
Mélykúti Bence:

The Mixing Rate of

Markov Chain Monte Carlo Methods

and some Applications of

MCMC Simulation in Bioinformatics

Szakdolgozat

Eötvös Loránd Tudományegyetem

Természettudományi Kar

matematikus szak

Témavezet®:

Miklós István (Növényrendszertani és Ökológiai Tanszék)

Márkus László (Valószín¶ségelméleti és Statisztika Tanszék)

2006.





MÉLYKÚTI Bence

The Mixing Rate of

Markov Chain Monte Carlo Methods

and some Applications of

MCMC Simulation in Bioinformatics

Thesis

for the degree

MSc in mathematics

Eötvös Loránd University

Faculty of Science

Budapest, Hungary

Advisors:

MIKLÓS István (Department of Plant Taxonomy and Ecology)

MÁRKUS László (Department of Probability Theory and Statistics)

2006





Contents

1 Summary 7

2 Introduction 10

2.1 Sorting signed permutations by reversals . . . . . . . . . . . . 10

2.2 Multiple sequence alignment . . . . . . . . . . . . . . . . . . . 13

2.3 On the notations to be used . . . . . . . . . . . . . . . . . . . 15

3 Markov chain Monte Carlo methods 17

3.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 The Metropolis Algorithm . . . . . . . . . . . . . . . . . . . . 23

3.4 The Metropolis�Hastings Algorithm . . . . . . . . . . . . . . . 24

3.5 Metropolised Independent Sampler . . . . . . . . . . . . . . . 25

3.6 Partial Independent Sampler . . . . . . . . . . . . . . . . . . . 26

3.7 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Theoretical results on the mixing rate 33

4.1 Measuring the distance between distributions . . . . . . . . . . 33

4.2 Convergence to steady state . . . . . . . . . . . . . . . . . . . 35

4.3 Gershgorin's bound . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Liu's result for MIS . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Canonical (distinguished) paths, Poincaré coe�cient . . . . . . 46

4.7 Similar bounds with di�erent coe�cients . . . . . . . . . . . . 49

4.8 Multicommodity �ow . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Probabilistic inequalities . . . . . . . . . . . . . . . . . . . . . 54

4.10 Dobrushin's inequality . . . . . . . . . . . . . . . . . . . . . . 55

4.11 Convergence rate for the Gibbs Sampler . . . . . . . . . . . . 56

4.12 The coupling method . . . . . . . . . . . . . . . . . . . . . . . 57

5



5 Applications 59

5.1 Ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 MIS is slow at sorting by reversals . . . . . . . . . . . . . . . . 66

5.3 Dragon's wing . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Another example . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 The ParIS needs to choose the whole sorting sequence with

positive probability . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 An application of the coupling method . . . . . . . . . . . . . 81

5.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . 86

Acknowledgements 87

References 88

Abbreviations 91

6



1 Summary

In the last decades, Markov chain simulation has become an important and

widely popular computational paradigm. Its extreme �exibility and power

made it an indispensable tool in many application areas, including statistics,

computer science, physics, material science, chemistry, biology, engineering,

economics and �nance.

The chief applications of Markov chain Monte Carlo (MCMC) methods

are random sampling from speci�ed probability distributions and estimating

the expectation of certain functions.

A common property of all MCMC methods is that one has to iterate a

typically simple, stochastic step a large number of times (i.e. make transitions

in a Markov chain), and after that, one has to stop the chain and read

out the result. If one is interested in random sampling, then the result is

the last state of the chain: the probability distribution of this state is an

approximation of the target distribution, so the last state is a random sample

from a distribution that approximates the target distribution.

However, it is a di�cult question, how long the iteration should be run

to get su�ciently close to the target distribution, because a Markov chain

cannot give any direct indications about this.

The scope of this thesis is twofold. Firstly, we study theoretical results

of Markov chain theory in this crucial area, and secondly, we apply some of

these results to two problems of biocomputing.

In Section 2 we introduce our motivating problems. We explain two prob-

lems of bioinformatics we wish to solve using MCMC techniques. The �rst

problem is to construct a fast algorithm that samples from the set of all

optimal sorting sequences of signed permutations, uniformly at random, if

reversals are the only allowed sorting transformations. The second problem

is sampling from the set of all multiple sequence alignments, uniformly at

random. Again, we wish to �nd a fast, approximative stochastic algorithm.

In the �rst part of Section 3 we present some notions and theorems of

Markov chain theory that we will use in our investigations. After this short
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introduction, an overview of the most classical MCMC methods is given, and

we describe a less known method, the Partial Independent Sampler (ParIS),

which becomes fundamental when we investigate our two biologically moti-

vated problems.

In Section 4 we de�ne the variation distance of probability distributions,

which makes it possible for us to talk about the closeness of distributions.

We give a su�cient condition that ensures convergence to a target distribu-

tion. Nevertheless, the largest part of this section is a collection of various

approaches to bounding the running time a Markov chain (or speci�cally, an

MCMC algorithm) needs to get close to its target distribution. This running

time is the so-called mixing time.

We present our own results in Section 5.

We prove that there is a signed permutation with the property that the

Metropolised Independent Sampler (MIS) is slow (i.e. it has exponential mi-

xing time) at sampling from its optimal sorting sequences (Section 5.2). We

suggest that the ParIS is superior to the MIS (Section 5.1).

We conducted investigations what window size the ParIS should use to

have an acceptable (i.e. polynomial) mixing time. This question turned out

to be a di�cult one. We hope, but we could not prove yet, that there exists

a window size distribution that results in a fast (polynomially mixing) ParIS

algorithm for sampling from the set of all minimum sequences of sorting

reversals, uniformly at random.

Section 5.3 shows a graph to which the uniform window size distribu-

tion applied gives a fast ParIS method. In contrast, Section 5.4 is about an

example which satis�es the converse: even the uniform window size distribu-

tion results in a slow ParIS method.

Section 5.5 describes a signed permutation with the property that when

sampling from its set of all minimum sequences of sorting reversals the ParIS

needs to choose the whole sorting path as a window with positive probability

to guarantee the irreducibility of the Markov chain.

As to our other problem, we found a sophisticated argument to prove
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that in an oversimpli�ed model of sequence alignments, the ParIS with win-

dow size 2, applied to sample from the set of all sequence alignments, has

polynomial mixing time (Section 5.6). Admittedly, this result has almost no

biological relevance, but from a mathematician's viewpoint its proof is inter-

esting indeed, and the proof might be developed to yield similar bounds for

models of more relevance.
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2 Introduction

First we outline the motivation of our investigations, more precisely, we in-

troduce the problems we would like to solve by using MCMC techniques. To

keep it short, these parts are intended to be easily understood, but they are

not claimed to be precise in terms of notation techniques.

2.1 Sorting signed permutations by reversals

First, we introduce basics of a mathematical model of genome rearrange-

ments.

A signed permutation is a permutation σ = (σ1, . . . , σn) on the set

{1, . . . , n}, where each number is also assigned a sign of plus or minus, e.g.

(+2,−4,−1, +5,−3). A reversal %(i, j) (i ≤ j) on σ transforms σ to

σ′ = (σ1, . . . , σi−1,−σj,−σj−1, . . . ,−σi, σj+1, . . . , σn).

Biologists often use the word inversion for reversal. Since inversion has a

di�erent meaning in mathematics, we shall always use the word reversal.

The minimum number of reversals needed to transform one signed permu-

tation into another one is called the reversal distance between them. We

can assume that one of the signed permutations is the identity permutation

id = (+1, +2, . . . , +n) and the other one is de�ned relative to this one. The

problem of sorting signed permutations by reversals is to �nd, for a

given signed permutation σ, a sequence of minimum length of reversals that

transforms σ into the identity permutation id.

A transposition is a transformation where a connected part (a block)

is cut out of the signed permutation and it is relocated somewhere. In other

words, two consecutive blocks are swapped:

(+2,−4,−1, +5,−3) −→ (+2, +5,−3,−4,−1).

An inverted transposition is a transposition, in which the moving part is

inverted before relocation:

(+2,−4,−1, +5,−3) −→ (+2, +5,−3, +1, +4).
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Genetic and DNA data on many organisms is accumulating rapidly, and

consequently the ability to compare genomes of di�erent species is growing

dramatically. Signed permutations and their transformations are useful tools

in the comparative study of genomes. A genome of a species can be thought

of as a set of ordered sequences of genes, each gene having an orientation.

Di�erent species often have similar genes that were inherited from common

ancestors. However, these genes have been shu�ed by mutations that modi-

�ed the order and/or the directionality of genes. In this case the gene orders

themselves make two species di�er. One can �nd a more detailed explanation

of (mitochondrial) genome rearrangements in [14].

A possible mathematical model for comparing two genomes represents

genomes by signed permutations. For the sake of simplicity we assume that

both genomes consist of exactly one chromosome. We also assume that both

genomes share the same genes and each gene has a copy number one. The

order of genes are represented by permutations and the orientation of ge-

nes in the genome is given by signs of plus and minus. Mutations are the

transformations of signed permutations that were de�ned above.

One usually investigates the problem of sorting by reversals only. There

are two reasons for this. First, sorting by reversals is of real biological re-

levance. It is widely accepted that reversal distance between two genomes

(between the two corresponding signed permutations) provides a good esti-

mate of the evolutionary distance between two species.

Secondly, in 1995, Hannenhalli and Pevzner developed a theory that made

it possible to work with reversals. They gave a polynomial time algorithm

for computing the reversal distance between two signed permutations and

�nding one of possibly many optimal sorting sequences. The presentation of

the Hannenhalli�Pevzner theory is out of the scope of this thesis. The reader

is referred to the original paper [10], or the book on computational molecular

biology by Pevzner [19]. Much work, including considerable simpli�cations,

has been done on the theory since its birth [13, 4, 5, 22].

The model would be more accurate in estimating the evolutionary dis-
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tance, if other types of transformations were also allowed. There are approx-

imation algorithms, but, unfortunately, today there is no exact polynomial

time algorithm for computing the distance between two signed permutations

using reversals plus other transformations. Therefore we restrict our atten-

tion to sorting by reversals only.

We aim to �nd a polynomial mixing time algorithm that samples from

the set of all optimal sorting sequences of signed permutations by reversals,

uniformly at random.

Suppose that we investigate signed permutations on {1, . . . , n}. The Han-
nenhalli�Pevzner theory tells us that the optimal sorting sequence starting

from σ consists of not more than n + 1 reversals.

Let G be a directed graph de�ned as follows. Let the set V of nodes

contain σ, id, and every other signed permutation that can be reached from

σ by a sequence of reversals of which each reversal decreases the reversal

distance between the current signed permutation and id. There is an oriented

edge in the graph from π to π′ if and only if the reversal distance between π′

and id is one less than the distance between π and id. This de�nition gives

a directed acyclic graph G.

Our problem is equivalent to sampling from the set of directed paths in

G leading from σ to id. As we have mentioned, the paths are not longer than

n+1. The di�culty is that there may be loads of them: their number may be

exponential in n. This means that we cannot get a polynomial algorithm by

enumerating all paths. We shall use MCMC methods instead, and our main

concern is what can be said about the running time of these algorithms.

In Section 3.6 it is explained what strategies one can think of to construct

an MCMC algorithm to solve this problem. In later sections we shall compare

our two algorithms, the MIS and the ParIS.

12



2.2 Multiple sequence alignment

A good introduction to this topic can be found in [8].

The problem of sequence alignment is the following: transform one se-

quence of characters over an alphabet Σ (typically Σ = {A, C, G, T}) into

another sequence, or transform d sequences one into another, by the use of

three elementary transformations: insertion, deletion, substitution. Let − de-

note a gap. An insertion is a − → X, a deletion is a Y → − transformation.

See the example with d = 3. Lines without the gap signs are the sequences.

A − G G T C T A

− − G A G C T G

A C T − C C − G

Each alignment has a score. The score represents a distance between

sequences: the more they di�er, the bigger the distance is. The score is usually

de�ned by a sum of scores over all columns:∑
i is a column

score(i),

where the score of a single column is given by a sum-of-pairs: each column

has
(

d
2

)
pairs of letters, and each type of pairs is given a score. The problem

of �nding an extremal score alignment is provably NP-complete.

Each sequence alignment is assigned a probability, that is determined

by the scores. The problem under our investigations is to sample random

elements from this distribution.

The fastest known algorithm to sample from this distribution takes O(2d
∏

j Lj)

steps, where L1, L2, . . . , Ld are the lengths of sequences. We wish to �nd a

faster approximative algorithm by using an MCMC method.

A popular approach is the use of parallel tempering. (For a description

of the algorithm, see [17].) Parallel tempering runs more di�erent MCMC

algorithms simultaneously. Estimating its running time seems to be beyond

our reach. However, one can get a lower bound for the running time, if one

gives a lower bound for the running time of one of those subalgorithms. For
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that reason, we are going to examine a very special case: sampling from the

set of sequence alignments, uniformly at random.

C

C

T

C

A

G A G C T G

G
(0;6)

(0;0)

(6;6)

(6;0)

Figure 1: The alignment of two sequences

A sequence alignment can be given graphically. Suppose that d = 2. Pick

the rectangle in Z2 with edge lengths L1 and L2, and vertices (0; 0), (L1; 0),

(L1; L2) and (0; L2). We associate the edge at the bottom with the �rst

sequence and the edge on the left with the second one, with orientation given

by the following rule: the �rst character of the �rst sequence is associated

with the left end of the edge, the last one with the right. The second sequence

is positioned with its �rst character at the bottom, the last one at the top.

An alignment is represented by a path that connects (0; 0) and (L1; L2). The

path starts at (0; 0). It consists of steps from a point in Z2 to another one.

The points that it crosses represent the gradual alignment of the sequences.

Each step is of the following three kinds: →, ↑, ↗ (or equivalently, (+1; 0),

(0; +1), (+1; +1)). From the viewpoint of the �rst sequence, ↑ is an insertion,

→ is a deletion and ↗ is a substitution or no transformation (depending on

what the corresponding letters are: they may be di�erent or identical). From

the viewpoint of the second sequence, ↑ is a deletion, → is an insertion.

Figure 1 is the graphical representation of the following sequence align-

ment:
− − G A G C T G

A C T − C C − G
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For d ≥ 3, one can follow a similar method in a d dimensional space.

We found the problem to sample from the set of sequence alignments,

uniformly at random, too di�cult to handle. Hence, we made signi�cant

simpli�cations. We hope, but cannot prove that our simpli�ed model is of

real relevance in the environment described above.

Our model is the one that is represented by a square in Z2, or a d dimen-

sional hypercube in Zd. The other condition is far more restrictive: we use

two types of steps only,→ and ↑. It is clear that this approach is inspired by

the geometrical interpretation, and it does not have much sense in the world

of DNA sequence alignments.

In fact, there is a perfect sampling method for this greatly simpli�ed

model. One can always easily calculate how many paths lead through a given

point in Z2, so one can compute the ratio between these quantities of any

two points. Choosing each step between the two possible directions with

probability distribution proportional to these quantities, one can build up a

random path, with uniform distribution on the set of all paths, as one desired.

We are more concerned in this thesis with local decisions that arise in

random walks (see the random walk procedure of Section 3.6) than with global

ones of methods like the perfect sampling. The reason is that we do not hope

that we can develop a global description of optimal sorting sequences in the

problem of sorting signed permutations by reversals, or that we can perfectly

understand the problem of sampling from the set of sequence alignments.

2.3 On the notations to be used

Giving value to a variable will be expressed by the combination of a colon

and an equality sign, with the positioning of the colon indicating the new

expression. For instance, b =: a/5 is to mean `whatever b is, choose a such

that it satis�es the equality b = a/5'.

