1
πB2

,

(BA) π1
π2

=
πA1
πA2

,

(BB) π1
π2

=
πB1
πB2

.

Under Condition (A), the stationary distribution π of the glued chain can be computed exactly.
This case is most similar to gluing at one state.

Theorem 5.1.1 If Condition (A) holds, then

πi =



CπAi π
B
1 , if i ∈ SA,

CπA1 π
B
1 , if i = 1,

CπA2 π
B
1 = CπA1 π

B
2 , if i = 2,

CπA1 π
B
i , if i ∈ SB,
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with
C =

(
πA1 + πB1 − πA1 (πB1 + πB2 )

)−1
=
(
πA1 + πB1 − πB1 (πA1 + πA2 )

)−1
.

In particular, the explicit solution shows that Condition (A) implies Conditions (BA) and (BB).

Proof Three statements need to be verified: the entries of π are nonnegative, they sum to one
and πTQ = 0.

To the first, because of irreducibility all entries of πA and πB are positive. All is needed is
that C > 0. Since πB sums to one,

πA1 + πB1 − πA1 (πB1 + πB2 ) > πA1 + πB1 − πA1 > 0.

As to the second statement,

1

C

s∑
i=−r+3

πi =

2∑
i=−r+3

πAi π
B
1 +

s∑
i=3

πA1 π
B
i

= 1πB1 + πA1

s∑
i=3

πBi

= πB1 + πA1 (1− πB1 − πB2 )

= πB1 + πA1 − πA1 (πB1 + πB2 )

is exactly 1/C, proving that the entries of π sum to one.
The validity of the last statement can be most easily seen by considering how the transition

rate matrix Q arises from QA and QB almost as a block diagonal matrix if not for a 2×2 overlap
where the entries are summed. In the following, we rely on (πA)TQA = 0 and (πB)TQB = 0.
The result of the multiplication (πTQ)i for i ∈ {−r + 3,−r + 4, . . . , 0} can be seen to be zero
from

(C−1πTQ)i = πB1 ((π
A)TQA)i = πB1 0 = 0.

The case of i ∈ {3, 4, . . . , s} is entirely similar. For i = 1, using Condition (A) in the form
πB1 π

A
2 = πA1 π

B
2 in the second step,

(C−1πTQ)1 =
∑
k∈SA

πB1 π
A
k Q

A
k1 + πB1 π

A
1 (Q

A
11 +QB11)

+ πB1 π
A
2 (Q

A
21 +QB21) +

∑
k∈SB

πA1 π
B
k Q

B
k1

= πB1
∑
k∈VA

πAk Q
A
k1 + πA1

∑
k∈VB

πBk Q
B
k1

= πB1 0 + πA1 0 = 0.
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The last remaining case, i = 2, once again uses the identity πB1 πA2 = πA1 π
B
2 in the second step

to show

(C−1πTQ)2 =
∑
k∈SA

πB1 π
A
k Q

A
k2 + πB1 π

A
1 (Q

A
12 +QB12)

+ πB1 π
A
2 (Q

A
22 +QB22) +

∑
k∈SB

πA1 π
B
k Q

B
k2

= πB1
∑
k∈VA

πAk Q
A
k2 + πA1

∑
k∈VB

πBk Q
B
k2

= πB1 0 + πA1 0 = 0. �

Proposition 5.1.1 Conditions (A), (BA) and (BB) are all equivalent.

The interesting observation is that Condition (BA) alone implies Condition (BB) (and vice
versa). It is obvious that Conditions (BA) and (BB) together imply Condition (A). Combined
with Theorem 5.1.1, we will get the statement.

Proof From Eqs. (14) and (21), Conditions (BA) and (BB) are equivalent to

(BA)
qA2A1 + qB2B1

qA1A2 + qB1B2

=
qA2A1
qA1A2

,

(BB)
qA2A1 + qB2B1

qA1A2 + qB1B2

=
qB2B1

qB1B2

.

For brevity, we introduce the notations

a := qA2A1, c := qB2B1,

b := qA1A2, d := qB1B2.