In certain cases we will use the notation wedge for the minimum, vee

for the maximum of two numbers. Symbolically, a ∧ b := min{a, b} and

a ∨ b := max{a, b}.

15



In some cases the sign · (dot) will be used to express multiplication.

χS denotes the indicator function of set S:

χS(x) =

{
1, if x ∈ S,

0, if x /∈ S.
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3 Markov chain Monte Carlo methods

3.1 Markov chains

Throughout this work we will assume familiarity with the elementary theory

of Markov chains. For those who have di�culties with this subject we advise

studying the appropriate parts of Brémaud's textbook [6], which is a useful

book and starts from the very basics of probability theory. First, let us recall

some well-known de�nitions.

De�nition 3.1.1 Let (Ω,A, P ) be a probability space, I a nonempty co-

untable set (later to be called the state space) and Xn : Ω → I a

random variable for all n ∈ N. If for all choices of nonnegative integers

n1 < n2 < · · · < nk < m, and for all B ⊆ I and i1, i2, . . . , ik ∈ I

P
(
Xm ∈ B

∣∣Xn1 = i1, Xn2 = i2, . . . , Xnk
= ik

)
= P

(
Xm ∈ B

∣∣Xnk
= ik

)
,

(in other words, (Xn) has the Markov property), then the sequence (Xn)

is called a Markov chain.

If for all n ∈ N, i, j ∈ I

P
(
Xn+1 = j

∣∣Xn = i
)

= pij

(that is, P (Xn+1 = j |Xn = i) does not depend on n), then it is a homoge-

neous Markov chain. The matrix P = ((pij))i,j∈I is the transition matrix

of the homogeneous Markov chain. (One should be aware that P will denote

both the probability measure and the transition matrix.)

In all cases we will examine homogeneous Markov chains, and for this reason,

we will omit the word homogeneous.

De�nition 3.1.2 The square matrix P indexed by I is a stochastic matrix

if for all i, j ∈ I

pij ≥ 0,
∑
k∈I

pik = 1.
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Theorem 3.1.3 Every transition matrix is a stochastic matrix. And conver-

sely, for every stochastic matrix P , there exists a Markov chain, such that its

transition matrix is P .

De�nition 3.1.4 The transition graph of a Markov chain de�ned by tran-

sition matrix P is a graph whose nodes are the states of the chain. There is

an oriented edge in the graph from i to j if and only if pij > 0, in which case

this edge is labelled by pij.

De�nition 3.1.5 State j ∈ I is accessible from state i ∈ I if there exists

some n ∈ N such that

p
(n)
ij := P (Xm+n = j |Xm = i) > 0.

States i and j are said to communicate, if j is accessible from i and i is

accessible from j.

De�nition 3.1.6 A Markov chain is irreducible, if all its states communi-

cate.

De�nition 3.1.7 The period of state i ∈ I is

d(i) := gcd
{
n ≥ 1

∣∣ p(n)
ii > 0

}
.

If d(i) = 1, then i is said to be aperiodic. Since communicating states

have the same period, it makes sense to call an irreducible Markov chain

aperiodic, if all its states are aperiodic.

Remark 3.1.8 Given A ∈ A, i ∈ I, we will sometimes abbreviate P (A |X0 =

i) to Pi(A). If µ is a probability distribution on I, then Pµ(A) :=
∑

i∈I µ(i)Pi(A),

which is the probability of A starting from an initial state chosen according

to the distribution µ.

De�nition 3.1.9 State i ∈ I is called recurrent if

∞∑
n=1

Pi

(
X1 6= i, X2 6= i, . . . , Xn−1 6= i, Xn = i) = 1,

18



and otherwise it is called transient. We call a recurrent state i positive

recurrent if

∞∑
n=1

nPi

(
X1 6= i, X2 6= i, . . . , Xn−1 6= i, Xn = i) < ∞,

and otherwise null recurrent.

Proposition 3.1.10 An irreducible Markov chain with �nite state space is

positive recurrent.

De�nition 3.1.11 A Markov chain is ergodic if it is irreducible, positive

recurrent and aperiodic.

De�nition 3.1.12 A probability distribution π satisfying

πT = πT P

is called a stationary distribution of the transition matrix P , or of the

corresponding Markov chain.

Remark 3.1.13 If a Markov chain is started with a stationary distribution,

then it keeps this probability distribution during all forthcoming steps. In

this case we say that the chain is stationary, or equivalently, the chain is in

a stationary regime, in equilibrium or in steady state.

There is a useful technical extension of the notion of stationary distribution.

De�nition 3.1.14 A nonnegative, nonnull vector x = (xi)i∈I is called an

invariant measure of the stochastic matrix P , if

xT = xT P.

Theorem 3.1.15 Let P be the transition matrix of an irreducible, recurrent

Markov chain. Then there exists an invariant measure of P , whose each entry

is positive.
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Theorem 3.1.16 The invariant measure of an irreducible, recurrent sto-

chastic matrix is unique up to a multiplicative factor.

Corollary 3.1.17 Every irreducible, recurrent Markov chain has a statio-

nary distribution, and this distribution is unique.

Theorem 3.1.18 (Ergodic theorem) Let (Xn) be an irreducible, positive

recurrent Markov chain with the stationary distribution π, and let f : I → R
be such that ∑

i∈I

|f(i)|π(i) < ∞.

Then for any initial distribution µ, Pµ-almost-surely

lim
N→∞

1

N

N−1∑
k=0

f(Xk) =
∑
i∈I

f(i)π(i).

Corollary 3.1.19 Let (Xn) be an irreducible, positive recurrent Markov chain

with the stationary distribution π, and let f = χ{i} for a �xed i ∈ I. Then

for any initial distribution µ, Pµ-almost-surely

lim
N→∞

1

N

N−1∑
k=0

χ{Xk=i} = π(i).

Corollary 3.1.20 By Proposition 3.1.10, in an irreducible Markov chain

with �nite state space the relative frequency of visits to certain states con-

verges to the distribution π. More generally, this proposition is true for any

irreducible positive recurrent Markov chains. Obviously, this includes ergodic

chains.

De�nition 3.1.21 Suppose that π is a positive stationary distribution of a

Markov chain. If for all i, j ∈ I the detailed balance equation is satis�ed:

π(i)pij = π(j)pji,

then the Markov chain is said to be reversible with respect to π.
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Proposition 3.1.22 If a Markov chain is reversible with respect to π, then

π is a stationary distribution of the Markov chain.

De�nition 3.1.23 Let π be a positive probability distribution on I. One

can de�ne L2(π) as a real vector space RI endowed with the scalar product

〈x, y〉π :=
∑
i∈I

x(i)y(i)π(i),

for x =
(
x(i)

)
i∈I

, y =
(
y(i)

)
i∈I

.

3.2 Overview

Markov chain simulation is a powerful algorithmic tool for random sampling

(especially of combinatorial structures) from a speci�ed probability distribu-

tion. The main idea is as follows.

Suppose that we would like to generate samples from a large but �nite

set I of structures from a distribution π (later to be called the target dist-

ribution), or we wish to estimate the expectation of a scalar valued function

f on I.

First, construct a Markov chain which converges asymptotically to the

stationary distribution π. Start the chain from an arbitrary state, and simu-

late it long enough, until it gets close to steady state. Stopping the chain, the

distribution of the �nal state will be close to the desired distribution π.

For the second problem, calculate the empirical average of values of f

in the visited states weighted by the number of visits to these states. By

Ergodic theorem 3.1.18, this quantity (the empirical average) converges to

the expectation value almost surely. Faster convergence can be realized by

summing only after an initialization period (or burn-in period) of m steps:

lim
N→∞

1

N

m+N∑
k=m+1

f(Xk) =
∑
i∈I

f(i)π(i).

Obviously, the simulation needs a lot of computational work, and therefore

it is always done using computers.
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One might ask, what does long enough mean. This turns out to be a very

delicate question. There is no direct indication of the chain being close to

equilibrium.

A trivial approach in applications of MCMC simulation to the second

problem is to run the simulation more times starting from di�erent states,

for the same number of steps. If one gets similar estimates for the expectation

value in these di�erent simulations, one may feel that this number of steps

are enough. If one gets estimates signi�cantly di�erent, then it is obvious

that results are worthless and one needs considerably longer run.

In the �rst problem, there are statistical methods to monitor the samples.

However, they can only prove that one needs to run the simulation longer,

but cannot prove that the simulation can be terminated.

Indications of such monitoring can be misleading. Suppose that the tran-

sition graph of the Markov chain consists of two almost separated halves,

with only a very small number of edges with tiny transition probabilities

between the two halves. Picturesquely speaking, the chain has a bottleneck.

In this case, it is likely that the chain started from a certain state remains

in one half of the state space for the whole simulation. This means that al-

though our monitoring methods indicate that we can already use the chain

to take samples, we should not, because we will not get samples from the

other half of states.

The main concern of this thesis are to �nd out what theoretical results are

in the literature on the running time needed, and how they can be applied

to our problems.

Before getting down to this subject, let us study some of the most widely

known MCMC methods. We will rely mostly on Liu's book [17] in this topic.

In most cases we shall omit the proof of convergence to the target dist-

ribution. With Metropolis-type algorithms these proofs are easy: one has to

prove reversibility with respect to the target distribution, and apply Propo-

sition 3.1.22.
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3.3 The Metropolis Algorithm

Metropolis et al. [18] introduced the fundamental idea of evolving a Markov

process to achieve the sampling of a probability distribution. Note that in

Markov chain theory one usually knows the transition rule of a certain chain

and investigates its properties, e.g. what its stationary distribution is. In

MCMC simulation one is given a distribution and wants to �nd an e�cient

transition rule of a Markov chain, of which the stationary distribution is at

hand. An immanent property of most MCMC sampling methods is that they

can only provide statistically dependent samples, often highly correlated ones.

Various attempts have been made in speci�c �elds of application to overcome

this problem.

The Metropolis algorithm can be used to generate random samples from

distribution π, that is known only up to a normalizing constant, or only

the proportions of probabilities π(i) (i ∈ I = {1, 2, . . . , r}) are known.

Assume that b(1), . . . , b(r) > 0, and the target distribution has the form

π(i) = b(i)/B. Evaluating B =
∑

i∈I b(i) is trivial in theory, but in practice

it is often more di�cult, than the original problem of sampling from the dist-

ribution π was: either because r is too big, or because only the proportions of

values b(i) are known. That is the reason why an indirect sampling method

is needed, for instance, the Metropolis algorithm.

Metropolis Algorithm

Starting with an initial state i0, the Metropolis algorithm iterates the follo-

wing two steps.

1. Propose a small, random `unbiased perturbation' of the current state

it so as to generate a new one j. More accurately, generate j from

a symmetric probability transition function (i.e. for all i, j pij ≥ 0,∑
k pik = 1 and pij = pji).

2. Generate a random variable U ∼ Uniform[0, 1] independently from
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earlier variables.

it+1 :=

{
j, if U ≤ π(j)/π(it) = b(j)/b(it),

it, otherwise.

In other words, accept the new state with probability min{1, π(j)/π(it)}.
If it is not accepted, then reject it.

The symmetric probability transition function of Step 1 is often called

the proposal function. Intuitively, the symmetry requirement means that

there is no `trend bias' at the proposal step.

3.4 The Metropolis�Hastings Algorithm

Hastings' algorithm [11] is a generalization of the Metropolis algorithm. It

omits the requirement of symmetry of the transition rule. There are new

restrictions, though. These will be formulated right after the de�nition of the

algorithm.

Suppose that the target distribution π is given on a set of r elements.

First, de�ne an irreducible Markov chain on I = {1, 2, . . . , r} with transition

matrix P . Using P one can de�ne a new transition matrix Q on the same

state space. For this, let us introduce for all i, j ∈ I, i 6= j quantities

αij := min

{
1,

π(j)pji

π(i)pij

}
= min

{
1,

b(j)pji

b(i)pij

}
,

namely the acceptance probabilities.

Metropolis�Hastings Algorithm

Start with an initial state i0, and iterate the following two steps.

1. After t steps, visiting state it, generate j from the proposal distribution

pitj.

2. Draw a random variable U ∼ Uniform[0, 1].

it+1 :=

{
j, if U ≤ αitj,

it, otherwise.
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In other words, accept the new state with the acceptance probability

αitj. If it is not accepted, then reject it.

One can easily check that the transition matrix Q de�ned by this algorithm

is the following:

qij = pijαij = min

{
pij,

π(j)

π(i)
pji

}
, if i 6= j,

qii = pii +
∑
k 6=i

pik(1− αik) = 1−
∑
k 6=i

pikαik.

This new Markov chain is to be used for the sampling. If P is chosen to

meet the following two requirements:

i, j ∈ I pij > 0 ⇒ pji > 0,

∃i ∈ I : pii > 0,

then Q is irreducible and aperiodic, and it converges to the equilibrium dist-

ribution π. This is a su�cient, but not necessary condition.

3.5 Metropolised Independent Sampler

This specialized version of the Metropolis�Hastings algorithm was also pro-

posed by Hastings, in [11].

Assume that we have a strictly positive trial distribution p on I at hand,

that is thought to be `similar' to the strictly positive target distribution π,

from which we can draw independent samples. The Metropolised Indepen-

dent Sampler (orMIS, for short) generates its proposed moves independently

of the current state of the chain. In comparison to Metropolis�Hastings algo-

rithms, which usually make dependent local moves, MIS makes independent

global jumps. We de�ne the algorithm by giving the transition matrix Q of

the corresponding Markov chain.
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Metropolised Independent Sampler

Start with an initial state i0, and choose forthcoming states using the follo-

wing transition rule:

qij = p(j) min

{
1,

π(j)p(i)

π(i)p(j)

}
, if i 6= j,

qii = 1−
∑
k 6=i

p(k) min

{
1,

π(k)p(i)

π(i)p(k)

}
.

A frequently used notion related to MIS is the importance weight, or

importance ratio: for i ∈ I, w(i) := π(i)/p(i).

The intuition behind this algorithm is that a transition from i to j is

accomplished by drawing an independent sample from p, and `thinning it

down' based on a comparison of the corresponding importance weights w(j)

and w(i).

3.6 Partial Independent Sampler

Partial Independent Sampler (or ParIS, for short) is a modi�cation of MIS

for solving problems of a special family of combinatorial problems. This met-

hod will be explained using the problem sorting signed permutations by re-

versals.

Let us investigate signed permutations of the set {1, . . . , n}. Our objec-
tive is to sample elements from all optimal sorting sequences, uniformly at

random. In Section 2.1 we explained how these sequences can be represented

by paths in an oriented graph G: nodes of the graph are signed permutations,

its edges connect two signed permutations if and only if one can be obtained

from the other by exactly one reversal that leads closer to the target signed

permutation (in most cases, id).

The main di�culty is that in general, this graph is not known entirely. We

only know that from a certain node (which represents a signed permutation),

which other nodes lead one step closer to the target, more strictly speaking,

we can calculate this in polynomial time. It is clear that there are
(

n+1
2

)
possible reversals that act on a given signed permutation. This gives an O(n2)
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upper bound for the out-degree of each node: there are
(

n+1
2

)
= O(n2) possible

neighbours. The reversal distance between a signed permutation and id can

be calculated in O(n) time [4]. Consequently, there is an algorithm to �nd

(or simply, count) all neighbours of a given node in O(n3) steps.

One can hardly �nd any better idea to draw samples from these paths

uniformly at random, than to start from the initial signed permutation σ,

and choose next state from its neighbours that are closer to the target signed

permutation, uniformly at random. And iterate this process, always take a

step leading closer to the target. Let us call this method the random walk

procedure.

It is obvious that this algorithm can do very poorly. Imagine that we

have two neighbours of the initial signed permutation to start with, but the

structure of the underlying graph is such that there is only one path starting

with one neighbour and there are many paths starting with the other. In

this case the method would yield samples from a distribution that is far from

being uniform: the �rst path would have probability 1/2, the others would

have much smaller probabilities.

The idea is to use MCMC simulation for sampling. The states of the chain

will be the optimal sorting sequences. This de�nition often causes confusion,

so we emphasize once again that the states are speci�c sequences of signed

permutations and not the signed permutations themselves. Target distribu-

tion π is usually the uniform distribution. We need an e�ective transition

rule to de�ne our Markov chain.

MIS seems to be an applicable one. Trial distribution p is de�ned by the

probabilities of paths in the graph of signed permutations under the random

walk procedure. Starting from the initial signed permutation σ, p(i) for a

path i can be computed by multiplying the probabilities of each step one

after another. Assume that i leads through nodes i0(= σ), i1, i2, . . . , in(= id).

Then

p(i) =
n−1∏
k=0

1

d(ik)
,

where d(ik) is the number of neighbours of ik that are one step closer to
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in, than ik. We will present three examples in Section 5.1, Section 5.2, and

Section 5.3, in which MIS is too slow in terms of computational complexity.

ParIS is a sophisticated version of MIS, which is intended to be faster

than MIS. The concept is that we do not go back to start from scratch in

every step of the Markov chain and draw independent samples, as with MIS,

we only modify the path that corresponds to the current state of the Markov

chain by cutting a part out of it (a `window') and by replacing it with a

new (preferably di�erent) subsequence. The new subsequence has to be of

the same length to get an optimal sorting sequence again.

We introduce the following notation: for states i, j and window w,

pw
ij := P proposal

(
Xt+1 = j, w

∣∣Xt = i
)
,

that is, the proposal probability of transition to state j using window w,

conditioned that the chain is in i.

Partial Independent Sampler

Choose an initial state (path) i0 with the random walk procedure, and iterate

the following two steps.

1. Pick a connected part (a window w) of i := it at random, say,

w = 〈ik, ik+1, . . . , ik+m〉 ⊆ 〈i0, i1, . . . , in〉.

Using the random walk procedure, pick an optimal sorting sequence

from ik to ik+m, for example

〈ik, jk+1, . . . , jk+m−1, ik+m〉.

2. Accept the new state (path)

j = 〈i0, i1, . . . , ik, jk+1, . . . , jk+m−1, ik+m, . . . , in〉

with acceptance probability

αw
ij := min

{
1,

π(j)pw
ji

π(i)pw
ij

}
.
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Equivalently, the transition probabilities of the ParIS are

qij =
∑

w

pw
ijα

w
ij, if i 6= j,

qii = 1−
∑
k 6=i

qik.

Proposition 3.6.1 This Markov chain is reversible with respect to π. Con-

sequently, if it is irreducible and recurrent, then its unique stationary distri-

bution is π.

Proof We can use Proposition 3.1.22. Indeed,

π(i)qij = π(i)
∑

w

pw
ijα

w
ij = π(i)

∑
w

pw
ij min

{
1,

π(j)pw
ji

π(i)pw
ij

}
=

=
∑

w

min

{
π(i)pw

ij , π(j)pw
ji

}
,

what equals to π(j)qji because of the symmetry of the last term. �

Step 1 can be done using di�erent strategies. One can bind oneself to pick

windows with �xed length, or one can draw a window size at random from a

�xed distribution. Any strategy works, as long as pw
ij is a �xed, well-de�ned

quantity.

It has turned out that in the problem of sorting signed permutations by

reversals, the probability of cutting the whole path out must be positive,

otherwise it can happen that the Markov chain is not irreducible. (See Sec-

tion 5.5). This means that applying ParIS to this problem cannot be done

with a �xed window size, only if the size is the entire path, but this is not

ParIS any more, but the MIS itself.

There are n − m + 1 possibilities to pick a window of length m from a

path of length n (m ≤ n). We have not carried out any investigations on

which the optimal distribution is for possible locations of the window, we

will always use uniform distribution.
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If one is interested in sampling from the set of optimal sequences of sorting

reversals, uniformly at random; if it is assumed that a certain window size

distribution is �xed; the window is positioned in a place chosen from the

possibilities uniformly at random; and the new subsequence is drawn by

the random walk procedure, then the description of the algorithm can be

simpli�ed. In this case, if i can be transformed into j by cutting window w

out, and the random window size W of w is m, then

pw
ij = P (W = m)

1

n−m + 1
p
(
〈ik, jk+1, . . . , jk+m−1, ik+m〉

)
,

consequently,

π(j)pw
ji

π(i)pw
ij

=
p
(
〈ik, ik+1, . . . , ik+m−1, ik+m〉

)
p
(
〈ik, jk+1, . . . , jk+m−1, ik+m〉

) =

=

∏k+m−1
s=k+1 d(is)−1∏k+m−1
s=k+1 d(js)−1

=

∏n−1
s=0 d(is)−1∏n−1
s=0 d(js)−1

=
p(i)

p(j)
.

Note that using the central term, p(i)/p(j) can be evaluated in O(mn3) steps.

Partial Independent Sampler for this problem

Choose an initial state (path) i0 with the random walk procedure, and iterate

the following two steps.

1. Pick a connected part (a window w) of i := it at random, say,

w = 〈ik, ik+1, . . . , ik+m〉 ⊆ 〈i0, i1, . . . , in〉.

Using the random walk procedure, pick an optimal sorting sequence

from ik to ik+m, for example

〈ik, jk+1, . . . , jk+m−1, ik+m〉.

2. Accept the new state (path)

j = 〈i0, i1, . . . , ik, jk+1, . . . , jk+m−1, ik+m, . . . , in〉

with acceptance probability

αw
ij := min

{
1,

p(i)

p(j)

}
.
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The transition probabilities of this speci�c ParIS method are:

qij =
∑

w

pw
ij min

{
1,

pw
ji

pw
ij

}
=
∑

w

min
{
pw

ij, p
w
ji

}
=

=
∑

w

P (W = m)
1

n−m + 1
·

·min
{

p
(
〈ik, jk+1, . . . , jk+m−1, ik+m〉

)
, p
(
〈ik, ik+1, . . . , ik+m〉

)}
, if i 6= j,

qii = 1−
∑
k 6=i

qik.

3.7 Gibbs Sampler

Gibbs sampling can be applied to draw samples from a multidimensional pro-

bability distribution π, if the conditional distributions of speci�c coordinates

given the rest of coordinates are known.

Assume that we can decompose the random variable which we want to

simulate into d components: X = (X1, . . . , Xd). A d dimensional random

variable is a special case of this. In Gibbs sampling one chooses a coordinate

index by a certain strategy (either randomly or systematically in a well-

determined order), say k, and then updates the corresponding coordinate

with a sample drawn from the conditional distribution π given X[−k], where

X[−k] means (X1, . . . , Xk−1, · , Xk+1, . . . , Xd).

Random-Scan Gibbs Sampler

Start with an initial state i0, and after t iterations, being in state it =

(it,1, . . . , it,d), conduct the following two steps:

1. Pick a coordinate k randomly from {1, . . . , d} according to a �xed,

strictly positive probability vector (α1, . . . , αd) (e.g. (1/d, . . . , 1/d)).

2. Draw it+1,k from the conditional distribution π(· | it,[−k]) and leave the

remaining components unchanged, that is

it+1 := (it,1, . . . , it,k−1, it+1,k, it,k+1, . . . , it,d).
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Systematic-Scan or Periodic Gibbs Sampler

Fix a permutation σ on the set {1, . . . , d}. Let t̃ denote t mod d. Start with

an initial state i0, and after t iterations, being in state it = (it,1, . . . , it,d):

• Draw it+1,σ(et) from the conditional distribution π(· | it,[−σ(et)]) and leave

the remaining components unchanged, that is

it+1 := (it,1, . . . , it,σ(et)−1, it+1,σ(et), it,σ(et)+1, . . . , it,d).

For details, the reader is referred to [6] or [17].
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4 Theoretical results on the mixing rate

We have mentioned earlier that our main concern is the mixing rate of Mar-

kov chains, especially those that are used in Monte Carlo simulation methods.

Mixing rate means the number of simulation steps a Markov chain needs

to get su�ciently close to its equilibrium distribution. n denoting the size

of a problem under investigation, we shall call a chain informally rapidly

mixing, if this number is bounded by a polynomial in n. It is worth men-

tioning that the Markov chain corresponding to this problem typically has

a number of states exponential in n. So mixing rapidly usually means the

need for a number of steps being dramatically less, than the size of the state

space itself. To have an e�cient algorithm it is essential that the chain is

rapidly mixing. However, one has to keep in mind that polynomial bounds

with large exponents are only theoretically satisfying, and they are worthless

for practical purposes.

We shall see that the mixing rate of a Markov chain on a �nite state space

is closely related to the second largest eigenvalue modulus of its transition

matrix.

In this section we will use various sources of information, and for that

reason, references will be given more precisely than before.

4.1 Measuring the distance between distributions

Since we are interested in the rate of convergence to steady state in Mar-

kov chains, we have to de�ne what sort of convergence we are investigating.

Therefore we de�ne a distance between two distributions. There are more

approaches to this.

Let I be a countable space and let α and β be two probability distributions

on I.

De�nition 4.1.1 The variation distance dV (α, β) between α and β is
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de�ned by

dV (α, β) :=
1

2
‖α− β‖`1 =

1

2

∑
i∈I

|α(i)− β(i)|.

Proposition 4.1.2 The variation distance is a distance indeed, and it has

another form:

dV (α, β) = sup
S⊆I

|α(S)− β(S)|.

Proof This proposition is basically Lemma 1.1, in [6], Chapter 4. �

De�nition 4.1.3 The relative pointwise distance of α with respect to β

is

∆(α, β) := sup
i∈I

|α(i)− β(i)|
β(i)

.

For example, this de�nition is used in [12], with α(i) = p
(n)
hi , maximizing

also over all h ∈ I, and β = π, the stationary distribution.

De�nition 4.1.4 The χ2-distance (or χ2-contrast) χ2(α, β) of α with res-

pect to β is given by

χ2(α, β) :=
∑
i∈I

(α(i)− β(i))2

β(i)
.

χ2-distance is `stronger' than variation distance; that means, if a Markov

chain converges to the target distribution geometrically in χ2-distance, then

it also converges geometrically in variation distance. The reason for this is

that for any two probability distributions α and β on I

4dV (α, β)2 ≤ χ2(α, β).

This can easily be proved using the Cauchy-Schwarz inequality. See [6],

Chapter 6, proof of Theorem 3.2 for the short calculation.

In the future, we shall use the notion variation distance only.

If X is a random variable with values in I, let L(X) denote the dist-

ribution of X. If µ is a probability distribution on I, let dV (X,µ) denote

dV (L(X), µ) for short.
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If the Markov chain (Xn) converges in variation to π, which means

lim
n→∞

dV (Xn, π) = 0,

or equivalently,

lim
n→∞

∑
i∈I

|P (Xn = i)− π(i)| = 0,

then

lim
n→∞

E
(
f(Xn)

)
=
∑
i∈I

f(i)π(i)

for all bounded functions f : I → R. The proof is straightforward. Suppose
that M is an upper bound of |f |. Then∣∣∣∣∣E(f(Xn)

)
−
∑
i∈I

f(i)π(i)

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈I

f(i)
(
P (Xn = i)− π(i)

)∣∣∣∣∣ ≤
≤ M

∑
i∈I

|P (Xn = i)− π(i)| −→
n→∞

0.

4.2 Convergence to steady state

The main qualitative result concerns ergodic Markov chains. The reader is

advised to recall Corollary 3.1.20, and compare it with the following theorem.

Theorem 4.2.1 Let P be the transition matrix of an ergodic Markov chain

on the countable state space I. Let µ and ν be probability distributions on I.

Then,

lim
n→∞

dV (µT P n, νT P n) = 0.

In particular, if ν is the stationary distribution π, then

lim
n→∞

dV (µT P n, πT ) = 0.

If µ = δj (δj is the Dirac-delta, that puts all its mass onto state j), then

lim
n→∞

∑
k∈I

|p(n)
jk − π(k)| = 0.
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Proof The proof, which uses a coupling argument, can be found in [6],

Chapter 4, proof of Theorem 2.1. �

When the state space is �nite, much more can be said about the asymp-

totic behaviour of Markov chains, because one can use the full machinery of

linear algebra. In fact, the asymptotic behaviour of the distribution at time

n depends only on the asymptotic behaviour of the n-step transition matrix

P n, and consequently, on the eigenstructure of P . Building on this, we will

be able to carry out a quantitative analysis of the convergence rate.

The Perron�Frobenius theorem plays a central role in these investigations.

This theorem is of linear algebra, not of Markov chain theory. Although we

want to formulate it with conditions as general as possible, we have to use

some notions of Markov chain theory. Before formulating the theorem, some

de�nitions have to be introduced. We continue using Brémaud's book [6] for

this part, as well.

De�nition 4.2.2 The matrix M with real coe�cients is called nonnegative

(respectively, positive) if all its entries are nonnegative (resp., positive). A

nonnegative square matrix M is called primitive if there exists a positive

integer k such that Mk is positive.

The de�nition of the communication graph is very similar to that of the

transition graph (De�nition 3.1.4).

De�nition 4.2.3 The communication graph of a nonnegative square mat-

rix M = ((mij))
r
i,j=1 is the oriented graph whose nodes are {1, 2, . . . , r}. There

is an oriented edge from node i to node j if and only if mij > 0.

De�nition 4.2.4 A nonnegative square matrix M is called irreducible

(resp., aperiodic) if it has the same communication graph as the transi-

tion matrix of an irreducible (resp., aperiodic) Markov chain.

Proposition 4.2.5 A nonnegative square matrix is primitive if and only if

it is irreducible and aperiodic.
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Now we are ready to formulate the main theorem.

Theorem 4.2.6 (Perron�Frobenius theorem) Let M be a nonnegative

primitive r × r matrix. There exists a real eigenvalue µ1 with algebraic as

well as geometric multiplicity one, such that µ1 > 0 and µ1 > |µj| for any

other eigenvalue µj. Moreover, the left eigenvector u1 and the right eigenvec-

tor v1 associated with µ1 can be chosen positive and such that uT
1 v1 = 1.

Let µ2, µ3, . . . , µr be the eigenvalues of M other than µ1 ordered in such

a way that

µ1 > |µ2| ≥ · · · ≥ |µr|,

and if |µ2| = |µj| for some j ≥ 3, then m2 ≥ mj, where mj is the algebraic

multiplicity of µj. Then

Mn = µn
1v1u

T
1 + Θ(nm2−1|µ2|n), (1)

elementwise, where for f : N → R+, Θ(f(n)) represents a function of n such

that there exist c1, c2 ∈ R, 0 < c1 ≤ c2, such that c1f(n) ≤ Θ(f(n)) ≤ c2f(n)

for all n su�ciently large.

If in addition, M is stochastic, then µ1 = 1.

If M is stochastic but not irreducible, then the algebraic and geometric multip-

licities of the eigenvalue 1 are equal to the number of communication classes.

If M is stochastic and irreducible with period d > 1, then there are exactly

d distinct eigenvalues of modulus 1, namely the dth roots of unity, and all

other eigenvalues have modulus strictly less than 1.

Proof The proof can be found in Seneta's book [21]. �

Some easy consequences for transition matrices are immediate.

Let P be an irreducible aperiodic r × r transition matrix, and let λ1, λ2,

. . . , λr denote its eigenvalues. We already know that λ1 = 1 is among them.