Due to the irreducibility of the Markov chains, a, b, c, d are all positive and the following
equivalences hold:

(BA) ⇐⇒ a+ c

b+ d
=
a

b
⇐⇒ bc = ad

⇐⇒ a+ c

b+ d
=
c

d
⇐⇒ (BB). �
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5.2 The non-parallel case

If Condition (A) does not hold, then our problem formulation can be turned around: assuming
that πA, πB and π are all known, v, w, x, y can be computed by a second method and an
elementwise bound for π on SA and SB in terms of π on states 1 and 2 will also result.
Although so far we have been trying to reduce finding π to the smaller problems of finding πA

and πB, one should not forget that π is always available by a Gaussian elimination from the
specification of X .

Theorem 5.2.1 If Condition (A) fails, then for i ∈ SA,

vi =
πA2 πi − π2πAi
πA2 π1 − π2πA1

,

wi =
πA1 πi − π1πAi
πA1 π2 − π1πA2

,

and for j ∈ SB,

xj =
πB2 πj − π2πBj
πB2 π1 − π2πB1

,

yj =
πB1 πj − π1πBj
πB1 π2 − π1πB2

.

Additionally,

min

{
π1

πA1
,
π2

πA2

}
≤ πi

πAi
≤ max

{
π1

πA1
,
π2

πA2

}
, (34)

min

{
π1

πB1
,
π2

πB2

}
≤ πj

πBj
≤ max

{
π1

πB1
,
π2

πB2

}
(35)

and

min

{
πA1
πA2

,
πB1
πB2

}
<
π1
π2

< max

{
πA1
πA2

,
πB1
πB2

}
. (36)

Of the two inequalities in (34), one must be strict, since Condition (BA) fails by assumption
and the terms at the two ends are not equal. They are both strict inequalities if and only if both
vi, wi are positive. Note that when Condition (A) does hold, then due to Theorem 5.1.1, the
two inequalities in (34) are both equalities and πi/πAi = π1/π

A
1 = π2/π

A
2 = CπB1 . Analogously

for (35). Lastly, because of Proposition 5.1.1, the relation (36) also holds with equalities.
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Proof Let us subtract from the ith entry of both sides of Eq. (6) π2/πA2 times the ith entry
of both sides of Eq. (22):

πi −
π2

πA2
πAi =

(
π1 −

π2

πA2
πA1

)
vi.

Since Condition (A) does not hold, nor does Condition (BA), and we can divide over to arrive
at

vi =

(
πi −

π2

πA2
πAi

)(
π1 −

π2

πA2
πA1

)−1
=
πA2 πi − π2πAi
πA2 π1 − π2πA1

.

If we now subtract from the ith entry of both sides of Eq. (6) π1/πA1 times the ith entry of
both sides of Eq. (22), then

πi −
π1

πA1
πAi =

(
π2 −

π1

πA1
πA2

)
wi.

Condition (BA) does not hold, and we can divide both sides to get

wi =

(
πi −

π1

πA1
πAi

)(
π2 −

π1

πA1
πA2

)−1
=
πA1 πi − π1πAi
πA1 π2 − π1πA2

.

From the definitions of v and w in Eqs. (5), it is clear that at least one of vi and wi is
positive. Consequently,

(πA2 πi − π2πAi )(πA2 π1 − π2πA1 ) ≥ 0,

(πA1 πi − π1πAi )(πA1 π2 − π1πA2 ) ≥ 0,

and at least one inequality is strict. (If vi > 0, then the first inequality is strict; if wi >
0, then the second one is strict.) Here the second factors, formerly the denominators, are
negatives of one another, and are nonzero because of the failure of Condition (BA), therefore
the enumerators too must have opposite signs (or at most one of them is zero),

(πA2 πi − π2πAi )(πA1 πi − π1πAi ) ≤ 0.

After dividing both sides by the positive (πAi )
2πA1 π

A
2 ,(

πi

πAi
− π2

πA2

)(
πi

πAi
− π1

πA1

)
≤ 0. (37)

Condition (BA) does not hold, therefore either π1/πA1 > π2/π
A
2 or π1/πA1 < π2/π

A
2 . Ineq. (37)

gives the bounds (34) for πi/πAi in either case, even when one factor is zero.
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If vi > 0, then πi/πAi 6= π2/π
A
2 in (34), and if wi > 0, then πi/πAi 6= π1/π

A
1 . If both vi, wi

are positive, then all inequalities in this derivation are strict. Hence both inequalities in (34)
are strict. The argument also works in the reverse direction, to show vi, wi are both positive
from strict inequalities in (34). The statements for x, y and the bounds (35) follow similarly.