(The corresponding right eigenvector is the one whose all entries are 1. Let

1 denote this vector.) It is also known that with the exception of λ1 = 1, all
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eigenvalues are in the open unit disk of C, and in the reversible case, they

are all real1. Therefore, with proper ordering,

1 = λ1 > λ2 ≥ · · · ≥ λr > −1.

We also know from the theorem that λr = −1 if and only if the chain is

periodic of period 2.

We will abbreviate second largest eigenvalue (λ2) to SLE. SLEM will

stand for second largest eigenvalue modulus, that is

ρ := max
{
λ2, |λr|

}
.

These quantities are crucial when investigating the mixing rate of Markov

chains.

Applying (1) of the Perron-Frobenius theorem for the transition matrix

of an irreducible aperiodic Markov chain on a �nite state space, one gets the

following corollary.

Corollary 4.2.7 If P is a transition matrix on I = {1, 2, . . . , r} that is

irreducible and aperiodic, then

v1 = 1, u1 = π,

where π is the unique stationary distribution. Therefore

P n = 1πT + Θ(nm2−1ρn).

1Suppose that P is reversible with respect to π. The operator P given by

(Pϕ)(i) :=
r∑

j=1

pijϕ(j), i ∈ {1, . . . , r}

is a self-adjoint operator on L2(π). Indeed,

〈Pϕ,ψ〉π =
∑

i

(Pϕ)(i)ψ(i)π(i) =
∑

i

∑
j

pijϕ(j)ψ(i)π(i),

by swapping i for j, and applying the detailed balance equation,

=
∑
i,j

ϕ(i)pjiψ(j)π(j) =
∑

i

ϕ(i)
∑

j

pijψ(j)π(i) = 〈ϕ, Pψ〉π.

38



It can already be seen that convergence to equilibrium of an irreducible

aperiodic �nite state space Markov chain is geometric, with relative speed

equal to the SLEM. The SLEM can be interpreted as the asymptotic rate

of convergence to the stationary distribution. We make this statement more

precise.

Theorem 4.2.8 If P is a transition matrix on I = {1, 2, . . . , r} that is ir-

reducible and reversible with the stationary distribution π, then for all n ≥ 1

and all i ∈ I,

dV (δT
i P n, πT ) ≤ c(P, π)ρn,

where

c(P, π) = min

{
1

ρ

(
p

(2)
ii

π(i)

) 1
2

,
1

2

(
1− π(i)

π(i)

) 1
2
}

,

and c(P, π) does not depend on n. Recall that

δT
i P n = (p

(n)
i1 , p

(n)
i2 , . . . , p

(n)
ir ),

which is the distribution of the nth state starting the chain from initial state i.

Proof This theorem is basically a combination of Theorem 3.1 and Theo-

rem 3.3 of [6], Chapter 6. The proofs can be found there. �

There are di�erent quantities in the literature to characterize the mixing

rate or the convergence rate of a Markov chain. We give only a few examples.

A good description of these can be found in [2], Chapter 4, where they are

compared to other parameters of a Markov chain (maximal mean commute

time, average hitting time and a `�ow' parameter). Aldous and Fill prove a

number of inequalities that describe the relationships between these parame-

ters, they give illustrations of properties of chains which are closely connected

to the parameters, and they present methods of bounding the parameters.

Aldous and Fill de�ne the variation threshold time by

τ1 := min
{
n ∈ N : max

i,j∈I
dV

(
δT
i P n, δT

j P n
)
≤ e−1

}
,
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and the relaxation time by

τ2 :=
1

1− λ2

.

τ1 is of a `worst-case' approach, while τ2 is more of an `average-case' approach.

Sinclair in [23] uses the function τi(ε) (i ∈ I) de�ned by

τi(ε) := min
{
n0 ∈ N : dV

(
δT
i P n, πT

)
≤ ε for all n ≥ n0

}
for ε > 0 and stationary distribution π.

Theorem 4.2.9 The quantity τi(ε) satis�es

1. τi(ε) ≤ 1
1−ρ

(ln π(i)−1 + ln ε−1),

2. maxi∈I τi(ε) ≥ ρ
2(1−ρ)

ln(2ε)−1.

Proof Part 1 follows from Proposition 3 of [7]. Part 2 is a discrete-time

version of Proposition 8 of [3]. �

Part 1 gives an upper bound on the time to reach steady state from initial

state i. The converse, part 2 says that convergence cannot be rapid unless ρ

is bounded away from 1.

It is interesting to note that in the latter bound there is a maximization

over initial states. It is possible that a chain converges to equilibrium fast

from certain states even when ρ is close to 1. However, even if such a state

exists, �nding it requires more detailed information about the chain than is

usually available in more complex applications.

In our applications we shall use τi(ε) in Section 5.6 and the SLE (con-

sequently, τ2) in every other example.

There are two more issues we discuss in this section. First, we explain

how theorems like Theorem 4.2.8 can inspire the de�niton of relaxation time

τ2. The second is that we investigate under what conditions the SLEM can

be exchanged for SLE in formulae, for example, why we de�ned relaxation

time with λ2 instead of ρ.

40



De�nition 4.2.10 The value 1− ρ is called the spectral gap.

Suppose that we have an in�nite sequence of problems that are very simi-

lar but have di�erent, strictly increasing sizes. As we have already de�ned, n

denoting the size of a problem in this sequence, we shall call the sequence of

Markov chains corresponding to the sequence of these problems rapidly mi-

xing, if the number of simulation steps the appropriate Markov chain needs

to get su�ciently close to its equilibrium distribution is bounded by a poly-

nomial in n, with one �xed polynomial for the entire sequence.

We present a typical setting in which the sequence of Markov chains is

rapidly mixing.

Let ρ(n) denote the SLEM of the Markov chain corresponding to the

unique problem of the sequence of size n. If the spectral gap corresponding

to ρ(n) is 1/q(n), where q(x) = akx
k + ak−1x

k−1 + · · ·+ a0 (ak > 0) is a �xed

polynomial, then

lim
n→∞

ρ(n)q(n) = lim
n→∞

(
1− 1

q(n)

)q(n)

= e−1 > 0,

but for any ε > 0, de�ning q′(x) := xk+ε,

lim
n→∞

ρ(n)q′(n) = lim
n→∞

(
1− 1

q(n)

)q′(n)

= 0.

This means that if spectral gaps of SLEMs ρ(n) have lower bounds of the

form 1/q(n) for a polynomial q(x) = akx
k + · · · + a0 (ak > 0), then Theo-

rem 4.2.8 yields that the sequence is rapidly mixing.

It is a little nuisance that one must consider the SLEM when investigating

the mixing rate. It would be easier if one could forget about λr, and focus

attention on the SLE only. Moreover, there are better tools to estimate the

SLE than λr, as we shall see. We present a crude approach to overcome this

problem.

Suppose that one adds a holding probability of 1/2 to each state, in other

words, one replaces the transition matrix P with P ′ := 1
2
(P + I), where I is
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the r × r identity matrix. P ′ is irreducible and aperiodic, just as P . It can

easily be veri�ed that π remains the unique stationary distribution of P ′.

Eigenvalues of P ′ are

λ′i =
λi + 1

2
, for all i ∈ {1, 2, . . . , r}.

This ensures that all eigenvalues are positive, while the spectral gap decreases

only by a factor of 2. Consequently, one can use the new Markov chain for

MCMC simulation and the mixing rate remains not much worse than the

original was.

In Section 4.6 we shall prove that in the reversible case, if for all i ∈
{1, 2, . . . , r} pii ≥ 1/2, then all eigenvalues are nonnegative. In our appli-

cations when using variants of the Metropolis�Hastings algorithm, we will

have symmetric transition matrices with uniform distribution as the target

distribution. This guarantees reversibility. The latter condition will also be

met in most of our examples and hence we will have ρ = λ2.

In applications it is typically very hard, practically impossible, to calcu-

late the SLEM explicitly. Therefore other methods are needed to investigate

the mixing rate. In the coming sections we are to collect the most important

representatives of these methods.

4.3 Gershgorin's bound

Gershgorin's bound is a surprising theorem of linear algebra that is sometimes

applicable in Markov chain theory. The proof can be found in books on

numerical analysis or in [6].

Theorem 4.3.1 Let A be an r × r matrix with complex entries. Let us in-

troduce the following notations: for i, j ∈ {1, 2, . . . , r}

ri :=
∑
j 6=i

|aij|, sj :=
∑
i6=j

|aij|.

Then for any eigenvalue λ, there exists a k ∈ {1, 2, . . . , r} such that

|λ− akk| ≤ rk,
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and there exists a k′ ∈ {1, 2, . . . , r} such that

|λ− ak′k′| ≤ sk′ .

In other words, all eigenvalues can be located within the union of r discs

on the complex plane with centres akk.

Corollary 4.3.2 Let P be an r× r stochastic matrix. Then, for all eigenva-

lues λ, there exists a k ∈ {1, 2, . . . , r} such that

|λ− pkk| ≤ 1− pkk. (2)

When the eigenvalue λ is real, then

−1 + 2 min
i

pii ≤ λ. (3)

Proof (2) follows from the fact that for a stochastic matrix rk = 1− pkk.

If λ is real, then either λ− pii < 0 for all i or there exists an i such that

λ− pii ≥ 0.

In the �rst case, |λ− pii| = pii − λ for all i. By (2)

pkk − λ ≤ 1− pkk

for some k, which proves (3):

−1 + 2 min
i

pii ≤ −1 + 2pkk ≤ λ.

If λ− pii ≥ 0 for some i, then λ−mini pii ≥ 0. Using this inequality and

−1 + mini pii ≤ 0 we get (3). �

Unfortunately, Theorem 4.3.1 cannot be used to prove that a Markov

chain Monte Carlo is rapidly mixing because it cannot bound the SLE away

from 1. The largest eigenvalue λ1 = 1 is also contained in a disc, whose centre

(pii for some i) is a real number, moreover pii ∈ [0, 1]. The radius of this disc

must be positive, otherwise the chain would not be irreducible: the chain

could not leave or could not enter state i (if, indirectly, we used the bound
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with rk or sk′ , respectively). If this radius is positive, then this disc contains

real numbers arbitrarily close to 1, and each of them is a potential SLE.

Corollary 4.3.2 can be used to refute rapid mixing. Let ε := 1/2r, pii :=

1 − ε for all i ∈ {1, . . . , r} and pij := ε/(r − 1), if i 6= j. It is obvious

that this chain converges in variation to the uniform distribution, and it

can be seen that it does this very slowly. Indeed, Corollary 4.3.2 proves

λ2 ≥ 1− 2ε = 1− 2/2r.

4.4 Liu's result for MIS

Liu [16] managed to identify the eigenvalues and corresponding right eigen-

vectors of the transition matrix in the very special case of Metropolised In-

dependent Sampling. Recall from Section 3.5 that for i ∈ I, the importance

weight is de�ned by w(i) := π(i)/p(i). Without loss of generality, we assume

that I = {1, 2, . . . , r} and the states are labelled according to the magnitudes

of their importance weights:

w(1) ≥ w(2) ≥ · · · ≥ w(r).

In this case, the eigenvalues are 1 = λ1 > λ2 ≥ · · · ≥ λr ≥ 0, where for k ≥ 2

λk =
r∑

i=k

(
p(i)− π(i)

w(k − 1)

)
=

r∑
i=k

π(i)

(
1

w(i)
− 1

w(k − 1)

)
.

It is easy to check that the SLEM is

ρ = λ2 =
r∑

i=2

(
p(i)− π(i)

w(1)

)
=

r∑
i=1

(
p(i)− π(i)

w(1)

)
= 1− 1

w(1)
.

4.5 Conductance

The �rst analyses of the e�ciency of more complex Markov chains arising in

combinatorial applications were carried out using a quantity called conduc-

tance. The conductance Φ is essentially the edge expansion of the transition

graph. Φ may be viewed as the probability that the chain in steady state

escapes from a subset S ⊆ I in one step, minimized over all subsets S. It
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is intuitively reasonable that Φ is related to the mixing rate: if this escape

probability is small for some S then the cut edges separating S from I \ S

form a bottleneck, which prevents rapid convergence to steady state. Con-

versely, if Φ has a large value, then the chain cannot be trapped by any small

region of the state space, and hence it should mix rapidly. After we gave some

explanation on what was about to happen, we now introduce the de�nition

of conductance.

For a nonempty set S ⊆ I = {1, 2, . . . , r} the capacity of S is

π(S) :=
∑
i∈S

π(i),

and the ergodic �ow out of S is

F (S) :=
∑

i∈S, j∈I\S

π(i)pij.

Note that 0 ≤ F (S) ≤ π(S) ≤ 1.

De�nition 4.5.1 One de�nes the conductance of a pair (P, π) by

Φ := min

{
F (S)

π(S)

∣∣∣∣ S ⊂ I, 0 < π(S) ≤ 1

2

}
.

If the SLEM is the SLE, then Φ characterizes the rapid mixing property

by giving an upper and also a lower bound for the SLE.

Theorem 4.5.2 (Cheeger's inequality) The SLE λ2 satis�es

1− 2Φ ≤ λ2 ≤ 1− Φ2

2
.

Proof The proof can be found in [6], Chapter 6, Section 4.2, or in [7].

The latter gives historical remarks and references where re�nements can be

found. �

We see that a Markov chain is rapidly mixing if and only if Φ ≥ 1/p(n)

for some polynomial p with a positive leading coe�cient.

45



4.6 Canonical (distinguished) paths, Poincaré coe�cient

If one wants to prove positive propositions (i.e. a certain chain is rapidly

mixing), one has to give good lower bounds on Φ. In some cases such bounds

can be obtained directly, using elementary arguments or geometric ideas. (For

such investigations, see the references given by Sinclair in [23].) However, this

is not typical.

A strong technique was introduced by Jerrum and Sinclair in [12] (and

in Sinclair's PhD thesis). The idea is to choose a canonical path γij in the

transition graph for each ordered pair (i, j) ∈ I × I (i 6= j). If the paths

can be chosen in such a way that no edge is overloaded by paths, then the

chain cannot contain a bottleneck, so Φ is not too small. (The existence of a

constriction would imply that for any choice of canonical paths, the edges in

the bottleneck must be overloaded.) Some applications of this technique can

be found in their paper.

They use an interesting approach to bounding the number of canonical

paths that use a given edge. Instead of counting these directly, they set up

an injective mapping for each oriented edge, from the set of canonical paths

containing this edge into the state space. They call it an encoding technique,

since the paths (or pairs of endpoints of paths) are encoded by single states.

Although being powerful, using this technique is not easy, since one always

has to start from scratch. That means one has to prove that a good choice

of canonical paths means a good lower bound for the conductance.

Diaconis and Stroock [7] found a `user-friendly interface' to use a similar

argument. They observed that canonical path arguments can lead directly to

bounds on the relaxation time, independently of the conductance Φ. First,

we present a theorem they used to prove their result.

The variance of x with respect to π is given by

Varπ(x) := 〈x, x〉π − 〈x,1〉2π.

Recall that the inner product 〈·, ·〉π was de�ned in Section 3.1, De�nition 3.1.23.
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Let I denote the r × r identity matrix. (Admittedly, we create some

confusion by denoting both the state space and the identity matrix by I.

However, we are sure that the reader can always tell which is the one under

consideration.) The Dirichlet form associated with a reversible pair (P, π)

is de�ned by

Eπ(x, x) := 〈(I − P )x, x〉π,

and it equals

Eπ(x, x) =
1

2

∑
i,j∈I

(
x(i)− x(j)

)2
π(i)pij.

Rayleigh's theorem gives a characterization of the eigenvalues of P using

the notions of variance and Dirichlet form, given the right eigenvectors vi

(i ∈ I = {1, 2, . . . , r}) associated with eigenvalues λi, respectively.

Theorem 4.6.1 (Rayleigh's theorem) Let P be the transition matrix of

an irreducible Markov chain on a �nite state space, and let π be its stationary

distribution. Assume that P is reversible with respect to π. Then, for i ≥ 2

1− λi = inf

{
Eπ(x, x)

Varπ(x)

∣∣∣∣ x 6= 0, for all j ∈ {1, . . . , i− 1} 〈x, vj〉π = 0

}
.

Any vector achieving the in�mum above is an eigenvector of P corresponding

to the eigenvalue λi.

Speci�cally, since v1 = 1,

1− λ2 = inf

{
Eπ(x, x)

Varπ(x)

∣∣∣∣ x 6= 0, 〈x,1〉π = 0

}
,

and the fact that Eπ(x, x) = Eπ(x − c1, x − c1) for any c ∈ R, implies that

this is equivalent to

1− λ2 = inf

{
Eπ(x, x)

Varπ(x)

∣∣∣∣ x is nonconstant

}
.

Proof The proof of this theorem can be found in [6], Chapter 6, Section

2.2. �
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We are now ready to proceed to formulate Diaconis and Stroock's results,

usually referred as geometric bounds.

In the transition graph associated with transition matrix P on the state

space I = {1, 2, . . . , r}, we shall denote an oriented edge i → j by e. De�ne

for any such oriented edge e,

Q(e) := π(i)pij.

For each ordered pair of distinct states (i, j) ∈ I × I, select arbitrarily one

and only one path from i to j, that is a sequence i, i1, . . . , im, j such that

pii1 , pi1i2 , . . . , pimj > 0, which does not use the same edge twice. Let Γ be the

set of paths so selected. For a path γij ∈ Γ, let

|γij|Q :=
∑
e∈γij

1

Q(e)
=

1

π(i)pii1

+
1

π(i1)pi1i2

+ · · ·+ 1

π(im)pimj

.

De�nition 4.6.2 The Poincaré coe�cient is de�ned by

κ := κ(Γ) := max
e

∑
γij3e

|γij|Qπ(i)π(j).

(The sum goes for all paths that contain a �xed edge e.)

Theorem 4.6.3 (Diaconis, Stroock) Let P be an irreducible transition

matrix on the �nite state space I, with stationary distribution π, and assume

that P is reversible with respect to π. Denoting by λ2 its SLE,

λ2 ≤ 1− 1

κ
.

We can also give a lower bound of the smallest eigenvalue. For each state

i ∈ I, select exactly one closed path σi from i to i that does not pass twice

through the same edge, and it consists of an odd number of edges (for this to

be possible, we assume that P is aperiodic). Let Σ be the collection of paths

so selected. For a path σi ∈ Σ, let

|σi|Q :=
∑
e∈σi

1

Q(e)
.
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De�ne

α := α(Σ) := max
e

∑
σi3e

|σi|Qπ(i).

Theorem 4.6.4 (Diaconis, Stroock) Let P be an irreducible and aperio-

dic transition matrix on the �nite state space I, with stationary distribution

π, and assume that P is reversible with respect to π. Then

λr ≥ −1 +
2

α
.

At the end of Section 4.2 we announced proving that in a reversible Mar-

kov chain if for all i ∈ {1, 2, . . . , r} pii ≥ 1/2, then all eigenvalues are non-

negative, hence the SLEM and the SLE are identical. We can present this

implication as an easy corollary of the last theorem.

Proposition 4.6.5 If an irreducible Markov chain with state space I =

{1, 2, . . . , r} is reversible with respect to π and has the property that for all

i ∈ I pii ≥ 1/2, then all eigenvalues of its transition matrix are nonnegative.

Proof We shall use the last theorem of which the conditions are satis�ed.

For all i ∈ I we choose the single i → i edge as path σi. Then

α = max
e

∑
σi3e

1

π(i)pii

π(i) = max
i∈I

1

pii

=
1

mini∈I pii

≤ 2,

and consequently

λr ≥ −1 +
2

α
≥ −1 + 1 = 0.

�

4.7 Similar bounds with di�erent coe�cients

We shall investigate a modi�cation of Theorem 4.6.3 that Sinclair developed

and presented in [23].

He also gave a short formula how the canonical path approach can give

a bound of the conductance. We use the notation Γ of the previous section.

The maximum loading of any edge is measured by the quantity

ϑ := ϑ(Γ) := max
e

1

Q(e)

∑
γij3e

π(i)π(j).
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Sinclair says that we may view the Markov chain as a �ow network, in

which π(i)π(j) units of �ow travel from i to j along γij, and Q(e) plays the

role of the capacity of e. The quantity ϑ measures the maximum �ow along

any edge as a fraction of its capacity. Note that this picture is somewhat

misleading: it may happen that ϑ > 1, that is, the �ow along the edge

exceeds the capacity.

The following result shows that the existence of a good choice of paths

implies a large value for the conductance.

Proposition 4.7.1 Let P be an irreducible transition matrix on the �nite

state space I, with stationary distribution π, and assume that P is reversible

with respect to π. With any choice of canonical paths,

Φ ≥ 1

2ϑ
.

This can be combined with Cheeger's inequality, Theorem 4.5.2.

Corollary 4.7.2 Let P be an irreducible transition matrix on the �nite state

space I, with stationary distribution π, and assume that P is reversible with

respect to π. With any choice of canonical paths, the SLE satis�es

λ2 ≤ 1− 1

8ϑ2
.

This bound may be rather weak because of the square in the denomina-

tor. Obviously, this is not a problem for someone trying to prove polynomial

mixing time, only for those who try to get sharp estimates.

We turn to Sinclair's modi�ed geometric bound. We replace κ with

K := K(Γ) := max
e

1

Q(e)

∑
γij3e

|γij|π(i)π(j),

where |γij| is the length (i.e. the number of edges) of the path γij.

Theorem 4.7.3 Let P be an irreducible transition matrix on the �nite state

space I, with stationary distribution π, and assume that P is reversible with

respect to π. Then

λ2 ≤ 1− 1

K
.
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The following simpli�ed form is an easy consequence that is often useful.

Corollary 4.7.4 Let P be an irreducible transition matrix on the �nite state

space I, with stationary distribution π, and assume that P is reversible with

respect to π. Let

` := `(Γ) := max
γ∈Γ

|γ|,

that is the length of a longest path in Γ. With any choice of canonical paths,

the SLE satis�es

λ2 ≤ 1− 1

`ϑ
.

This corollary can be applied in the same situations as Corollary 4.7.2.

However, the maximum path length ` is often less than the estimate ob-

tained for ϑ. In such cases, Corollary 4.7.4 will give a sharper bound than

Corollary 4.7.2. Sinclair presents examples that con�rm this observation.

Sinclair also argues that K and `ϑ are usually more useful quantities to

work with in practice than Diaconis and Stroock's κ.

When one tries to apply these theorems to a certain Markov chain with

a more complicated transition graph, one might encounter the problem, that

any de�nition of paths will result in Γ having a very symmetrical structure.

This might mean that the majority of edges in the transition graph are

hardly used in any paths, but some edges are really overloaded. Because of

the maximization over edges in the formulae, any overload results in a large

κ(Γ) or K(Γ), and a useless upper bound of the SLE. Although there may

exist a good choice of paths, if we cannot �nd it, we only get weak upper

bounds.

One may have the fuzzy idea why not pick paths at random to avoid choo-

sing a Γ with a symmetrical structure. In fact, there are results in this spirit.

We continue the investigation of bounding the relaxation time of Markov

chains with these results.
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4.8 Multicommodity �ow

The following theorems about multicommodity �ows are due to Sinclair, and

they can be found in the same paper [23]. These can be seen as natural

generalizations of the path-counting ideas of the last sections.

Let us view the transition graph G as a �ow network by assigning the

capacity Q(e) = π(i)pij to each oriented edge e whose initial and end vertices

are i and j. Suppose that for each ordered pair of distinct vertices i and j, a

quantity π(i)π(j) of some commodity denoted by (i, j) is to be transported

from i to j along the edges of the network. The task is to construct a �ow

which minimizes the total throughput through any oriented edge e in G as a

fraction of its capacity Q(e). Recall that the �ow through an edge may exceed

its capacity. This viewpoint is already familiar from the previous section. But

now we are allowing multiple rather than canonical paths between vertices.

Fortunately we can get very similar bounds and proofs can be carried over

quite easily.

De�nition 4.8.1 Let Πij be the set of all directed paths from i to j in the

transition graph G. Let Π :=
⋃

i6=j Πij. A �ow in G is a function f : Π →
[0,∞[ which satis�es ∑

γ∈Πij

f(γ) = π(i)π(j)

for all i, j ∈ I, i 6= j.

f can be extended to a function on all oriented edges by setting

f(e) :=
∑
γ3e

f(γ),

that is, f(e) is the total �ow routed by f through e.

We introduce the quantity ϑ(f) analogous to ϑ:

ϑ(f) := max
e

f(e)

Q(e)
.

As we have suggested, Proposition 4.7.1 and Corollary 4.7.2 carry over

immediately to this more general setting.
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Proposition 4.8.2 Let P be an irreducible transition matrix on the �nite

state space I, with stationary distribution π, and assume that P is reversible

with respect to π. With any �ow f ,

Φ ≥ 1

2ϑ(f)
.

Corollary 4.8.3 Let P be an irreducible transition matrix on the �nite state

space I, with stationary distribution π, and assume that P is reversible with

respect to π. With any �ow f , the SLE satis�es

λ2 ≤ 1− 1

8ϑ(f)2
.

We can also generalize the quantity K to a �ow f . Let a function f̄ be

de�ned on all oriented edges by

f̄(e) :=
∑
γ3e

f(γ)|γ|,

where |γ| is the length of the path γ. (Sinclair uses the expression elongated

�ow through e for f̄(e).) Let

K(f) := max
e

f̄(e)

Q(e)
.

Again, Theorem 4.7.3 and Corollary 4.7.4 carry over, and one can get the

following.

Theorem 4.8.4 Let P be an irreducible transition matrix on the �nite state

space I, with stationary distribution π, and assume that P is reversible with

respect to π. Then, with any �ow f ,

λ2 ≤ 1− 1

K(f)
.

Corollary 4.8.5 Let P be an irreducible transition matrix on the �nite state

space I, with stationary distribution π, and assume that P is reversible with

respect to π. Let

`(f) := max
γ∈Π, f(γ)>0

|γ|.
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With any �ow f , the SLE satis�es

λ2 ≤ 1− 1

`(f)ϑ(f)
.

There are examples in [23] for the use of multicommodity �ows and they

show that the �exibility provided by �ows can yield better bounds than

canonical path approaches.

4.9 Probabilistic inequalities

Aldous and Fill ([2], Chapter 4) proved a probabilistic version of inequalities

that we discussed in previous sections.

For each ordered pair of distinct states (i, j) ∈ I × I, let γij be a random

path from i to j of the form i = I0, I1, . . . , IM = j of random length M = |γij|,
such that no edge is traversed more than once.

Theorem 4.9.1 Let P be an irreducible transition matrix on the �nite state

space I, with stationary distribution π, and assume that P is reversible with

respect to π. Then

λ2 ≤ 1−
(

max
e

1

Q(e)

∑
i∈I

∑
j∈I

π(i)π(j)E
(
|γij|χ{e∈γij}

))−1

.

Schweinsberg [20] proved a corollary of this theorem, which can be useful

if one can easily de�ne a short path γij only when j is in some subset B ⊆ I.

He used this result to study a Markov chain on the set of n-leaf cladograms.

Corollary 4.9.2 Let P be an irreducible transition matrix on the �nite state

space I, with stationary distribution π, and assume that P is reversible with

respect to π. Let B be a subset of I. Suppose, for all i ∈ I and j ∈ B, that

γij is a path from i to j, possibly random, which has at most L edges. Then

λ2 ≤ 1−
(

4L

π(B)
max

e

1

Q(e)

∑
i∈I

∑
j∈B

π(i)π(j)P
(
e ∈ γij

))−1

.
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4.10 Dobrushin's inequality

We already know that the SLEM determines the rate of convergence to ste-

ady state. Various methods were presented in previous sections for obtaining

upper bounds of the SLEM. For theoretical purposes, there is another upper

bound for the SLEM due to R. L. Dobrushin, that is often very tractable. If

the state space is �nite and the chain is ergodic, it guarantees a computable

geometric rate of convergence to equilibrium.

In this section we follow Brémaud's book [6]. The reader is directed to

this book for references.

Let G, H, I denote countable sets.

De�nition 4.10.1 Let P be a stochastic matrix indexed by H × G. Its

Dobrushin's ergodic coe�cient δ(P ) is de�ned by

δ(P ) :=
1

2
sup
i,j∈H

∑
k∈G

|pik − pjk| = sup
i,j∈H

dV (pi·, pj·).

First, note that 0 ≤ δ(P ) ≤ 1. If the stochastic matrix P has two orthogonal

rows (e.g. i, j ∈ H, such that for all k ∈ G pikpjk = 0), then δ(P ) = 1, which

is totally useless as we shall see shortly. This happens quite often: when H

is in�nite, it is typical that P has orthogonal rows. However, for �nite state

spaces this notion is usually very powerful.

Theorem 4.10.2 (Dobrushin's inequality) Let P1 = ((aij)) and P2 =

((bij)) denote two stochastic matrices indexed by H ×G and I ×H, respecti-

vely. Let P2P1 = ((cij)) be their product indexed by I ×G just as one would

expect:

cij :=
∑
k∈H

bikakj.

Then

δ(P2P1) ≤ δ(P2)δ(P1).

One can get a geometric convergence rate in terms of Dobrushin's coe�cient.
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Theorem 4.10.3 Let P be a stochastic matrix indexed by I. Let µ and ν be

probability distributions on I. Then

dV (µT P n, νT P n) ≤ dV (µT , νT )δ(P )n.

Proofs of both theorems can be found in [6], Chapter 6, Section 7.1.

4.11 Convergence rate for the Gibbs Sampler

One can �nd in [6] how Theorem 4.10.3 can prove a geometric rate of conver-

gence of the Periodic Gibbs Sampler (for the latter, see Section 3.7). Recall

that the random variable was demanded to be decomposable, namely, into d

components.

Theorem 4.11.1 Let P be the transition matrix of a Periodic Gibbs Samp-

ler. Let π denote its stationary distribution and let µ be a probability distri-

bution on its state space. Then

dV (µT P n, πT ) ≤ 1

2
dV (µT , πT )(1− e−d∆)n,

where ∆ depends on π and can be given explicitly.

It is more surprising that the distance in variation to the target distribu-

tion decreases in every step.

Theorem 4.11.2 Let µ be a probability distribution on the state space and

let ν be the probability distribution obtained by applying a Gibbs step at an

arbitrary component. Then dV (νT , πT ) ≤ dV (µT , πT ).

Brémaud's textbook claims that it is an experimental fact that the Gibbs

Sampler is not the best MCMC simulation algorithm. Brémaud suggests

that the monotonicity property is not an advantage but a possible indicator

of short-sighted strategies.

Jun S. Liu's thesis may have more information on this topic (Correlation

Structure and Convergence Rate of the Gibbs Sampler, Ph.D. thesis, Univer-

sity of Chicago, 1991).
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4.12 The coupling method

Coupling is an old idea of W. Doeblin from 1938 that was revived in Markov

chain theory in the 1970s.

Recall from Section 4.1 that if X is a random variable with values in I,

L(X) denotes the distribution of X. dV (X1, X2) denotes dV (L(X1),L(X2))

for short.