Finally, let us suppose that the bounds (36) do not hold and we derive a contradiction.
The starting assumption is that Condition (A) fails, and so do (BA) and (BB), and πA1 /πA2 ,
πB1 /π

B
2 and π1/π2 have three distinct values. The bounds (36) will be violated if and only if

π1/π2 is either greater or less than the other two fractions. Here we examine the case when it
is greater (the other case is similar).

From max{πA1 /πA2 , πB1 /πB2 } < π1/π2,

π2

πA2
<
π1

πA1
and

π2

πB2
<
π1

πB1
. (38)

From this by (34) and (35), for i ∈ SA and for j ∈ SB,

π2

πA2
≤ πi

πAi
and

π2

πB2
≤ πj

πBj
.

One more algebraic rearrangement yields

πAi
πA2
≤ πi
π2

and
πBj

πB2
≤ πj
π2
. (39)

Note that the first holds with strict inequality for i = 1 and the second for j = 1 too, due to the
indirect assumption (38). The contradiction will arise because such a π cannot be a nullvector
of Q. To show this, we multiply both sides of the left inequalities by the nonnegative QAi2 and
sum for all i ∈ VA\{2}, we multiply both sides of the right inequalities by the nonnegative QBj2
and sum for all j ∈ VB \ {2}:

1

πA2

∑
i∈VA\{2}

πAi Q
A
i2 ≤

1

π2

∑
i∈VA\{2}

πiQ
A
i2,

1

πB2

∑
j∈VB\{2}

πBj Q
B
j2 ≤

1

π2

∑
j∈VB\{2}

πjQ
B
j2.

We add QA22 to both sides of the first inequality and QB22 to both sides of the second to get

0 =
1

πA2

∑
i∈VA

πAi Q
A
i2 ≤

1

π2

∑
i∈VA

πiQ
A
i2, (40)

0 =
1

πB2

∑
j∈VB

πBj Q
B
j2 ≤

1

π2

∑
j∈VB

πjQ
B
j2. (41)
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The left-hand sides of (40) and (41) are zero since (πA)TQA = 0, (πB)TQB = 0. The sum
of the two right-hand sides of (40) and (41) is π−12 (πTQ)2. πTQ = 0 must hold, therefore a
contradiction will arise and the proof will be complete if we show that the inequality in (40)
is strict.

If QA12 > 0, then from the first inequality of (39) with i = 1 (which is strict for this i),

πA1
πA2

QA12 <
π1
π2
QA12,

and (40) holds with strict inequality.
If QA12 = 0, then state 2 must still be reachable from state 1 in XA, therefore there must

be a directed path from 1 to 2 whose last step is from some k ∈ SA to 2. Then vk > 0 by the
definition of v and QAk2 > 0. From the earlier result of this proof on the explicit form of vk, the
first inequality in (39) cannot be an equality for i = k,

πAk
πA2

<
πk
π2
,

and
πAk
πA2

QAk2 <
πk
π2
QAk2

gives (40) with strict inequality. �
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3 1 1
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2 3

1
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41

X
A

Figure 1: State spaces and transitions of XA and XB of the first example.

6 Examples

We present two related case studies (Figures 1 and 2) for the application of the results of this
paper. We implemented the numerical algorithm of Section 4.4 in GNU Octave with code
that is compatible with Matlab (The MathWorks, Inc.).
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Figure 2: State spaces and transitions of XA and XB of the second example.

First, consider the Markov processes given by the transition rate matrices

QA =

 −6 4 2

1 −2 1

2 0 −2

 , QB =


−3 1 0 2

3 −3 0 0

0 4 −4 0

0 0 1 −1

 .

These processes are visualised in Figure 1. States 3, 4 ∈ SB can be reached only on tB1B2-
excursions but not on a tB2B1-excursion. Here π

A = (0.2, 0.4, 0.4)T and πB = (2/9, 2/9, 1/9, 4/9)T.
One can notice that Condition (A) holds:

πA1
πA2

=
0.4

0.4
= 1 =

2/9

2/9
=
πB1
πB2

.