In Section 4.1 one can also �nd that the de�nition of convergence in

variation concerns only the marginal distributions of the Markov chain, not

the process itself. Therefore, if there exist two Markov chains (Xn) and (X ′
n)

with L(Xn) = L(X ′
n) for all n ∈ N, and there exists a third one (X ′′

n), such

that L(X ′′
n) = π for all n ∈ N, then

lim
n→∞

dV (X ′
n, X

′′
n) = 0

is su�cient to yield

lim
n→∞

∑
i∈I

|P (Xn = i)− π(i)| = 0,

or in other words, to provide the convergence of (Xn) in variation to π.

This trivial observation is useful because of the freedom in the choice

of (X ′
n) and (X ′′

n). The most interesting case is when one uses dependent

versions and there exists a �nite random time τ such that X ′
n = X ′′

n for all

n ≥ τ .

τ is �nite if and only if limn→∞ P (τ > n) = 0. In this case, the coupling

inequality implies that (Xn) converges in variation to π.

De�nition 4.12.1 Let (X ′
n) and (X ′′

n) be two stochastic processes that take

their values in the same countable state space. They are said to couple, if

there exists an almost surely �nite random time τ such that if n ≥ τ , then

X ′
n = X ′′

n. The random variable τ is called a coupling time of the two

processes.

Theorem 4.12.2 (Coupling inequality) If τ is a coupling time for (X ′
n)

and (X ′′
n), then

dV (X ′
n, X

′′
n) ≤ P (τ > n).
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Proof The proof can be found in [6], Chapter 4, Section 1. �

Combining previous observations, one can prove the convergence of (Xn)

in variation to π by giving appropriate Markov chains (X ′
n) and (X ′′

n) and

proving that they couple. This method can be carried out in many situations

and there are many applications of it.

For historical comments, typical applications and additional information,

see Lindvall's textbook [15].

In the following section (Section 5, Applications), a number of results

described in Section 4 are applied to our examples. The Applications section

can be seen as a collection of examples of applications of these ideas.

Liu's theorem of Section 4.4 is used in Sections 5.1, 5.2 and 5.3. Canonical

paths arguments of Section 4.6 are used in Section 5.1 and 5.3. An argument

based on the notion conductance of Section 4.5 is used in Section 5.4. We shall

use a coupling argument (Section 4.12) to prove the bound of Section 5.6.
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5 Applications

The purpose of this section is twofold. We present results of our investigations

into applying MCMC methods in two �elds of bioinformatics. Secondly, these

examples demonstrate the use of techniques of previous sections.

5.1 Ladder

We present an example in which the ParIS is superior to MIS in terms of

rate of convergence to the target distribution: the ParIS is rapidly mixing,

the MIS is not.

As we have already made clear, our main subject is about random walks

on directed acyclic graphs. We introduce this example as a Markov chain

whose states correspond to paths. Let us take a graph of a form of a ladder

(see Figure 2). We investigate paths from the top left to the bottom right

corner that consist of steps right and down, therefore once crossed from the

left to the right, cannot go back to the left side. The states of the Markov

chain will be these paths. Obviously, there is a one-to-one correspondence

between these paths and rungs of the ladder: each path contains exactly

one rung. Suppose that the ladder has n ≥ 2 rungs, and the state space is

I = {1, 2, . . . , n}.
We choose the uniform distribution on I to be the target distribution.

First, the MIS. We de�ne the primal Markov chain, whose transition

matrix is P , with the random walk procedure de�ned in Section 3.6. Let us

recall this method. Imagine that we are at the top left corner. We can choose

between two directions to start with: right or down. We pick one of them

with probability 1/2 − 1/2. If we picked right, then the path is determined:

we cross using the �rst rung. If we picked down, then move to the next

node and choose between the two directions again with the same probability

distribution. Go on with the same procedure. If we arrive at the bottom left

corner, we use the last rung. It is obvious that using this distribution the
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3

1

n−1  

n

i

Figure 2: Ladder

probability of path i is (
1

2

)i∧(n−1)

.

This is a natural approach from the viewpoint of somebody staying at the

top left corner to the problem of de�ning a method to choose from the paths

uniformly at random, without knowing anything about either the special

structure or the number of paths. Of course we know everything about the

paths and we also know that this distribution is far from being uniform.

Remember that the states are not the nodes of the ladder, but the paths. As

with every MIS method, this Markov chain also has the property that the

probability distribution of its state at time t+1 is independent from its state

at time t: for each i, j ∈ I

pij =

(
1

2

)j∧(n−1)

.

Proposition 5.1.1 For the SLE of the transition matrix of this MIS method

λ2 ≥ 1− n

2n−1
,

hence this MIS method has exponential relaxation time.
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Proof We start with calculating the acceptance probabilities αij (i, j ∈
I, i 6= j):

αij = min

{
1,

1
n

(
1
2

)i∧(n−1)

1
n

(
1
2

)j∧(n−1)

}
=


1, if i < j,

1/2i−j, if j < i ≤ n− 1,

1/2n−1−j, if j < i = n.

We get the following transition matrix Q (i 6= j):

qij = pijαij =


1/2j, if i < j ≤ n− 1,

1/2i, if j < i ≤ n− 1,

1/2n−1, if j < i = n,

1/2n−1, if i < j = n,

and with more calculation

qii = pii +
∑
j 6=i

pij(1− αij) = 1− i ∧ (n− 1)

2i∧(n−1)
.

Q =



1− 1
2

1/4 1/8 . . . 1/2i . . . 1/2n−1 1/2n−1

1/4 1− 2
4

1/8 1/2i 1/2n−1 1/2n−1

1/8 1/8 1− 3
8

1/2i 1/2n−1 1/2n−1

...
. . .

...
...

1/2i 1/2i 1/2i 1− i
2i 1/2n−1 1/2n−1

...
. . .

...

1/2n−1 1/2n−1 1/2n−1 . . . 1/2n−1 1− n−1
2n−1 1/2n−1

1/2n−1 1/2n−1 1/2n−1 . . . 1/2n−1 . . . 1/2n−1 1− n−1
2n−1


Since this is our �rst example, we shall present calculations in detail.

As we shall see, the structure of the transition matrix makes it possible to

estimate the SLEM directly: we will not use theoretical results on Markov

chains, only elementary linear algebra.

We give a lower bound of the second largest eigenvalue of Q, λ2. Let I de-

note the identity matrix. Eigenvalues of Q are exactly the roots of det(Q−xI).

If we subtract the last line of Q−xI from the preceding line componentwise,
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we get

1− 1
2
− x 1/4 . . . 1/2i . . . 1/2n−1 1/2n−1

1/4 1− 2
4
− x 1/2i 1/2n−1 1/2n−1

...
. . .

...
...

1/2i 1/2i 1− i
2i − x 1/2n−1 1/2n−1

...
. . .

...

0 0 . . . 0 1− n
2n−1 − x −1 + n

2n−1 + x

1/2n−1 1/2n−1 . . . 1/2n−1 . . . 1/2n−1 1− n−1
2n−1 − x


and the new determinant equals det(Q − xI). One can see that choosing

x = 1 − n/2n−1 each entry of the line before the last one is zero. It means

that 1−n/2n−1 is a root of the characteristic polynomial, it is an eigenvalue,

and this quantity is a lower bound of λ2.

In fact, using Liu's result from Section 4.4, we can prove that 1− n/2n−1

is the SLEM itself:

ρ = λ2 = 1−
(

1/n

1/2n−1

)−1

= 1− n

2n−1
.

This needs little and trivial calculation only, and it uses the trial distribution

pij directly, without any need for modi�ed transitions qij.

We will prove shortly that there is no polynomial p with the property

that

lim
n→∞

(
1− n

2n−1

)p(n)

= 0.

This means that there exists no polynomial upper bound of the time that

this Markov chain needs to suitably approximate the target distribution.

To prove the former proposition note that for some n0 su�ciently large,

1− n

2n−1
≥ 1− 1

1.9n−1
,

if n0 ≤ n. Again, with any polynomial p given, of which the leading coe�cient

is positive, for a su�ciently large n1 (which is dependent on p and we choose
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it to satisfy n0 ≤ n1), if n1 ≤ n, then 0 ≤ p(n) ≤ 1.9n−1 and(
1− n

2n−1

)p(n)

≥
(

1− 1

1.9n−1

)p(n)

≥
(

1− 1

1.9n−1

)1.9n−1

n→∞−→ e−1 > 0.

�

Now we turn our attention to the ParIS. The task is the same: samp-

ling random elements from uniform distribution on the set of paths leading

from the top left to the bottom right corner. Instead of choosing whole new

paths in each step, we pick a (connected) part (a `window') of the current

path randomly and alter only this part with a certain probability. To keep

calculations as easy as possible, we choose solely two-edge-long parts.

A path consists of n edges. If this path is state i of the Markov chain,

in other words, it crosses from the left to the right on the ith rung, then

the rung is its ith edge. Let us use the following algorithm. We pick two

successive edges of the current path with uniform distribution on the set of

these pairs: [j, j + 1] (1 ≤ j ≤ n − 1). If both j and j + 1 are on the same

side of the ladder, the path cannot be altered with replacing only these two

edges. If one of them is a rung, then we alter the path with probability 1/2,

or leave it unchanged with probability 1/2. If we alter the path, there is only

one way to do this: if i = j, then the new path will have one more edge on

the left side, and its i + 1st edge will cross from the left to the right, which

means a transition from state i to state i + 1; if i = j + 1, then the new path

will have one edge less on the left side, and its i − 1st edge will cross from

the left to the right, so we step from state i to state i− 1.

Proposition 5.1.2 This ParIS method (with window size 2) has SLEM

ρ ≤ 1− 1

n3
,

consequently, this chain has polynomial relaxation time.
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Proof The entries of the primal transition matrix are:

pi,i+1 =
1

n− 1

1

2
, if 1 ≤ i ≤ n− 1,

pi,i−1 =
1

n− 1

1

2
, if 2 ≤ i ≤ n,

p11 = pnn = 1− 1

n− 1

1

2
,

pii = 1− 1

n− 1
, if 2 ≤ i ≤ n− 1,

pij = 0, otherwise.

The acceptance probabilities αij (i, j ∈ I, i 6= j) are:

αi,i+1 = min

{
1,

1
n
pi+1,i

1
n
pi,i+1

}
= min

{
1,

1
n

1
2(n−1)

1
n

1
2(n−1)

}
= 1, if 1 ≤ i ≤ n− 1,

αi,i−1 = min

{
1,

1
n
pi−1,i

1
n
pi,i−1

}
= min

{
1,

1
n

1
2(n−1)

1
n

1
2(n−1)

}
= 1, if 2 ≤ i ≤ n.

We will not need to know any other acceptance probabilities.

The transition probabilities are (i 6= j):

qij = pijαij = pij,

because either αij = 1 or pij = 0, and

qii = pii+
∑
j 6=i

pij(1−αij) =

{
(1− 1

2(n−1)
) + 0 = 1− 1

2(n−1)
, if i ∈ {1, n},

(1− 1
n−1

) + 0 = 1− 1
n−1

, if 2 ≤ i ≤ n− 1.

Finally, one can observe that Q = P .

In order to prove fast convergence, we give a su�ciently good upper bound

of the SLEM by the use of Theorem 4.6.3 and Theorem 4.6.4.

For i, j ∈ I, i < j, let us choose the path i, i + 1, . . . , j, and for i > j,

i, i − 1, . . . , j. Since the transition matrix Q is symmetric, π(1) = · · · =

π(n) = 1/n is a stationary distribution. One can get

|γij|Q = |j − i|n 2(n− 1),

κ = max
e

∑
γij3e

|γij|Q
1

n2
.
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For an oriented edge e = i → i + 1,

∑
γij3e

|γij|Q
1

n2
=

( i∑
k=1

|γk,i+1|Q +
i∑

k=1

|γk,i+2|Q + · · ·+
i∑

k=1

|γk,n|Q
)

1

n2
,

and in the following steps by summing arithmetical sequences,

=

(
(i + 1)i

2
+

(i + 3)i

2
+ · · ·+ (2n− i− 1)i

2

)
n 2(n− 1)

1

n2
=

=

(
(i + 1) + (2n− i− 1)

)
(n− i)

2

i

2
2(n− 1)

1

n
= (n− i)i(n− 1).

If e = j → j − 1, then the quantity under consideration is equal to the

quantity associated with the oriented edge 1 + n− j → 2 + n− j. Therefore,

it is (j − 1)(n− (j − 1))(n− 1).

The function i 7→ (n − i)i has its maximum among integers in n/2, if n is

even, and in both (n− 1)/2 and (n + 1)/2, if n is odd. One can get

κ =

{
n2

4
(n− 1), if n is even

n−1
2

n+1
2

(n− 1), if n is odd
≤ n2

4
(n− 1).

By using Theorem 4.6.3,

λ2 ≤ 1− 4

n2(n− 1)
≤ 1− 1

n3
.

Proceeding to eigenvalue λn we could use Proposition 4.6.5. As an alter-

native, to see another example, we use Theorem 4.6.4 directly. We choose the

oriented edge i → i by itself as a path σi.∑
σi3e

|σi|Qπ(i) =

{
0, if e 6= j → j for any j ∈ I,

|σj|Qπ(j) = 1
π(j)pjj

π(j) = 1
pjj

, if e = j → j for some j ∈ I.

1/pjj is maximal if 2 ≤ j ≤ n− 1, so

α =
1

1− 1
n−1

,

and by Theorem 4.6.4,

λn ≥ −1 + 2

(
1− 1

n− 1

)
= 1− 2

n− 1
.
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These two bounds guarantee that the SLEM is λ2. By de�ning the func-

tion p(n) = n3+ε (for any ε > 0),

lim
n→∞

(
1− 1

n3

)p(n)

= 0.
�

5.2 MIS is slow at sorting by reversals

In this section we wish to introduce a signed permutation that has the prop-

erty that sampling from its minimal sequences of sorting reversals the MIS has

exponential relaxation time. From a certain viewpoint this improves the result

with the Ladder, because it is not based on an arti�cially constructed graph,

instead it shows explicitly that there are troublesome signed permutations

which the MIS algorithm might encounter in everyday practice.

Proposition 5.2.1 For every positive, even integer n there exists a signed

permutation of size 5n − 1, such that sampling from its minimal sequences

of sorting reversals the MIS has a relaxation time exponential in input size

5n− 1.

Proof Let us consider the following signed permutation:

(−4, +3, +2, +1).

By the Hannenhalli�Pevzner theory there are exactly 26 di�erent optimal

sorting sequences of this signed permutation, that is, sequences of reversals

to turn it into id. Each optimal sequence uses 4 reversals.

The �rst optimal reversal transforms (−4, +3, +2, +1) into one of the

following six signed permutations:

(−3, +4, +2, +1); (−4,−1,−2,−3); (−4, +3, +2,−1);

(−1,−2,−3, +4); (−4, +3,−2, +1); (−4,−3, +2, +1).

A common property of the �rst two ((−3, +4, +2, +1), (−4,−1,−2,−3)) is

that both have unique optimal sorting sequences:
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(−3, +4, +2, +1) (−4,−1,−2,−3)

↓ ↓
(−3,−2,−4, +1) (+1, +4,−2,−3)

↓ ↓
(−3,−2,−1, +4) (+1, +2,−4,−3)

↘ ↙
(+1, +2, +3, +4)

Each of the other four has six optimal sorting sequences. Each gives a diagram

similar to this one:

(−4, +3, +2,−1)

↙ ↓ ↘
(+1,−2,−3, +4) (−4,−3, +2,−1) (−4, +3,−2,−1)

| � � � � |
↓ ↙ ↘ ↙ ↘ ↓

(+1,−2, +3, +4) (+1, +2,−3, +4) (−4,−3,−2,−1)

↘ ↓ ↙
(+1, +2, +3, +4)

So (−4, +3, +2, +1) has 26 optimal sorting sequences. Now, the real example

is `n instances of (−4, +3, +2, +1) placed one next to another with spacing':(
−4, +3, +2, +1, +5,−9, +8, +7, +6, . . .

. . . , +5(n− 1),−(5n− 1), +(5n− 2), +(5n− 3), +(5n− 4)
)
.

To prove exponential relaxation time we shall use Liu's result from Sec-

tion 4.4. Our target distribution π is the uniform distribution on all optimal

sorting sequences. Therefore the largest importance ratio w(1) = π(1)/p(1)

is given by the smallest proposal probability p(1).

An optimal sorting sequence of reversals comprises independent optimal

sorting sequences of the small, four-character-long blocks. One has to pick

one of 26 sequences for every block and then carry out the reversals given by
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these n sequences in arbitrary order (but obeying the chosen and thereafter

�xed order in every four-reversal-long sequence). As a result of this, there are

π(1)−1 =
(4n)!

(4!)n
26n

optimal sorting sequences.

The least probable path of the random walk procedure yields the smallest

proposal probability in the MIS. This probability is realized, for instance,

when one chooses to sort small blocks one after another, sorting each by a

sorting sequence of the `branching type', that is, the case of (−4, +3, +2,−1),

where there were 3, then 2 possible choices for the next step. The probability

of one such sorting sequence is

p(1) =
1

6n

1

6(n− 1) + 3

1

6(n− 1) + 2

1

6(n− 1) + 1
·

· 1

6(n− 1)

1

6(n− 2) + 3

1

6(n− 2) + 2

1

6(n− 2) + 1
. . .

1

6

1

3

1

2

1

1
=

=
(6n− 1)(6n− 2) (6n− 7)(6n− 8) . . . 5 · 4

(6n)!
,

and consequently, assuming that n is even,

(4n)! p(1) =
(6n− 1)(6n− 2) . . . (3n + 5)(3n + 4)

6n(6n− 1) . . . (5n + 2)(5n + 1)
·

· (3n− 1)(3n− 2) . . . 5 · 4
5n(5n− 1) . . . (4n + 2)(4n + 1)

<

<
1

1

(
3

5

)n

.

The spectral gap is

1

w(1)
=

p(1)

π(1)
<

(
3

5

)n
26n

(4!)n
=

1

cn
<

1

(c1/5)5n−1
,

where

c =
5

3

4!

26
= 1.538 · · · > 1,

and this means exponential relaxation time with respect to input size 5n−1.�
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5.3 Dragon's wing

Similarly to the example with the Ladder, the name was inspired by the shape

of the de�ning graph, and secondly, by the attractiveness of this name. There

are n paths and each path consists of n edges which lead from the top (the

tip of the wing) to the bottom (the dragon's body). (See Figure 3.) The task

is the same: sampling from the set of all paths, uniformly at random.

n−3 n−2 n−1 n21

Figure 3: Dragon's wing

Proposition 5.3.1 The MIS applied to sample from the set of paths of the

Dragon's wing has the same SLEM and relaxation time as it had with the

Ladder (Section 5.1), therefore it has exponential relaxation time.

Proof This is caused by the fact that the random walk procedure yields the

same trial distribution. This does not seem symbolically at �rst glance beca-

use we change the order of the paths to satisfy Liu's condition for importance

weights from Section 4.4: w(1) ≥ w(2) ≥ · · · ≥ w(n). The trial distribution

is as follows: for i, j ∈ {1, . . . , n}

pij = p(j) =

(
1

2

)(n+1−j)∧(n−1)

.
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Liu's theorem tells us that

ρ = λ2 = 1− 1

w(1)
= 1− n

2n−1
.

�

However, we have a problem with the ParIS. If we �x a window size k

(2 ≤ k ≤ n − 1), then the Markov chain will not be irreducible: there will

always be paths out of reach. If we �x the window size to be n, then we get

the MIS.

To overcome this problem, we pick a random window size k ∈ {2, 3, . . . , n}
in every step independently with uniform distribution, and we take the ParIS

step with this window size. That means, we pick a connected part of length

k of the current path randomly and replace it with another one, using the

random walk procedure starting from the starting node of the window, if

the random walk ends up in the ending node of the window. If it ends up

somewhere else, we do not change the path, so we stay in the same state of

the Markov chain. (An obvious necessary condition to be able to leave state

i is to draw k ≥ i ∨ 2 and to have the last node of the path in the window.)

This MCMC method turns out to be rapidly mixing.

Proposition 5.3.2 The ParIS with uniform window size distribution on the

set {2, 3, . . . , n} applied to the Dragon's wing has polynomial relaxation time.

Proof Relying on the last formulae of Section 3.6, transition probabilities

qij are

qij =
n∑

k=j

1

n− 1

1

n− k + 1
min

{(
1

2

)k−j+1

,

(
1

2

)(k−i+1)∧(k−1)}
, if i < j,

qij =
n∑

k=i

1

n− 1

1

n− k + 1
min

{(
1

2

)(k−j+1)∧(k−1)

,

(
1

2

)k−i+1}
, if i > j,

that is,

qij =
1

n− 1

n∑
k=i∨j

1

n− k + 1

(
1

2

)(k−(i∧j)+1)∧(k−1)

, if i 6= j.
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We will prove shortly that qii ≥ 1/2, if n ≥ 6. Hence Proposition 4.6.5

gives that all eigenvalues of transition matrix Q are nonnegative.

Indeed, if i 6= j, then

qij =
∑

w

min
{
pw

ij, p
w
ji

}
≤ min

{∑
w

pw
ij,
∑

w

pw
ji

}
≤
∑

w

pw
ij.

It is obvious by the de�nition of pw
ij that∑

j 6=i

∑
w

pw
ij ≤ P proposal

(
the last node of the path is in the window

)
.

These two observations yield

qii = 1−
∑
j 6=i

qij ≥ 1−
∑
j 6=i

∑
w

pw
ij ≥

≥ P proposal
(
the last node of the path is not in the window

)
.

With straightforward calculation one can get

qii ≥ P proposal
(
the last node of the path is not in the window

)
=

=
1

n− 1

(
1

2
+

2

3
+

3

4
+ · · ·+ n− 2

n− 1

)
=

=
1

n− 1

(
1

2
+
(1

2
+

1

6

)
+
(1

2
+

1

6
+

1

12

)
+ . . .

)
≥

≥ 1

n− 1

(
1

2
(n− 2) +

1

6
(n− 3)

)
,

and the last term is greater than or equal to 1/2, if n ≥ 6.

Just as with the Ladder, we use Theorem 4.6.3 to prove polynomial re-

laxation time. We choose the same paths in the Markov chain: for i < j, we

choose the path i, i + 1, . . . , j, and for i > j, i, i− 1, . . . , j.

To keep calculations easier, each sum in transition probabilities qij is

replaced by its �rst summand. This is a lower bound of qij and therefore it

yields an upper bound of κ.

qij ≥ 1

n− 1

1

n− (i ∨ j) + 1

(
1

2

)(i∨j)−(i∧j)+1

, if i 6= j.
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With some calculation similar to that of the Ladder one can get

κ ≤ 1

2
n3(n− 1),

which means polynomial relaxation time. �

5.4 Another example

We describe a quite complicated graph. It can be seen as a far descendant

of the Dragon's wing (Section 5.3) with the property that the ParIS method

applied to sample from the set of its paths is not rapidly mixing even with

uniform window size distribution. Figure 4 shows this graph.

A B C

0
1
2
3

n/2−2
n/2−1
n/2

n−1
n

Figure 4: The graph that de�nes this example. Here a = 3, b = 4.

Suppose that n is even. Pick integers a, b ≥ 2, with a ≤ b. Every path

starts at the top node and leads to the one at the bottom. We construct the

set of all paths I as the disjoint union of three sets: I = A ∪B ∪ C.

The top node has two neighbours. If we go and keep to the left, then

there is a split in every step from the �rst node until the (n/2 − 2)nd one.

In every step the current path splits into a paths. These new paths do not

branch and they lead straight to the last node. They form set B. From the

(n/2 − 1)st node until the (n − 2)nd one there is a split in every step into

b branches. These new branches also continue branching into b branches in

every step and they form set A.
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If we start from the top node to the right, there is no branching until

the (n/2− 2)nd node. From the (n/2− 1)st one, we create an exponentially

branching part, identical to set A. We call this set of paths C.

Obviously, |A| = |C| = bn/2, |B| = (a− 1)(n/2− 2).

Assume that we would like to sample random elements from the set of

all directed paths leading from the top node to the bottom one, uniformly

at random. Relying on what we learnt from the Dragon's wing, we use ParIS

with uniform window size distribution on the set {2, 3, . . . , n}. Unfortunately,
we will �nd that the method has exponential relaxation time. In fact, one

should not be surprised, since the underlying idea of the construction is the

creation of a bottleneck between A ∪B and C.

Proposition 5.4.1 The ParIS method with uniform window size distribu-

tion on the set {2, 3, . . . , n} applied to sample random elements from the set

of all directed paths of this graph leading from the top node to the bottom one

has exponential relaxation time.

Proof We use the notion of conductance and Cheeger's inequality (Theo-

rem 4.5.2) to prove slow mixing. The reader is advised to recall the notations

of Section 4.5.

For the subset C of paths (or equivalently, subset of the state space of

the Markov chain) π(C) ≤ 1/2, therefore, by de�nition, Φ ≤ F (C)/π(C). If

one can show that
F (C)

π(C)
≤ 1

cn
,

for some constant c > 1, then, by Cheeger's inequality,

1− 2
1

cn
≤ 1− 2

F (C)

π(C)
≤ 1− 2Φ ≤ λ2,

which means exponential relaxation time.

In the ParIS method, the transition probabilities are

qij = qji =
∑

w

min
{
pw

ij, p
w
ji

}
.
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With this speci�c graph, all transitions we need imply a unique window size

and window location (that is, the whole path), hence these sums consist of

one summand only. Values pw
ij which will be needed are as follow:

pw
ij =

1

n− 1
· 1 · 1

2 bn/2
, if i ∈ A, j ∈ C,

pw
ij =

1

n− 1
· 1 · 1

2 an/2−2 bn/2
, if i ∈ C, j ∈ A,

pw
ij =

1

n− 1
· 1 · 1

2 bn/2
, if i ∈ B, j ∈ C,

pw
ij ≥ 1

n− 1
· 1 · 1

2 an/2−2
, if i ∈ C, j ∈ B.

As a result,

qij = qji =
1

n− 1
· 1 · 1

2 an/2−2 bn/2
, if i ∈ A, j ∈ C,

and a ≤ b implies

qij = qji =
1

n− 1
· 1 · 1

2 bn/2
, if i ∈ B, j ∈ C.

In our case, π is the uniform distribution. Consequently, for any S ⊆ I,

k ∈ I,
F (S)

π(S)
=

∑
i∈S, j∈I\S π(i)qij

|S|π(k)
=

∑
i∈S, j∈I\S qij

|S|
.

Speci�cally, for S = C,

F (C)

π(C)
=

( ∑
i∈C, j∈A

qij +
∑

i∈C, j∈B

qij

)/
|C|.

The �rst summand is∑
i∈C, j∈A qij

|C|
=
|C||A| qij

|C|
=

|A|
(n− 1) 2 an/2−2 bn/2

=
1

(n− 1) 2 an/2−2
,

while the second one is∑
i∈C, j∈B qij

|C|
=
|C||B| qij

|C|
=

|B|
(n− 1) 2 bn/2

=
(a− 1)(n/2− 2)

(n− 1) 2 bn/2
.

Hence F (C)/π(C) ≤ 1/cn for some constant c > 1, if n is big enough.

This proves our statement. �
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The role of set B can be seen clearly now. It makes transitions from C to

A very improbable, what is fruitful in the �rst summand, still it has relatively

few elements, thus letting the second summand be small.

Note that the number of paths (i.e. the number of states of the Markov

chain) is exponential in n and this fact has a great e�ect on the mixing rate.

Exponentially many paths can indeed emerge in the problem of sorting by

reversals. Therefore we need to cope with this situation if we try to �nd a fast

algorithm to sample random elements from all optimal sorting sequences.

5.5 The ParIS needs to choose the whole sorting se-

quence with positive probability

In this section we show a signed permutation which proves that in the prob-

lem of sampling from optimal sequences of sorting reversals the ParIS needs

to choose the whole sorting path as a window with positive probability to

guarantee the irreducibility of the Markov chain.

We assume familiarity with the Hannenhalli�Pevzner theory. One can �nd

introductions to the topic in [10, 19, 13, 5, 22].

Proposition 5.5.1 Let n be a positive integer. The set of optimal sorting

sequences of reversals of any signed permutation σ whose breakpoint graph

consists of two hurdles and an additional cycle as seen in Figure 5, can be

partitioned into two disjoint subsets, such that signed permutations through

which sorting sequences of one subset lead are disjoint from signed permuta-

tions of sorting sequences of the other subset, except for the two endpoints,

σ and id.

Corollary 5.5.2 Any ParIS method to sample from the set of all optimal

sequences of sorting reversals of σ has to cut the whole sequence out with

positive probability to ensure that the Markov chain is irreducible.

To prove the proposition we will use an easy lemma, which is proved

in [22].
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1 2hurdlehurdle

0 2k 2k−1 2 1 2k+1 2k+2 2n+1  

−k . . . −1 +(k+1) . . .

Figure 5: The breakpoint graph of the example, σ.

Lemma 5.5.3 If there is no fortress in the signed permutation, then a re-

versal is a sorting reversal if and only if, �rst, it does not introduce a new

fortress, and secondly, ∆c = −1 and ∆h = −2; or ∆c = 0 and ∆h = −1;

or ∆c = 1 and ∆h = 0. Consequently, under the fortess-free assumption, a

reversal that increases the number of hurdles cannot be a sorting reversal.

Proof of the Proposition. Lemma 7 of [22] guarantees that all our permu-

tations will be fortress-free. The structure of σ with the two hurdles implies

that σ consists of integers with negative signs between the position of −k

and −1, and integers with positive signs to the right from −1:

σ =
(
− k,

{
− 2,−3, . . . ,−(k − 1)

}
, −1,

{
+ (k + 1), +(k + 2), . . . , +n

})
.

There are three types of possible starting sorting reversals of permutation σ:

1. a hurdle merging,

2. the reversal that sorts the additional cycle, that is, that reverses the

interval from −k to −1,

3. a hurdle cutting: the cutting of either hurdle1 or hurdle2.

We prove the Proposition by showing that optimal sorting sequences of

Case 1 do not contain any permutations that any sequence of Case 2 or 3

contains, except for σ and id. The sorting sequences of Case 1 shall be the

elements of the �rst set of the partition we are looking for, the second set
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shall consist of sequences of Case 2 and 3.

Case 1 We claim that if we start with a hurdle merging, the permutation

will retain the following structure until the last reversal:(
−,−, . . . ,−, ±1, +, +, . . . , +

)
(Claim 1). We also claim that the cycle formed by 0, 2k, . . . , 1, 2k + 1, . . . of

the unsigned permutation will be in existence until the last reversal: either in

this form (see Figure 6) or in the form 0, 2k, . . . , 2k + 1, 1, . . . (see Figure 7)

(Claim 2). This implies that nothing but the last reversal will take ±1 to the

�rst position (Claim 3).

0 2k 2k−1 2 1 2k+1 2k+2 2n+1  

−k . . . −1 +(k+1) . . .

Figure 6: The additional cycle is oriented.

0 2k 2k−1 2n+1  

−k . . . . . .
2k+2 2k+1 1 2

+1−(k+1)

Figure 7: The additional cycle is unoriented.

Two reality edges of the same cycle are said to be convergent, if in a

traversal of the cycle, they induce the same circular ordering of the vertices

of the breakpoint graph, otherwise the edges are divergent. It is well-known
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that any reversal that acts on divergent reality edges will split the cycle to

which the edges belong, and any reversal that acts on convergent edges will

not split the cycle to which they belong.