Thus Theorem 5.1.1 holds and the stationary distribution π = (0.1, 0.2, 0.2, 0.1, 0.4)T (com-
puted either from πTQ = 0 or with the explicit solution in Theorem 5.1.1 or by the numerical
algorithm) is indeed parallel to πA on VA and to πB on VB. See also Figure 3.

2

2

4

2

4

1
1
3 20.1

0.1

0.2

0.2

0.4

X

Figure 3: State space and transitions of the glued chain X , which are identical in the two
examples. State labels were omitted as they differ in the two cases and were replaced by the
values of the stationary distribution.
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The second example is defined by

QA =


−4 0 0 0 4

1 −1 0 0 0

0 0 −6 4 2

0 2 1 −3 0

0 0 2 0 −2

 , QB =

[
−2 2

3 −3

]
,

and is displayed in Figure 2. In this case πA = (1/12, 1/3, 1/8, 1/6, 7/24)T and πB = (0.6, 0.4)T.
Condition (A) does not hold. However, the glued chain has the same state space diagram as
in the first example, although the state labels are permuted. Both the direct calculation and
the new algorithm give π = (0.1, 0.4, 0.1, 0.2, 0.2)T. (It also follows from the result for the first
example.)

Ineq. (34) has π2/πA2 = 48/70 ≈ 0.69 and π1/π
A
1 = 12/10 on its left and right ends, re-

spectively. (πi/πAi )i∈{−2,−1,0} = (1.2, 1.2, 0.8)T are sandwiched by those values, as predicted.
In addition, the numerical algorithm finds that v(−2), v(−1), v(0) and w(0) are positive,
w(−2) = w(−1) = 0. Hence the pattern of strict inequalities satisfies the observations made in
the proof of Theorem 5.2.1. Ineq. (35) is absent because SB is empty. Lastly, Ineq. (36) holds
in the form

πA1
πA2

=
4

7
<
π1
π2

= 1 <
πB1
πB2

=
3

2
.

7 Conclusion

This work describes the stationary distribution π in a finite-state, time-homogeneous, continuous-
time Markov jump process that was created by gluing together two irreducible Markov pro-
cesses at two states. When the two original processes share the ratio between the stationary
probabilities of their two to-be-glued states (Condition (A)), then the stationary distribution π
can be explicitly given (Theorem 5.1.1). It is a constant multiple of the original stationary dis-
tribution πA on the part of the state space that came from this first process, and a constant
multiple of πB on the part of the state space that came from the second process.

When Condition (A) does not hold, then π is known in terms of transition rates in the
original chains and additional information about mean times spent in states on excursions from
the two glued states and about probabilities of different excursions when leaving the two glued
states (Theorem 2.0.1). Ultimately, the knowledge of the original stationary distributions does
not suffice to compute π.

Also in this case, the ratio between the stationary probabilities of the two glued states in
the glued chain is sandwiched between those ratios of the corresponding states in XA and of
those in XB. Other sandwiching bounds are also proven for states in SA ∪ SB.
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If gluing is applied to grow a large XA by an XB with a linear state diagram, although
the required excursion probabilities etc. might well be computable by hand for XB, the same
quantities for XA are still only available by solving linear equations, as summarised in Sec-
tion 4.4. There is no escaping the lengthy calculations for the complicated chain, even when
this chain is perturbed by a simple chain.

The regeneration argument exposed in this paper should be applicable when, say, XB is
not irreducible only because there is no opportunity for tB2B1-excursions (meaning that there
are two separate communicating classes in the state space, one containing 1 ∈ VB and the
other 2 ∈ VB, and the communicating class of 2 is an absorbing set), but the gluing introduces
such a state-2-to-state-1 transition via VA.

The gluing studied here is a binary operation on the set of Markov chains. A possible line of
future research might consider other operations with Markov chains: gluing at multiple states,
removing parts of the state space, taking a product of state spaces, or combining product
and merging, as was alluded to in Section 1. If we stay with gluing at two states, it would
be interesting to know how other properties of a Markov chain, such as the mixing time, are
affected if another chain is glued to it.
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