Assume that desire edge 2j, 2j + 1 (0 ≤ j ≤ n) of the unsigned per-

mutation is oriented. Then the interval on which the corresponding sorting

reversal acts is one of the following four:(
. . . , −j, . . ., +(j + 1), . . .

)
, (4)(

. . . , +(j + 1), . . ., −j, . . .
)
,(

. . . , +j, . . . , −(j + 1), . . .
)
,(

. . . , −(j + 1), . . . , +j, . . .
)
. (5)

It can be seen that one endpoint of the interval and the neighbour of the other

endpoint that does not belong to the interval have di�erent signs (Claim 4).

Since we started with a hurdle merging, there are no hurdles left in the

permutation. Lemma 5.5.3 guarantees that no hurdle will arise later and the

permutation remains hurdle-free. The Lemma also implies that each reversal

must increase the number of cycles, therefore must act on divergent edges of

the same cycle. Claim 4 ensures that Claim 1 holds.

Indeed, a reversal reverses all signs on which it has an e�ect. If there

are both positive and negative numbers in the reverted interval, then it is

clear that the reversal transforms the permutation (−, . . . ,−, ±1, +, . . . , +)

to some permutation with the same structure. If there are not, then we can

use Claim 4: there are both positive and negative numbers in or right next

to the reverted interval. Nothing but these two cases can cause a problem:(
−, . . . ,−, −, . . . ,−, +1, +, . . . , +

)
→

(
−, . . . ,−, +, . . . , +, +1, +, . . . , +

)
,(

−, . . . ,−, −1, +, . . . , +, +, . . . , +
)
→
(
−, . . . ,−, −1, −, . . . ,−, +, . . . , +

)
.

But none of the four cases of Claim 4 �ts any of these. The �rst one looks like

(4), with j + 1 = 1, but then the interval should contain a virtual −0 which
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is impossible. The second one looks like (5), with j + 1 = 1 again, but then

0 should be in the interval, which is also impossible. This proves Claim 1.

However, such a reversal might occur:(
−,−, . . . ,−, −1, +, +, . . . , +

)
−→

(
−,−, . . . ,−, +1

)
.

This is like (5), with +j in the last position.

In contrast, sorting σ starting with a hurdle merging (that is, in Case 1),

reversals like(
−,−, . . . ,−, +1, +, +, . . . , +

)
−→

(
− 1, +, +, . . . , +

)
(6)

cannot occur (Claim 5), no matter that this looks like (4), with −j in the

�rst position.

Such a reversal can only be a sorting one if it acts on divergent edges of

the same cycle. It is clear that since we are in Case 1 the �rst reversal is a

hurdle merging and it leads to a con�guration shown in Figure 7. The second

reversal cannot be like (6), since if this was the case, then it would act on two

di�erent cycles, it would not be a sorting reversal. Therefore it must act on

divergent reality edges that earlier belonged to the hurdles. As long as this

cycle is unoriented, (6) is not a sorting reversal, and as a result, −k remains

�xed in the �rst position.

After a number of reversals the additional cycle might become oriented

again (Figure 6). It cannot happen that a sorting reversal sorts the additional

cycle to get some permutation(
+ 1, +, +, . . . , +

)
,

because this permutation contains a hurdle, unless it is id. In the latter case

we �nished proving Claim 2. But if this is not the case, then the additional

cycle remains. As long as it is oriented, it can only be turned into two trivial

cycles, if this sorting reversal is the last reversal. Note that if the cycle is

oriented, then (6) cannot happen, because the ±1 has negative sign.

If the cycle becomes unoriented again (Figure 7), then (6) is not sorting

for the same reason why the second sorting reversal was not of type (6),
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either. If the cycle is unoriented, then the next reversal must act on reality

edges distinct from both 0, 2k and 2k + 1, 1 of the unsigned permutation.

This proves both Claim 5 and Claim 2, consequently, Claim 3.

After any of the reversals, every nontrivial component intersects the addi-

tional cycle (Claim 6). This is an easy observation: otherwise there would be

a component consisting of numbers with identical signs, therefore this com-

ponent would be a hurdle. But the permutation is hurdle-free after merging

the two hurdles.

Claim 3 will separate signed permutations of optimal sorting sequences

of Case 1 from that of Case 2: Claim 3 will not be true for permutations of

sorting sequences of Case 2. Claim 6 will make the same for Case 1 and Case 3.

Case 2 After the speci�c �rst reversal of Case 2 we get(
a trivial cycle, hurdle1 reverted, a trivial cycle, hurdle2

)
=

=
(

+ 1, . . . , +k, +(k + 1), . . .
)
.

The next reversal is either a hurdle merging or a hurdle cutting. In both

cases it decreases the number of hurdles, to 0 or to 1. By Lemma 5.5.3, using

sorting reversals the number of hurdles is nonincreasing.

We claim that all forthcoming reversals leave (both the position and the

sign of) +1 unchanged. Indirectly, if this was not the case, then the reversal

which changes (the position or the sign of) +1 would decrease the number

of cycles by one. By Lemma 5.5.3, two hurdles must have been disappea-

red. This could only happen if there were two hurdles still present, which is

only possible right after the very �rst reversal. This is the permutation shown

above. But in this case, no hurdle merging a�ects +1. This is a contradiction.

Case 3 After cutting one hurdle, there will be at most one hurdle in forthco-

ming signed permutations, because there is no fortress in our permutations.

If the additional cycle is destroyed during sorting, then Claim 6 is trivially

false. If in any step the additional cycle still existed, and, indirectly, a desire
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edge intersected the additional cycle, then this intersecting edge would have

come into existence by a reversal that had acted on both sides of the addi-

tional cycle and had connected two di�erent components. Therefore it had

decreased the number of cycles. By Lemma 5.5.3 ∆c < 0 implies ∆h = −2,

which is a contradiction because the number of hurdles is strictly less than

two. �

5.6 An application of the coupling method

In this section we give a coupling argument to prove that if d = 2, then

the ParIS with window size 2, applied to sample from the set of simpli�ed

sequence alignments (or equivalently, to sample from paths on the square grid

from bottom left to top right with steps → or ↑) has a polynomial (O(n4))

mixing time.

Pick the square in Z2 with edge lengths n, and vertices (0; 0), (n; 0), (n; n)

and (0; n). We aim to sample uniform random elements from the set of paths

connecting the bottom left corner (0; 0) with the top right one (n; n) that

start at (0; 0) and consist of steps from a point in Z2 to another one where

each step is of the following two kinds:→, ↑ (or equivalently, (+1; 0), (0; +1)).

Let I denote the set of such paths.

A path is composed of n → steps and n ↑ steps. We represent each path

with a 2n-tuple: we write 1 instead of → and 0 instead of ↑.
Since our main concern is a more complicated model of sequence align-

ments, we use a method which is admittedly not the most suitable for this

one, but which can be generalized more easily. One should keep in mind that

this problem can be solved by a direct method that is more e�cient than

MCMC simulation.

We de�ne a Markov chain X = (Xk) with state space I whose stationary

distribution π is the uniform distribution on I.

Suppose that x = (x1, . . . , x2n) ∈ I (that is, x1, . . . , x2n ∈ {0, 1} and∑2n
i=1 xi = n) is the current state of the chain. A transition of the chain is a

possible swap of two neighbouring entries of x:
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Draw a pair of neighbouring coordinates of x uniformly at random (there are

2n− 1 possible choices) and swap them with probability 1/2.

(Note that this is the ParIS with window size 2 on the set of paths.) If we

get to a di�erent state, say x′, then we say that we made a �ip on the path

x. For neighbouring states x and x′ (x 6= x′),

pxx′ =
1

(2n− 1)2
.

Transition probabilities form the transition matrix P . P is symmetric, there-

fore π is the stationary distribution of this Markov chain indeed.

In Section 4.2 we de�ned the following function:

τi(ε) := min
{
k0 ∈ N : dV (δT

i P k, πT ) ≤ ε for all k ≥ k0

}
.

We are now ready to formulate the main result of this section.

Proposition 5.6.1 There exists some c > 0 such that

max
i∈I

τi(ε) ≤
cn4

ε
.

Proof We follow a similar argument to that of Aldous [1], and prove this

bound via a coupling argument.

We construct two dependent versions
(
X1, X2

)
of X with arbitrary initial

states and we show that X1
k = X2

k for all k ≥ τ for some random time τ , and

then we give an upper bound of τ .

One can choose X2 to start from the stationary distribution. This implies

that (X1
k)k≥τ is also in equilibrium.

We start with constructing the chains. At time k(
X1

k , X2
k

)
=
(
(x1

1, . . . , x
1
2n), (x2

1, . . . , x
2
2n)
)
.

In each position i ∈ {1, . . . , 2n}, x1
i = x2

i , or not. If equality holds, we say

that position i is marked :

M M M

X1
k = ( . . . 0 1 0 1 1 0 . . . ),

X2
k = ( . . . 1 1 0 0 0 0 . . . ).
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We specify a transition of the coupled chain
(
X1

k , X2
k

)
. Pick i ∈ {1, . . . , 2n−1}

uniformly at random (i.e. choose neighbours i, i + 1) and swap x1
i for x1

i+1

with probability 1/2. Otherwise stay in state X1
k . (If x1

i = x1
i+1, then a swap

also results in remaining in X1
k .) If x1

i 6= x1
i+1, then

P
(
X1

k+1 = (x1
1, . . . , x

1
i−1, x

1
i+1, x

1
i , x

1
i+2, . . . , x

1
2n)
∣∣∣X1

k

)
=

1

(2n− 1)2
.

We de�ne the transition rule of X2 as follows:

(1) If at least one of i, i+1 is a marked position, then do the same transition

in X2 as in X1: swap the same two positions or do nothing. Note that

in both cases the number of marks is preserved.

(2) If none of i, i+1 is a marked position, then draw one of the neighbouring

positions which are both unmarked, uniformly at random (there is at

least one: i, i + 1), say j, j + 1, and

� if we made a �ip in this step in X1, then do nothing: X2
k+1 := X2

k ;

� if we did not, then make a �ip in X2, that is, swap x2
j for x2

j+1.

In this case the number of marks remains the same or increases by 2.

This rule ensures that the number of marks is nondecreasing, moreover, no

mark ever disappears. The more important observation is that each chain

evolves according to the transition rule given by P .

Now we turn to bounding random time τ .

Obviously, the marking rule is introduced to indicate that X1
k = X2

k : when

there are 2n marks, then this is already the case. It is su�cient to count the

number of marks only at positions where 1 is the common coordinate. There

are 2n marks if and only if this latter quantity is n.

We would like to track the movement of 1's to see when they get marked.

Let us introduce nonnegative integer random times τ1, τ2, . . . , τn. We stress

that they are lengths of time intervals, and they are not moments in time.
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When k = 0, there may already be marked 1's, let us say, there are i

of them. Then de�ne τ1 = · · · = τi = 0. Now we would like to track the

movement (or, the random walk) of the leftmost unmarked 1. We call this

the candidate, because it is a candidate to be the �rst 1 to become marked:

M M M C M

X1
k = ( 0 1 1 0 0 1 1 . . . ),

X2
k = ( 0 1 1 1 1 1 0 . . . ).

No matter which 1 will be the next to turn marked, we track this one. If this

one becomes marked after k steps, we de�ne τi+1 := k. At time k there are

j (j ≥ i + 1) marked 1's. If j ≥ i + 2, then de�ne τi+2 = · · · = τj = 0. Now

we search for the leftmost unmarked 1 and do the same procedure again and

again.

If each 1 is marked, then we have

n∑
i=1

τi = τ.

Let us investigate a related problem. We use arguments of Feller's book

[9].

Consider a symmetric random walk on {1, 2, . . . , 2n}. Let us introduce

the notation p := 1/(2n− 1)2. If 2 ≤ i ≤ 2n− 1, the transition probabilities

are given by

pi,i−1 = p,

pi,i+1 = p,

pii = 1− 2p,

p12 = p,

p11 = 1− p,

p2n,2n−1 = p,

p2n,2n = 1− p.

Let Dz (z ∈ {1, 2, . . . , 2n}) denote the expectation of the time to �rst

reach state 2n, if the random walk is started from z. Dz (1 ≤ z ≤ 2n)
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satis�es the following equations:

D1 = (1− p)D1 + pD2 + 1,

Dz = pDz−1 + (1− 2p)Dz + pDz+1 + 1, if 2 ≤ z ≤ 2n− 1,

D2n = 0.

This can be written in the form

A
(
D1, . . . , D2n

)T
=

(
1

p
, . . . ,

1

p
, 0

)T

,

where

A =



1 −1

−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2 −1

0 1


.

One can easily check that

A−1 =



2n− 1 2n− 2 2n− 3 1 1

2n− 2 2n− 2 2n− 3 1 1

2n− 3 2n− 3 2n− 3 1 1
. . .

...
...

1 1 1 . . . 1 1

0 0 0 . . . 0 1


.

Finally, we get

D1 = 2n(2n− 1)2 > D2 > · · · > D2n = 0.

We are interested in this because candidate 1's do such random walks. The

expected time a candidate needs to turn marked is bounded by Dz if it started

its route in z. If the candidate 1 is a coordinate of X i (i ∈ {1, 2}), then it

will become marked when it hits an unmarked 1 in X3−i.
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We arranged in rule (2) that when there is a chance of turning marked,

exactly one �ip is made. We did it so to ensure that the candidate will not

miss any other 1's, in other words, to avoid such situations:

C

X1
k = ( . . . |1 0| . . . )

X2
k = ( . . . |0 1| . . . )

;

C

X1
k+1 = ( . . . |0 1| . . . )

X2
k+1 = ( . . . |1 0| . . . )

Therefore, for the appropriate i, E(τi+1) is bounded above by a certain Dz,

which is bounded by D1. By the coupling inequality (Theorem 4.12.2) and

the well-known Markov-inequality

dV

(
X1

k , X2
k

)
≤ P (τ > k) ≤ E(τ)

k
.

By using the fact that τ =
∑n

i=1 τi,

E(τ)

k
=

n∑
i=1

E(τi)

k
≤ nD1

k
=

2n2(2n− 1)2

k
,

which proves the proposition. �

This proof has a remarkable weakness. Namely, we sum all E(τi)'s to get

an upper bound of E(τ). It seems possible to prove an O(n3) bound if we

manage to take into account that random walks of 1's go on simultaneously.

5.7 Conclusions and future work

We investigated Markov chains that converge asymptotically to the uniform

distribution on the set of all optimal sequences of sorting reversals of a signed

permutation. We proved that, in general, the MIS is not a fast algorithm.

Our results with the Ladder and the Dragon's wing suggest that the ParIS

might be faster than the MIS. We proved that the whole sorting sequence

must be allowed to be cut out as a window to ensure the irreducibility of the

Markov chain.

We hope that the ParIS turns out to be a fast algorithm with an appro-

priate window size distribution. Further investigations are needed whether
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some window size distribution exists that makes the ParIS applied to this

problem a polynomially mixing MCMC method.

We proved that the ParIS with window size 2 has polynomial mixing time

when sampling from the set of simpli�ed sequence alignments, uniformly at

random. We think that the proof is more important than the result. The

proof may be a starting point for future investigations, because it might be

developed to yield similar bounds for algorithms designed to solve problems

of more biological relevance.
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Abbreviations

gcd greatest common divisor

MCMC Markov chain Monte Carlo

MIS Metropolised Independent Sampler (or Sampling)

ParIS Partial Independent Sampler (or Sampling)

SLE second largest eigenvalue

SLEM second largest eigenvalue modulus
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